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Abstract

A local radiative transfer model is developed for strongly anisotropic porous media

with an opaque phase and a mixture of two semitransparent phases. At the optically

thick limit, the homogenized phase associated with the opaque interfaces is charac-

terized by generalized extinction and scattering coefficients at equilibrium, a phase

function and an effective refraction index, by following the model of Taine et al.[1]

for non Beerian media. The radiative transfer model is based on a Radiative Transfer

Equation (RTE) with three source terms, which are associated with the temperature

fields of the opaque interfaces and the two semitransparent phases. This RTE has

been solved by a perturbation technique, which allows radiative interfacial fluxes

and radiative powers per unit volume, that are exchanged between phases, to be

computed at local scale. The main contributions are obtained at zeroth order per-

turbation. Corrective contributions at first order perturbation are also determined:

Radiative fluxes and powers are then expressed from coupled Fourier’s laws, which

are characterized by radiative conductivity tensors associated with each phase.

Illustrative results are given for the radiative modeling of reflooding of a damaged
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nuclear reactor core. Pragmatic conclusions on the cooling efficiency by steam and

water droplets are finally given.

Keywords: Statistical Homogenization, Monte Carlo simulation, Non Beerian

Porous Medium, Non Equilibrium, Perturbation Technique.

Nomenclature

Latin symbols

P Radiative power per unit volume

A Specific area per unit volume of the whole porous medium

B Generalized extinction coefficient at equilibrium

E Extinction point

fv Fraction of particles per unit volume

G Cumulative distribution function

g Scattering asymmetry parameter

I Intensity

K Generalized absorption coefficient at equilibrium

k Radiative conductivity tensor

M Current point

n Refractive index

P Cumulative probability

p Scattering phase function

pv Steam pressure
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qi Radiative flux vector (tensorial)

s Curvilinear abscissas along a ray

T Temperature

ui, u Director cosine of axis

x, y, z Coordinate axis

Kn Knudsen number

Greek symbols

α Interface absorptivity

κ Absorption coefficient

Ω Solid angle

ω Albedo

Π Porosity

Σ Generalized scattering coefficient at equilibrium

σ Scattering coefficient

σs Stefan’s constant

θ, ϕ Euler angles

ϕ Radiative flux

Indexes

−′ At the calculation point

−+ Dimensionless
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−(j) jth order of perturbation

−d Water droplets

−v Water vapor (steam)

−w Homogenized phase w representing the interfaces

−ν Frequency

−a Absorption

−c Phase c (w, v or d)

−ext Extinction

−e Emission

−i Direction i

−ot At optically thin limit

−sc Scattering
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1. Introduction

Radiative transfer in porous media is commonly encountered in energy technolo-

gies, for instance in ceramic foams for catalytic combustion, in packed beds used in

solar absorbers and solar thermochemical reactors, in degraded rod bundles of a nu-

clear reactor for the modeling of a severe accident, in reformers for H2 production,...

For all these applications, an accurate characterization of the radiative properties of

the porous medium and the modeling of radiative couplings between different phases

are key steps.

The porous medium characterization is generally based on the non always proved as-

sumption that the medium can be modeled by an equivalent semitransparent medium

which follows Beer’s law. A popular method for characterizing radiative properties

consists in identifying a set of parameters that characterize extinction, absorption or

scattering from experimental data, for instance reflected or transmitted fluxes [2-7].

A more detailed bibliography is given in Ref.[8]. These approaches are pertinent only

if Beer’s laws is valid. Because of the large number of parameters to determine, the

parameter identification techniques practically always lead to a solution, but do not

always allow the obtained set of parameters to be physically validated.

The recent developments of γ-ray and X-ray tomography techniques allow the mor-

phology of most porous media to be accurately determined. By using morphological

data issued from tomographies, Lipinski et al. [9] have used a generalization of the

Method of Volume Averaging of Whitaker [10, 11], initiated by Consalvi et al. [12],

for characterizing radiative transfer within a porous medium. The specific features

of radiation are then only taken into account by an averaged Radiative Transfer

Equation (RTE). This approach is limited to a phase which is semitransparent at

local scale. As radiation modeling is then degraded by upscaling through a spatial

averaging technique, it seems difficult, in this method, to account for coupling at

pore scale with other heat transfer modes.

A recent statistical approach leads to a complete characterization of a porous medium

by radiative statistical functions. It has been developed by Tancrez and Taine [13] for

isotropic and homogeneous porous media. The associated numerical tool is a specific
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Monte Carlo approach. Zeghondy et al. [14, 15] have generalized this approach for a

statistically anisotropic porous medium, from data issued from tomography and the

medium radiative properties at a spatial scale which is smaller than the tomography

resolution. Petrasch et al. [16], Haussener et al. [17, 18] have applied the same

method to determine the radiative properties of high porosity reticulated ceramics

and packed beds used in solar absorbers and solar thermochemical reactors. Bellet

et al. [19] have also characterized, by the same approach, bundles of opaque rods

of an intact nuclear core, which are strongly anisotropic media. All the previous

authors have identified the computed radiative statistical functions with exponential

functions, i.e. with functions that follow Beer’s law. This approach has been called

Radiative Distribution Function Identification (RDFI) in Ref.[14].

In fact, the porous media with an opaque phase and a transparent one which are

encountered in Ref. [19] do not follow Beer’s law and many other cases of non Bee-

rian media have also been encountered [1, 20]. A Generalized Radiative Transfer

Equation (GRTE), which is directly based on the radiative statistical distribution

functions, has been recently introduced for radiative transfer computations in these

non Beerian media [1]. By using a perturbation technique of the GRTE, a radia-

tive conductivity tensor has been directly determined by the same authors for non

Beerian porous media with opaque and transparent phases. An accurate validity

criterion of the associated Fourier’s law has also been recently defined [21].

The aim of this paper is to generalize the previous statistical approach to statistically

anisotropic porous media with opaque and semitransparent phases and develop an

original model of radiative transfer, suitable for non Beerian homogenized phases.

Sec.2 deals with this physical model, more precisely with the expressions of the radia-

tive power per unit volume within each semitransparent phase and of the radiative

flux at each opaque interface. The radiative energies which are exchanged within an

elementary volume dV of the porous medium and between dV and its surrounding

are then determined. In Sec.3, the method is applied to the radiation model asso-

ciated with the reflooding of a damaged nuclear core, at the beginning of a severe

accident.
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2. Physical model

This section deals with the development of an original radiative transfer model

for a porous medium with an opaque phase and two semitransparent ones (water

droplets and steam, for instance). This medium is statistically homogeneous and

possibly anisotropic. A key preliminary step is to characterize a homogenized con-

tinuous phase associated with the opaque solid interface elements. In this model, the

geometrical optics laws are considered valid because the typical pore size is assumed

much larger than the typical radiation wavelength. Diffraction effects are then ne-

glected. The morphology of the opaque walls is characterized by data issued from

tomography images. As justified in the following, a first spatial limitation of the

radiative properties of the homogenized phase is linked to the spatial resolution of

these images. Another limitation comes from the spatial resolution of the temper-

ature field, which is involved in emission and in fact depends on the type of model

used for the other heat transfer modes [22]. In the following, the smallest spatial

scale which fulfills the two previous conditions is called local scale.

2.1. Radiative statistical functions

As detailed in Taine et al. [1, 23], the radiative properties of a statistically a-

nisotropic porous medium with an opaque solid phase and a transparent fluid one

are completely characterized by four radiative statistical functions: i) An extinc-

tion cumulative distribution function Gext (s′ − s, θ, ϕ), independent of the radiation

frequency ν; it is, in fact, the cumulative distribution function of lengths of all seg-

ments ME joining any point M (s) of the fluid phase to any extinction point E (s′)

at the fluid-solid interface for a given direction of propagation u (θ, ϕ); ii) An ab-

sorption (or scattering) cumulative probability from M to E, Pa,ν (s′ − s, θ, ϕ) (or

Psc,ν (s′ − s, θ, ϕ)). For a diffuse reflection law at the wall, characterized by an ab-

sorptivity αν , the previous functions are linked by

Pa,ν (s′ − s, θ, ϕ) = 1 − Psc,ν (s′ − s, θ, ϕ) = αν Gext (s
′ − s, θ, ϕ) . (1)

iii) A scattering phase function pw (θi, ϕi, θsc, ϕsc), independent of the radiation fre-

quency ν and depending on both the incidence direction (θi, ϕi) and the scattering
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one (θsc, ϕsc); iv) An effective refractive index nw,ν (θ, ϕ) depending on direction

(θ, ϕ), if Psc,ν (s′ − s, θ, ϕ) depends on this direction [19, 1]. The spatial resolution

of these functions is only limited by the resolution of the tomography, which defines

the porous medium morphology.

The GRTE, developed in Ref.[1, 21] for possibly non Beerian phases of this kind

of porous media, is directly based on Gext (s′ − s, θ, ϕ), Psc,ν (s′ − s, θ, ϕ), nw,ν (θ, ϕ)

and the scattering phase function pw (θi, ϕi, θsc, ϕsc).

For optically thick media, the GRTE rigorously degenerates into a classical RTE,

characterized by generalized extinction, absorption and scattering coefficients at equi-

librium Bw (θ, ϕ), Kw,ν (θ, ϕ) and Σw,ν (θ, ϕ) given by

Bw (θ, ϕ) =

(
∫

∞

0

[1 − Gext(ζ , θ, ϕ)] dζ

)

−1

, (2)

Kw,ν(θ, ϕ) = αν B(θ, ϕ), (3)

Σw,ν(θ, ϕ) = Bw (θ, ϕ) − Kw,ν(θ, ϕ) = (1 − αν) B(θ, ϕ). (4)

More precisely, this RTE is valid [21]: i) In the core of the porous medium, i.e. at

a distance from any system boundary larger than 5 to 10 K−1
eff , where Keff(ω, g) is

an effective absorption coefficient which accounts for scattering and is a function of

the albedo ω and the scattering asymmetry parameter g; ii) When the Gomart and

Taine criterion is fulfilled, i.e.

Keff (ω, g) δ >
dT

T
η, (5)

where dT is the temperature variation along any spatial scale δ and η is a constant

parameter which depends on the wished level of accuracy on Fourier’s law. The

conditions i) and ii) are assumed fulfilled in the following for the spatial scale δ.

2.2. Radiative transfer equation with three source terms

Radiative transfer within a porous medium with a solid opaque phase and a semi-

transparent gas-particle mixture (water droplets and steam) is now considered, at

the local scale which has been defined in Sec. 2.1. More precisely, three phases, i.e.

a homogenized phase associated with opaque solid interfaces w, as developed in Sec.
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2.1 and in Refs. [1] and [19], water vapor v and water droplets d, are accounted for.

They are characterized by different temperature fields: Tw, Tv and Td, respectively.

The specificity of the considered case is that the radiation intensities which are emit-

ted by the three phases are associated with the same propagation medium, i.e. only

the fluid phase. The gas absorbs radiation and does not scatter it. The particles

absorb radiation and possibly scatter it. The homogenized phase w and the gaseous

phase v are characterized by the refractive indices nw,ν(θ, ϕ) and nv,ν , which is in

practice equal to 1. At any point, the whole medium is the superimposition of the

homogenized phase w and the gas-particle mixture (v, d). Indeed, this mixture is

considered as a unique phase whose effective extinction and absorption coefficients

are the sum of the extinction and absorption coefficients of the gas and the particles.

Particle radiation is treated, as commonly done, under the far field approximation.

As the porosity Π is the presence probability of the fluid phase within any volume

element dV of the whole porous medium, the homogenized phase w is also character-

ized by the same porosity within dV [23]. The conservation laws between the virtual

propagation phases w and the real one v, i.e. Clausius theorem[24] and flux conser-

vation, are applied to corresponding rays through a fictitious elementary surface dS

belonging to both propagation phases w and v. Clausius theorem reads

n2
w,ν cos θw dS dΩw = n2

v,ν cos θv dS dΩv, (6)

where θw and θv are the angles between the unit vector which is normal to dS and

the propagation directions of the rays. Moreover, an incident ray is transmitted in

the same direction in the other phase, i.e. cos θw = cos θv, and Eq. (6) becomes

n2
w,ν dΩw = n2

v,ν dΩv. (7)

The flux conservation between w and v reads, at any point of the homogenized

volume,

Iw,ν cos θw dΩw = Iv,ν cos θv dΩv, (8)
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where Iw,ν and Iv,ν are the intensities within the propagation phases w and v, re-

spectively. Eq. (8) becomes

Iw,ν dΩw = Iv,ν dΩv. (9)

Eqs. (7) and (9) prove then the conservation of the intensity under vacuum between

w and v, which reads: Iw,ν/n2
w,ν = Iv,ν/n2

v,ν .

For instance, the spectral absorbed flux is the sum, at any point, of the spectral

fluxes absorbed by the phases w, v and d, i.e.

dΦa
ν

dν
= Kw,ν Iw,ν dΩw + (κv,ν + κd,ν) Iv,ν dΩv. (10)

With the previous conservation laws given by Eqs. (7) and (9), dΦa
ν/dν can be

written either in the propagation phase w or in the propagation phase v, i.e.

dΦa
ν

dν
= [Kw,ν (u) + κv,ν + κd,ν ] Iw,ν dΩw = [Kw,ν (u) + κv,ν + κd,ν ] Iv,ν dΩv. (11)

In the same way, the spectral elementary radiative fluxes which are emitted, dΦe
ν/dν,

extinguished by scattering, dΦsc−
ν /dν, and issued from the scattering source term,

dΦsc+
ν /dν are given in the phase v by

dΦe
ν

dν
= Π [Kw,ν (u) I◦

ν (Tw) + κv,ν I◦

ν (Tv) + κd,ν I◦

ν (Td)]n
2
v,ν dΩv, (12)

dΦsc−
ν

dν
= [Σw,ν (u) + σd,ν ] Iv,ν dΩv, (13)

dΦsc+
ν

dν
=

[

1

n2
w,ν(u)

∫

4π

Σw,ν(u
′) pw(u′,u) n2

w,ν(u
′) Iv,ν(u

′) dΩ′ (14)

+ σd,ν

∫

4π

pd,ν(u
′.u) Iv,ν(u

′) dΩ′

]

dΩv

4π
,

where σd,ν and pd,ν(u′.u) are the scattering coefficient of the particles and their

scattering phase function, which only depends on the scattering angle cosine u′.u.
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The RTE simply reads

dIw,ν

ds
dΩw =

dIv,ν

ds
dΩv+d = −

dΦa
ν

dν
−

dΦsc−
ν

dν
+

dΦe
ν

dν
+

dΦsc+
ν

dν
. (15)

It can also be expressed in phase v, i.e.

dIv,ν

ds
= − [Bw(u) + κv,ν + κd,ν + σd,ν ] Iv,ν

+ Π n2
v,ν [Kw,ν(u) I◦

ν(Tw) + κv,ν I◦

ν (Tv) + κd,ν I◦

ν (Td)]

+
Σw,ν(u)

4π

∫

4π

pw(u′,u) Iv,ν(u
′) dΩ′ (16)

+
σd,ν

4π

∫

4π

pd,ν(u
′.u) Iv,ν(u

′) dΩ′,

where the fact that the product n2
w,ν Σw,ν is constant [19] has been used. The RTE

given by Eq. (16) is solved by a perturbation technique in order to obtain expres-

sions, at local scale, of the radiative power per unit volume within any phase and the

radiative flux at the opaque interface. After introduction of the dimensionless ab-

scissa s+ = s/δ in Eq. (16) and division of all its terms by n2
w,ν Bw +κv,ν +κd,ν +σd,ν ,

the transport term of the RTE becomes KnR dIv,ν

ds+
, in which appears the radiative

Knudsen’s number KnR, perturbation parameter which is small compared to 1, i.e.

KnR =
1

(

n2
w,ν Bw + κv,ν + κd,ν + σd,ν

)

δ
" 1. (17)

The perturbation solution of Eq. (16) writes: Iv,ν = I(0)
v,ν + I(1)

v,ν . It corresponds to

a truncated Taylor series with respect to KnR. I(0)
v,ν and I(1)

v,ν are the zeroth order

and first order solutions of the RTE and are respectively independent of KnR and

proportional to KnR. A similar approach is detailed in Refs. [19, 1, 25].

The zeroth order solution I(0)
v,ν allows the radiative powers that are exchanged between

the phases within the elementary volume dV itself to be calculated, as detailed in

Sec.2.3. It is the main contribution. The first order corrective solution I(1)
v,ν depends

on the transport term, i.e. the first term of the first member of Eq. (16), and

allows radiative exchanges between an elementary volume and its environment to be
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determined, as detailed in Sec.2.4.

2.3. Coupled radiative powers

After identification of the terms of zeroth order in KnR in Eq. (16), the intensity

I(0)
v,ν(u) is obtained from the implicit equation

I(0)
v,ν (u) = Π n2

v,ν

[Kw,ν(u) I◦

ν(Tw) + κv,ν I◦

ν (Tv) + κd,ν I◦

ν (Td)]

Bw(u) + κv,ν + κd,ν + σd,ν
+ Lν

[

u′ #→ I(0)
v,ν(u

′)
]

(u),

(18)

where Lν is a dimensionless linear functional defined by

Lν

[

u′ #→ X(u′)

]

(u) (19)

=
1

4π [Bw(u) + κv,ν + κd,ν + σd,ν ]

∫

4π

[

Σw,ν(u)pw(u′,u) + σd,ν pd,ν(u
′.u)

]

X(u′) dΩ′.

The solution of Eq. (18) is the sum of three contributions, associated with emission

by the the different phases w, v and d, i.e.

I(0)
v,ν(u) = Iw(0)

v,ν (u) + Iv(0)

v,ν (u) + Id(0)

v,ν (u), (20)

where for any phase c (w, v or d) Ic(0)
v,ν is given by

Ic(0)

v,ν (u) = Π n2
v,ν I◦

ν (Tc)
∞

∑

k=0

Lk
ν

[

u′ #→
κc,ν

Bw(u′) + κv,ν + κd,ν + σd,ν

]

(u). (21)

In Eq. (21), Lk
ν represents the functional Lν applied k times and κc,ν stands for

Kw,ν(u), κv,ν or κd,ν . The uniform zeroth order radiative power per unit volume

associated with a phase c (w, v or d) is then the difference between the emission and

absorption contributions, i.e.

P(0)
c =

∫

∞

0

∫

4π

κc,ν

[

I(0)
v,ν − Π n2

v I◦

ν (Tc)
]

dΩ dν. (22)

P
(0)
c (c = w, v or d) is a source term for the energy balance equation related to the

phase c at homogenization scale. Radiation emitted by a phase in an elementary

volume dV at zeroth order is absorbed in the same dV , and the global power P(0)
w +
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P
(0)
v +P

(0)
d is therefore equal to 0. A uniform zeroth order radiative flux ϕ(0)

w , at local

interfaces of the considered elementary volume dV , is defined by

ϕ(0)
w =

P
(0)
w

A
, (23)

where A is the specific area per unit volume of the whole porous medium.

2.4. Coupled radiative conductivity tensors

Similarly, the first order solution of Eq. (16) is given by

I(1)
v,ν(u) = −

(

1

Bw(u) + κv,ν + κd,ν + σd,ν

)

dI(0)
v,ν

ds
(u) + Lν

[

u′ #→ I(1)
v,ν (u′)

]

(u). (24)

The solution of Eq. (24) is also the sum of the emission contributions of the three

phases

I(1)
v,ν(u) = Iw(1)

v,ν (u) + Iv(1)

v,ν (u) + Id(1)

v,ν (u), (25)

where, for a phase c (w, v or d),

Ic(1)

v,ν (u) = −
∞

∑

k=0

Lk
ν

[

u′ #→

(

1

Bw(u′) + κv,ν + κd,ν + σd,ν

)

dIc(0)
v,ν

ds
(u′)

]

(u) . (26)

The zeroth order solution of Eq. (16) does not generate any flux because of symme-

tries, whereas the first order flux can be expressed as a coupled conductive Fourier’s

law given, in tensorial notations, by

q(1)
i =

∫

∞

0

∫

4π

I(1)
v,ν(u) ui dΩ dν = − kijw

∂Tw

∂xj
− kijv

∂Tv

∂xj
− kijd

∂Td

∂xj
, (27)

where the coupled conductivity tensor associated with c (w, v or d) is

kijc
=

∫

∞

0

∫

4π

∞
∑

k=0

Lk
ν

[

u′ #→
u′

j

Bw(u′) + κv,ν + κd,ν + σd,ν

dI(0)
v,ν

dTc
(u′)

]

(u) ui dΩ dν.

(28)
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In Eq. (27), a term −kijc

∂Tc

∂xj
physically corresponds to fluxes emitted by the phase

c at temperature Tc and absorbed by the three phases w, v or d. The term results

in fact from reciprocal exchanges between a volume element and the surrounding

elements. The fraction of this term corresponding to emission by a phase c (w, v or

d) and absorption by a phase c′ (w, v or d) is equal to −Fcc′ kijc

∂Tc

∂xj
, where Fcc′ is

given by

Fcc′ =

∫

∞

0

∫

4π

κc′,ν Ic(1)

v,ν dΩ dν
∫

∞

0

∫

4π

[Kw,ν(u) + κv,ν + κd,ν ] I
c(1)

v,ν dΩ dν
. (29)

Consequently, the radiative power per unit volume emitted by c and absorbed by c′

is, at the first order of perturbation,

P
(1)
cc′ =

∂

∂xi

[

Fcc′ kijc

∂Tc

∂xj

]

(30)

and the radiative power associated with a phase c becomes

P(1)
c =

∂

∂xi

[

Fc′c kijc′

∂Tc′

∂xj
+ Fc′′c kijc′′

∂Tc′′

∂xj
− (Fcc′ + Fcc′′) kijc

∂Tc

∂xj

]

. (31)

This expression is physically meaningful for steam and water droplets (v and d). In

the case of wall, the interfacial flux, which is applied at the first order of perturbation

is

ϕ(1)
w =

P
(1)
w

A
. (32)

It is worth noticing that in most cases the radiative conductivity tensors kijc
are

diagonal. Finally Eqs. (22), (23), (31) and (32) define all the radiative source terms

of a transfer model which would be applied to the three phases of the material system.

3. Application to the reflooding of nuclear rod bundles

The considered porous medium is a small-scale experimental facility of the inter-

national program PHEBUS [26] which simulates the degradation process during a
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severe accident of a nuclear reactor. It is a bundle of 21 fuel rods. All the rods of 1

m long and 9.6 mm diameter are regularly spaced in squared pitch of 1.27 cm. The

treatment of data, which are issued from γ-tomography, is first presented. The deter-

mination of the extinction cumulative distribution function Gext and the scattering

phase function p for this experimental system is then detailed. The results related

to Gext and the obtained values of the directional generalized extinction coefficients

at equilibrium and directional scattering asymmetry parameters are discussed. The

radiative properties of the reflooding fluid, i.e. steam and water droplets, are also

characterized. Finally, some results related to the radiative powers per unit volume

associated with each phase and to the interfacial flux are discussed.

3.1. Characterization of the solid phase morphology

The present work is based on the experimental results of the FPT1 and FPT2

tests, which reproduce two sequences of a severe accident. The rod bundle (Fig.1)

has been placed at the center of an experimental reactor core. A first treatment

of γ-tomography data leads to 408 cross-sectional images, equally spaced by 3 mm

from the bottom of the system (z = −72 mm) to its top (z = 1149 mm) for each

test. Each image, as shown in Fig.2, is a 512×512 medium density matrix of spatial

resolution 0.24 × 0.24 mm2. A numerical process has allowed a 3D-matrix to be

generated by interpolation of densities along the vertical z-axis.

The porosity Π and the specific area per unit volume of the whole medium A have

been calculated for all cross-sectional images of FPT1 and FPT2. Study zones i, i.e.

set of images such as Πi and Ai are uniform with an accuracy better than 10%, have

been identified: 12 axial zones for FPT1 and 23 zones for FPT2. Examples are given

in Fig.3.

The fluid-solid interfaces have been located within these matrix by using the march-

ing cube algorithm, which has been developed by Delesse et al. [27] and applied

by Zeghondy et al. to mullite foams [14]. The density threshold, which defines the

interface location, is a key parameter. It has been adjusted by equalizing the values

of the generalized extinction coefficients defined in Eq. (2) which are obtained from:

i) The experimental tomography of an intact small-scale facility; ii) An analytical
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definition of the same geometry [19].

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

3.2. Radiative characterization of the opaque interfaces

The extinction cumulative distribution function Gext (s′ − s, θ, ϕ) and the scatter-

ing phase function p (θi, ϕi, θsc, ϕsc) have been calculated for the 35 identified zones

of FPT1 and FPT2 tests. For each zone i, the computational domain is the fluid

region which is included in a parallelepipedic volume: i) Defined, as shown in Fig.2,

by nine central intact rods; ii) Bounded by two cross-sections zmini
and zmaxi

. A

huge number of rays, typically 1010 rays, have been generated from randomly chosen

points M within the fluid phase, which is assumed transparent at this step, into

randomly chosen solid angles; each of them is characterized by a direction (θ, ϕ); θ

is the angle of a ray with the z-axis, ϕ the azimuth. A perfect specular reflection

law has been applied to each ray which impacts any boundary of the parallelepiped

which encompasses the computational domain. This algorithm allows the geometry

to be indefinitely extended according to the symmetries of the intact system. Indeed,

due to the small size of the domain, a large number of rays would never impact a

wall element without this extension. This difficulty is not encountered within a real

nuclear reactor core which is much larger than the experimental facility. The ratio

of the total number of points M which are generated within the fluid phase to the

total number of points which are generated within the entire computational domain

statistically converges towards Π. A is calculated using the marching cube algorithm

[27].

Each zone of the small-scale experimental facility was, before its degradation, charac-

terized by some symmetries due to the square arrangement of rods, as shown in Fig.2:

i) A perfect mirror symmetry with respect to ϕ = π/4; ii) A π/2 periodicity in ϕ; iii)

A perfect mirror symmetry with respect to the cross plane θ = π/2. Finally, a 1/8
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symmetry in the cross section and 1/2 symmetry in the axial direction are obtained.

A given realization of the degraded medium does not exhibit these symmetries for

uncontrolled experimental reasons. But, it is assumed that the radiative properties

of the degraded rods statistically verify these symmetries, as the effects of gravity

can be neglected for small sized zones along z-axis. Consequently, the calculations

of Gext (s′ − s, θ, ϕ) and p (θi, ϕi, θsc, ϕsc) have been carried out for 120 values of ϕ

regularly spaced in the range [0, 2π] and 17 values of cos θ regularly spaced in the

range [−1; 1], i.e. by shooting rays in 4π steradians. Because of the symmetries pre-

viously discussed, the radiative statistical functions have been cumulated by folding

back the results related to any direction into the corresponding direction which is

defined by values of θ and ϕ in the ranges [0, π/2] and [0, π/4], respectively.

The convergence of the Monte-Carlo method is characterized by a relative standard

deviation on Gext of about 10−5 between 10 sets of 2 × 109 rays. The ratio of the

standard deviation on the scattering phase function to its maximum value is of about

5.10−3 between 10 sets of 2×109 rays. An important result is that the functions Gext

which are associated with a damaged core are not exponential, and consequently do

not follow Beer’s law, as shown in Fig.4. Moreover, Gext(θ, ϕ) is strongly anisotropic.

Finally, more than 95% of rays which are shot in all the directions are extinguished

in the range [0, 10/βref ], in practice [0, 5cm]. The reference extinction coefficient

βref has been chosen equal to A/(πΠ), as in the case of an intact rod bundle [19].

It appears in Fig.4 that ln[1 − Gext(s′ − s)] can be approximated by a straight line

of slope equal to −1 for small values of βref(s′ − s) and for all directions. Conse-

quently, Gext verify Beer’s law at the optically thin limit with an effective extinction

coefficient equal to βref = A/(πΠ) and the specific area A can also be pragmatically

determined from the slope of Gext at s′ − s = 0.

On the other side, Gext converges at the optically thick limit to an exponential

function for all directions. When the two conditions given at the end of Sec.2.1 are

fulfilled, a directional generalized extinction coefficient at equilibrium B(θ, ϕ) is com-

puted from Eq. (2); results are given in Fig.5. Nevertheless, B(θ, ϕ) has no physical

meaning for optical thickness in the range [0.1, 3] as discussed in Ref.[1].

The directional scattering asymmetry parameter g (θ, ϕ) is always negative, as shown
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in Fig.6, and corresponds to a backscattering phenomenon. Consequently, the scat-

tering source term acts as a complementary radiative extinction which will contribute

to decrease the radiative conductivities, as developed in Sec.3.4.

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

3.3. Radiative properties of steam, water droplets and opaque interfaces

Radiative properties of steam have been characterized by using a CK model

for pressures pv and temperatures Tv in ranges [1, 10 atm] and [Tsat(pv), 2900 K]

respectively, where Tsat is the saturation temperature. These data correspond to

typical conditions of a some severe accidents of a nuclear reactor. More precisely,

k-distribution functions have been calculated from Laplace transform of transmis-

sivities computed from a Statistical Narrow-Band (SNB) model [28], based on a

Malkmus formulation [29]. The SNB parameters are issued from Ref.[30]. 43 spec-

tral bands in the range [137.5 cm−1, 9312.5 cm−1] are considered. The CK model is

based on a 7 points Gauss-Lobato quadrature detailed in Refs. [31, 30].

Radiative properties of spherical water droplets have been computed from Mie the-

ory. The data related to the spectral complex index of liquid water are issued from

Ref.[32]. The spherical droplets of radii in the range [25µm,1 mm] are characterized

by a volume fraction fv of 10−3, corresponding to independent scattering conditions;

the effects of droplets are then additive. Moreover, it has been proved that forward

scattering by droplets can be neglected for wall temperatures higher than 600 K; No

difference with transmission of radiation appears in these conditions. Indeed, the

width at half maximum of the phase function is always smaller than the size of the

elementary solid angle used for Monte Carlo calculations, excepted for frequencies in

the range [137.5 cm−1, 387.5 cm−1] in the case of droplets of radius 25 µm. These fre-

quencies play a non negligible role in the radiative transfer for temperatures smaller

than 600 K, of weak interest in sequences of a nuclear severe accident. Consequently
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only emission and absorption by isothermal droplets, of fraction per unit volume

equal to 10−3, are considered in the following.

The solid wall is assumed made of Zirconia ZrO2; its absorptivity is given by Ref.

[33] and is shown in Fig.8.

Figure 7 shows that the transmissivities associated with steam, water droplets and

opaque interfaces, separately considered, have similar orders of magnitude, in the

studied conditions. These three phenomena are then considered as coupled in the

following.

[Figure 7 about here.]

3.4. Results related to radiative powers and fluxes

Radiative powers per unit volume P
(0)
c and P

(1)
c (c = w, v or d) respectively given

by Eqs. (22) and (31) and radiative conductivities kijc
given by Eq. (28) have been

computed for the 35 previously identified zones of FPT1 and FPT2 tests by consid-

ering four different fluid phases: i) A transparent one; ii) Steam; iii) Water droplets;

iv) A mixture of steam and droplets. More precisely, the zeroth order radiative in-

terfacial flux ϕ(0)
w has been determined for the three last cases from the zeroth order

solution I(0)
v of the GRTE, by using Eq. (23). Similarly, as detailed in Sec.2.4, the

radiative conductivity tensor kijc
associated with a phase c can be computed from

the first order solution I(1)
v , as defined by Eq. (28). Due to symmetries discussed in

Sec.3.2, it has been analytically shown that the tensor kijc
is diagonal, i.e. kijc

= 0

for i &= j and that: kxxc
= kyyc

=̂ krc
; kzzc

is simply noted kzc
in the following. As

previously discussed, water droplets are assumed isothermal at temperature Tsat(pv),

of fraction per unit volume fv equal to 10−3 and purely absorbing.

The quantity Fcc′ kijc
corresponds to emission by a phase c and absorption by a phase

c′. The fractions Fcc′ are given by Eq. (29) and have been computed by assuming

that the radial gradients of Tw and Tv are negligible in front of the corresponding ax-

ial temperature gradients, as observed in sequences of a severe accident of a nuclear
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core, i.e.

∂Tc

∂x
<<

∂Tc

∂z
and

∂Tc

∂y
<<

∂Tc

∂z
(c = w or v), (33)

∂Td

∂x
=

∂Td

∂y
=

∂Td

∂z
= 0. (34)

Moreover, it has been assumed for estimating the different contributions in this

Section, that:
∂Tw

∂z
'

∂Tv

∂z
, which allows the fractions Fcc′ to be explicitly computed

from Eq. (29) where

Ic(1)

v,ν = −

∞
∑

k=0

Lk
ν

[

u′ #→
uz

Bw(u′) + κv,ν + κd,ν

(

∂Ic(0)
v,ν

∂Tw
(u′) +

∂Ic(0)
v,ν

∂Tv
(u′)

)]

(u)
∂Tw

∂z
.

(35)

Studied cases and associated computed quantities are summarized in Tab.1.

[Table 1 about here.]

A transparent fluid phase is defined as reference case. The associated radiative

conductivity ktrans only corresponds to emission and absorption by interfaces.

[Figure 8 about here.]

ktrans has been fitted with a relative error smaller than 0.20, as shown in Fig.9,

by simple functions of Π, A and Tw, i.e.

ktrans
r (x) = 5.68

Π2

A
4 σsT

3
w(x), (36)

ktrans
z (x) = 15.25

Π2

A
4 σsT

3
w(x). (37)

[Figure 9 about here.]

Exchanges between different phases at zeroth order correspond to exchanges between

the solid phase and the semitransparent ones within the same elementary volume of

the system. P(0)
w , P(0)

v and P
(0)
d are respectively shown in Figs.10-12 for temperatures

Tw = 2000 K and Tv = 600 K. This choice corresponds to a classical case observed
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in the sequence of a severe accident of a nuclear reactor.

As shown by comparison of the top and bottom graphs of Figs.10 and 11, steam is

more efficient at high pressure for cooling hot fuel rods than at atmospheric pressure.

Moreover, the comparison of orders of magnitude of P(0)
v and P

(0)
d given respectively

in Figs.11 and 12 shows that steam at high pressure is only as efficient, for cooling

fuel rods, as large water droplets of radius Rd = 300µm. But these large droplets are

much less efficient coolers than small droplets of radius Rd = 50µm and same vol-

ume fraction fv = 10−3 (before their complete vaporization). Steam at atmospheric

pressure is then a bad cooler. However, it is used in practice, since the pressure has

to be decreased in order to prevent the risk of pipe explosion.

[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]

Exchanges between adjacent volume elements of the system only appear at first

order perturbation . The dimensionless quantities Fww krw
/ktrans

r and Fww kzw
/ktrans

z

compare respectively radial and axial radiative conductivities associated with the

phase w, with and without a semitransparent fluid phase. As shown in Fig.13 (a),

the semitransparent fluid phase decreases radial conductivities of about 20% and,

as shown in Fig.13 (b), axial conductivities of about 50%. These effects can be

explained by the following argument. The radiative conductivity associated with a

statistically isotropic non Beerian porous medium is simply given [1] by

kR(Tw) =
4πΠ

3

∫

∞

0

n2
ν

Kν + (1 − gν)Σν

dI◦

ν

dTw
(Tw) dν. (38)

In this simpler case, the radiative conductivity is a decreasing function of the ab-

sorption coefficient Kν . In the present case, the presence of a semitransparent fluid

phase increases the absorption coefficient; consequently, radiative conductivities with

a semitransparent fluid phase are smaller than radiative conductivities with a trans-

parent one, as for a statistically isotropic medium ruled by Eq. (38).
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[Figure 13 about here.]

The fractions Fcc′,relative to emission by a phase c (w, v or d) and absorption by a

phase c′ (w, v or d), have been computed from Eqs. (29- 33,34). The results depend

on the studied zone. A typical matrix Fcc′ is given, for zone 2, by







Fww Fwv Fwd

Fvw Fvv Fvd

Fdw Fdv Fdd






'







0.95 0.03 0.02

0.58 0.38 0.04

0.99 0.01 0.00






. (39)

All the radiative energy which is emitted by the phases w or d and leaves the con-

sidered volume element of the system is practically absorbed by the interfaces w of

the adjacent volume elements. Indeed, the semitransparent phase is optically thin

at the scale of the volume element. Moreover, the radiative energy emitted by the

steam v is mainly absorbed by the interfaces w but also by the steam itself within

the adjacent volume elements. The absorption efficiency of interfaces is due to the

high value of ZrO2 averaged absorptivity, equal to 0.8 as shown in Fig.8.

3.5. Contributions of the first order fluxes

In a second step, the interfacial fluxes at the first order perturbation ϕ(1)
w have

also been computed from Eqs. (33) and (34). The associated radiative Fourier law

is only valid when the Gomart and Taine criterion given by Eq. (5) is fulfilled, i.e.

when the temperature gradient fulfills the condition
∣

∣

∣

∣

∂Tw

∂z

∣

∣

∣

∣

< 60 K/cm at 2000 K. (40)

The criterion given by Eq. (40) allows radiative fluxes to be determined with a 10%

accuracy.

Zeroth order exchanges between phases can then be compared with first orders ones.

ϕ(1)
w practically depends only on the temperature gradient ∂Tw/∂z. The perturbation

technique is valid as long as ϕ(1)
w is small compared to ϕ(0)

w . The critical value of
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∂Tw/∂z such as ϕ(1)
w /ϕ(0)

w = 0.1 is given by

∣

∣

∣

∣

∂Tw

∂z

∣

∣

∣

∣

cr

=

∣

∣

∣

∣

∣

∣

∣

∣

0.1P(0)
w

∂

∂Tw

[

(

Fwv + Fwd

)

kzw
− Fvwkzv

]

+
∂

∂Tv

[

(

Fwv + Fwd

)

kzw
− Fvwkzv

]

∣

∣

∣

∣

∣

∣

∣

∣

1/2

.

(41)

The critical axial temperature gradient defined by Eq. (41) has been computed for the

35 studied zones and for two couples of temperatures: i) (Tw, Tv) = (2000 K, 600 K),

which corresponds to a strong non equilibrium observed when water is injected for

cooling the reactor; ii) (Tw, Tv) = (1500 K, 800 K), observed when temperature of

rods has decreased by heating surrounding steam. For all studied zones and for these

two couples of temperatures, the first order exchanges are negligible as long as the

temperature gradient does not exceed 300 K/cm. This condition is practically always

verified, but is less restrictive than Eq. (40). Consequently, corrections associated

with the first order perturbation are negligible for the considered application.

4. Conclusion

An original model has been developed for computing, after phase homogeniza-

tion, coupled radiative transfer between the phases of a strongly anisotropic porous

medium with opaque and semitransparent phases. The homogenized phase asso-

ciated with opaque wall elements does not follow Beer’s law related to radiation

extinction. At the optically thick limit, effective extinction and scattering coeffi-

cients characterize this homogenized phase. They have been determined from the

Generalized Radiative Transfer Equation developed by Taine et al. [1] for non Bee-

rian porous media.

The radiative transfer model is based on a RTE with three source terms, which

are associated with the temperature fields of the interfaces and of two semitrans-

parent phases (steam and water droplets). This specific RTE has been solved by a

perturbation technique, which allows radiative powers per unit volume and radiative

interfacial fluxes, which are exchanged between phases at local scale, to be computed.

Both contributions of zeroth order perturbation and corrections associated with the
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first order perturbation have been determined. In the second case, radiative fluxes

have been expressed as coupled Fourier’s laws which are characterized by radiative

conductivity tensors associated with each phase.

This approach has been applied to a radiative model for a tentative case of re-

flooding a nuclear reactor core, in thermohydraulics conditions which correspond to

some types of severe accident. The radiative statistical functions associated with

the opaque interfaces of the small scale facility of a nuclear reactor core, which re-

produces damages after an accident, have first been determined. These non Beerian

statistical functions have been directly computed from γ-tomography images, by a

Monte Carlo method. The radiative properties of the fluid phase, which is a mixture

of steam and water droplets, have also been characterized. The orders of magnitude

of the different contributions to the radiative interfacial flux have been compared.

In this application, the first order perturbation contribution can be neglected.

The developed radiative model can be coupled, at local scale, with a model based

on three local temperature fields, which would account for other heat transfer modes

[22].
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Figure 1: Axial cross section of the intact system (above) and the degraded system
(below) along the vertical z-axis (PHEBUS-FPT1, [26]).
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Figure 2: Example of image associated with a 2D cross-sectional γ-tomography;
intact system (PHEBUS-FPT1, [26]).
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ZONE 2 (9, 27) ZONE 13 (−47,−5) ZONE 14 (4, 16) ZONE 15 (37, 43)

Π2 = 0.38 Π13 = 0.33 Π14 = 0.26 Π15 = 0.31

A2 = 0.24 A13 = 0.30 A14 = 0.30 A15 = 0.35

ZONE 16 (46, 64) ZONE 17 (67, 79) ZONE 18 (103, 112) ZONE 19 (118, 127)

Π16 = 0.23 Π17 = 0.33 Π18 = 0.03 Π19 = 0.06

A16 = 0.30 A17 = 0.36 A18 = 0.07 A19 = 0.11

ZONE 20 (133, 142) ZONE 21 (154, 160) ZONE 22 (169, 175) ZONE 23 (178, 184)

Π20 = 0.06 Π21 = 0.03 Π22 = 0.03 Π23 = 0.04

A20 = 0.11 A21 = 0.15 A22 = 0.07 A23 = 0.12

ZONE 24 (187, 196) ZONE 25 (235, 244) ZONE 26 (267, 269)

Π24 = 0.04 Π25 = 0.04 Π26 = 0.66

A24 = 0.12 A25 = 0.11 A26 = 0.46

Figure 3: γ-tomographies of the zone 2 of PHEBUS-FPT1 and 14 zones of PHEBUS-
FPT2, delimited axially by (zmin, zmax) [mm] and associated values of Π and A
[mm−1].
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Figure 4: Extinction cumulative distribution function Gext (s′ − s, θ = π/2, ϕ) for
θ = π/2 and different ϕ values (1.5◦ +, 16.5◦ ×, 31.5◦ ◦, 43.5◦ !) and corresponding
extinction cumulative function over all ϕ (thick line) [zone 2].
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Figure 5: Directional generalized extinction coefficient at equilibrium [mm−1] vs ϕ
for different values of θ (14.0◦ +, 34.1◦ ×, 44.9◦ ◦, 53.9◦ !, 69.3◦ ), 90◦ ") [zone 2].
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Figure 6: Directional scattering asymmetry parameter vs ϕ for different values of θ
(14.0◦ +, 34.1◦ ×, 44.9◦ ◦, 53.9◦ !, 69.3◦ ), 90◦ ") [zone 2].
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Figure 7: Transmissivity of columns of lenghts 1cm (a) and 5cm (b) associated with
interfaces (dashed line), water droplets at (Rd = 25 µm, fv = 10−3) ()), steam at
temperature Tv = 1000 K and pressure pv = 1 atm (×) or pv = 5 atm (◦).
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Figure 8: Local absorptivity of Zirconium oxide ZrO2 vs Tw [33].
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Figure 9: Dimensionless radiative conductivities k+
r et k+

z vs Π and corresponding
fits.
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Figure 10: −P
(0)
w vs porosity associated with a semitransparent phase made of: i)

Both steam and droplets of radius Rd = 50µm (×) or Rd = 300µm (+); ii) Only
steam (◦); ii) Only droplets of radius Rd = 50µm (!); Tw = 2000 K, Tv = 600 K,
fv = 10−3 and pv = 5 atm (a) or pv = 1 atm (b).
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Figure 11: P
(0)
v vs porosity associated with a semitransparent phase made of: i)

Both steam and droplets of radius Rd = 50µm (×) or Rd = 300µm (+); ii) Only
steam (◦); Tw = 2000 K, Tv = 600 K, fv = 10−3 and pv = 5 atm (a) or pv = 1 atm
(b).
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Figure 12: P
(0)
d vs porosity associated with a semitransparent phase made of: i) Both

steam and droplets of radius Rd = 50µm (×) or Rd = 300µm (+); ii) Only droplets
of radius Rd = 50µm (!); Tw = 2000 K, Tv = 600 K, fv = 10−3 and pv = 5 atm (a)
or pv = 1 atm (b) .
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Figure 13: Dimensionless quantities Fww krw
/ktrans

r (a) and Fww kzw
/ktrans

z (b) vs
porosity associated with a semitransparent phase made of: i)Both steam and droplets
of radius Rd = 50µm (×) or Rd = 300µm (+); ii) Only steam (◦); iii) Only droplets
of radius Rd = 50µm (!); Tw = 2000 K, Tv = 600 K, fv = 10−3, pv = 5 atm .
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Fluid phase Computed values

Transparent ktrans
r , ktrans

z

Water steam at ϕ(0)
w , P(0)

v

1 ≤ pv ≤ 10 atm krw
, kzw

Tsat(pv) ≤ Tv ≤ 2900 K krv
, kzv

Fww, Fwv

Fvw, Fvv

Water droplets at Td = 373 K ϕ(0)
w , P(0)

d

fv = 10−3 krw
, kzw

25 µm ≤ Rd ≤ 1 mm Fww, Fwd

Fdw, Fdd

Water steam and droplets at ϕ(0)
w , P(0)

v , P(0)
d

1 ≤ pv ≤ 10 atm krw
, kzw

Td = Tsat(pv) ≤ Tv ≤ 2900 K krv
, kzv

fv = 10−3 Fww, Fwv, Fwd

25 µm ≤ Rd ≤ 1 mm Fvw, Fvv, Fvd

Fdw, Fdv, Fdd

Table 1: Computed fluxes for the different types of fluid phase.
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