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 for non Beerian media. The radiative transfer model is based on a Radiative Transfer Equation (RTE) with three source terms, which are associated with the temperature fields of the opaque interfaces and the two semitransparent phases. This RTE has been solved by a perturbation technique, which allows radiative interfacial fluxes and radiative powers per unit volume, that are exchanged between phases, to be computed at local scale. The main contributions are obtained at zeroth order perturbation. Corrective contributions at first order perturbation are also determined: Radiative fluxes and powers are then expressed from coupled Fourier's laws, which are characterized by radiative conductivity tensors associated with each phase.

Illustrative results are given for the radiative modeling of reflooding of a damaged

Radiative transfer in porous media is commonly encountered in energy technologies, for instance in ceramic foams for catalytic combustion, in packed beds used in solar absorbers and solar thermochemical reactors, in degraded rod bundles of a nuclear reactor for the modeling of a severe accident, in reformers for H 2 production,... For all these applications, an accurate characterization of the radiative properties of the porous medium and the modeling of radiative couplings between different phases are key steps.

The porous medium characterization is generally based on the non always proved assumption that the medium can be modeled by an equivalent semitransparent medium which follows Beer's law. A popular method for characterizing radiative properties consists in identifying a set of parameters that characterize extinction, absorption or scattering from experimental data, for instance reflected or transmitted fluxes [START_REF] Hendricks | Inverse radiative analysis to determine spectral radiative properties using the discrete ordinates method[END_REF][START_REF] Hendricks | Absorption/scattering coefficients and scattering phase function in reticulated porous ceramics[END_REF][START_REF] Hendricks | New radiative analysis approach for reticulated porous ceramics using discrete ordinates method[END_REF][START_REF] Baillis | Identification of spectral radiative properties of polyurethane foam from hemispherical and bi-directional transmittance and reflectance measurement[END_REF][START_REF] Singh | Modelling radiative heat transfer in packed beds[END_REF][START_REF] Loretz | Metallic foams : radiative properties; comparison between different models[END_REF]. A more detailed bibliography is given in Ref. [START_REF] Baillis | Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization[END_REF]. These approaches are pertinent only if Beer's laws is valid. Because of the large number of parameters to determine, the parameter identification techniques practically always lead to a solution, but do not always allow the obtained set of parameters to be physically validated. The recent developments of γ-ray and X-ray tomography techniques allow the morphology of most porous media to be accurately determined. By using morphological data issued from tomographies, Lipinski et al. [START_REF] Lipinski | Application of the spatial averaging theorem to radiative heat transfer in two-phase media[END_REF] have used a generalization of the Method of Volume Averaging of Whitaker [START_REF] Whitaker | The Method of Volume Averaging[END_REF][START_REF] Quintard | One-and two-equation models for transient diffusion processes in two-phase systems[END_REF], initiated by Consalvi et al. [START_REF] Consalvi | A formal averaging procedure for radiation heat transfer in particulate media[END_REF], for characterizing radiative transfer within a porous medium. The specific features of radiation are then only taken into account by an averaged Radiative Transfer Equation (RTE). This approach is limited to a phase which is semitransparent at local scale. As radiation modeling is then degraded by upscaling through a spatial averaging technique, it seems difficult, in this method, to account for coupling at pore scale with other heat transfer modes. A recent statistical approach leads to a complete characterization of a porous medium by radiative statistical functions. It has been developed by Tancrez and Taine [START_REF] Tancrez | Direct identification of absorption and scattering coefficients and phase function of a porous medium by a Monte Carlo technique[END_REF] for isotropic and homogeneous porous media. The associated numerical tool is a specific Monte Carlo approach. Zeghondy et al. [START_REF] Zeghondy | Determination of the anisotropic radiative properties of a porous material by radiative distribution function identification (RDFI)[END_REF][START_REF] Zeghondy | Experimental validation of RDFI method predictions of statistically anisotropic porous medium radiative properties[END_REF] have generalized this approach for a statistically anisotropic porous medium, from data issued from tomography and the medium radiative properties at a spatial scale which is smaller than the tomography resolution. Petrasch et al. [START_REF] Petrasch | Tomography-based Monte Carlo determination of radiative properties of reticulated porous ceramics[END_REF], Haussener et al. [START_REF] Haussener | Tomography -based heat and mass transfer characterization of reticulate porous ceramics fot hightemperature processing[END_REF][START_REF] Haussener | Tomography -based analysis of radiative transfer in reacting packed beds undergoing a solid-gas thermochemical transformation[END_REF] have applied the same method to determine the radiative properties of high porosity reticulated ceramics and packed beds used in solar absorbers and solar thermochemical reactors. Bellet et al. [START_REF] Bellet | RDFI determination of anisotropic and scattering dependent radiative conductivity tensors in porous media: Application to rod bundles[END_REF] have also characterized, by the same approach, bundles of opaque rods of an intact nuclear core, which are strongly anisotropic media. All the previous authors have identified the computed radiative statistical functions with exponential functions, i.e. with functions that follow Beer's law. This approach has been called

Radiative Distribution Function Identification (RDFI) in Ref. [START_REF] Zeghondy | Determination of the anisotropic radiative properties of a porous material by radiative distribution function identification (RDFI)[END_REF]. In fact, the porous media with an opaque phase and a transparent one which are encountered in Ref. [START_REF] Bellet | RDFI determination of anisotropic and scattering dependent radiative conductivity tensors in porous media: Application to rod bundles[END_REF] do not follow Beer's law and many other cases of non Beerian media have also been encountered [START_REF] Taine | Generalized radiative transfer equation for porous medium upscaling ; application to radiative fourier law[END_REF][START_REF] Loretz | Analytical modelling of the radiative properties of metalic foams: contribution of X-ray tomography[END_REF]. A Generalized Radiative Transfer Equation (GRTE), which is directly based on the radiative statistical distribution functions, has been recently introduced for radiative transfer computations in these non Beerian media [START_REF] Taine | Generalized radiative transfer equation for porous medium upscaling ; application to radiative fourier law[END_REF]. By using a perturbation technique of the GRTE, a radiative conductivity tensor has been directly determined by the same authors for non Beerian porous media with opaque and transparent phases. An accurate validity criterion of the associated Fourier's law has also been recently defined [START_REF] Gomart | Validity criterion of the radiative fourier law for an absorbing and scattering medium[END_REF].

The aim of this paper is to generalize the previous statistical approach to statistically anisotropic porous media with opaque and semitransparent phases and develop an original model of radiative transfer, suitable for non Beerian homogenized phases.

Sec.2 deals with this physical model, more precisely with the expressions of the radiative power per unit volume within each semitransparent phase and of the radiative flux at each opaque interface. The radiative energies which are exchanged within an elementary volume dV of the porous medium and between dV and its surrounding are then determined. In Sec.3, the method is applied to the radiation model associated with the reflooding of a damaged nuclear core, at the beginning of a severe accident.

Physical model

This section deals with the development of an original radiative transfer model for a porous medium with an opaque phase and two semitransparent ones (water droplets and steam, for instance). This medium is statistically homogeneous and possibly anisotropic. A key preliminary step is to characterize a homogenized continuous phase associated with the opaque solid interface elements. In this model, the geometrical optics laws are considered valid because the typical pore size is assumed much larger than the typical radiation wavelength. Diffraction effects are then neglected. The morphology of the opaque walls is characterized by data issued from tomography images. As justified in the following, a first spatial limitation of the radiative properties of the homogenized phase is linked to the spatial resolution of these images. Another limitation comes from the spatial resolution of the temperature field, which is involved in emission and in fact depends on the type of model used for the other heat transfer modes [START_REF] Leroy | Coupled upscaling approaches for convection and radiation in porous media[END_REF]. In the following, the smallest spatial scale which fulfills the two previous conditions is called local scale.

Radiative statistical functions

As detailed in Taine et al. [START_REF] Taine | Generalized radiative transfer equation for porous medium upscaling ; application to radiative fourier law[END_REF][START_REF] Taine | Upscaling statistical methodology for radiative transfer in porous media: New trends[END_REF], the radiative properties of a statistically anisotropic porous medium with an opaque solid phase and a transparent fluid one are completely characterized by four radiative statistical functions: i) An extinction cumulative distribution function G ext (ss, θ, ϕ), independent of the radiation frequency ν; it is, in fact, the cumulative distribution function of lengths of all segments ME joining any point M (s) of the fluid phase to any extinction point E (s ) at the fluid-solid interface for a given direction of propagation u (θ, ϕ); ii) An absorption (or scattering) cumulative probability from M to E, P a,ν (ss, θ, ϕ) (or P sc,ν (ss, θ, ϕ)). For a diffuse reflection law at the wall, characterized by an absorptivity α ν , the previous functions are linked by

P a,ν (s -s, θ, ϕ) = 1 -P sc,ν (s -s, θ, ϕ) = α ν G ext (s -s, θ, ϕ) . (1) 
iii) A scattering phase function p w (θ i , ϕ i , θ sc , ϕ sc ), independent of the radiation frequency ν and depending on both the incidence direction (θ i , ϕ i ) and the scattering one (θ sc , ϕ sc ); iv) An effective refractive index n w,ν (θ, ϕ) depending on direction (θ, ϕ), if P sc,ν (ss, θ, ϕ) depends on this direction [START_REF] Bellet | RDFI determination of anisotropic and scattering dependent radiative conductivity tensors in porous media: Application to rod bundles[END_REF][START_REF] Taine | Generalized radiative transfer equation for porous medium upscaling ; application to radiative fourier law[END_REF]. The spatial resolution of these functions is only limited by the resolution of the tomography, which defines the porous medium morphology.

The GRTE, developed in Ref. [START_REF] Taine | Generalized radiative transfer equation for porous medium upscaling ; application to radiative fourier law[END_REF][START_REF] Gomart | Validity criterion of the radiative fourier law for an absorbing and scattering medium[END_REF] for possibly non Beerian phases of this kind of porous media, is directly based on G ext (ss, θ, ϕ), P sc,ν (ss, θ, ϕ), n w,ν (θ, ϕ) and the scattering phase function p w (θ i , ϕ i , θ sc , ϕ sc ).

For optically thick media, the GRTE rigorously degenerates into a classical RTE, characterized by generalized extinction, absorption and scattering coefficients at equilibrium B w (θ, ϕ), K w,ν (θ, ϕ) and Σ w,ν (θ, ϕ) given by

B w (θ, ϕ) = ∞ 0 [1 -G ext (ζ, θ, ϕ)] dζ -1 , (2) 
K w,ν (θ, ϕ) = α ν B(θ, ϕ), (3) 
Σ w,ν (θ, ϕ) = B w (θ, ϕ) -K w,ν (θ, ϕ) = (1 -α ν ) B(θ, ϕ). (4) 
More precisely, this RTE is valid [START_REF] Gomart | Validity criterion of the radiative fourier law for an absorbing and scattering medium[END_REF]: i) In the core of the porous medium, i.e. at a distance from any system boundary larger than 5 to 10 K -1 ef f , where K ef f (ω, g) is an effective absorption coefficient which accounts for scattering and is a function of the albedo ω and the scattering asymmetry parameter g; ii) When the Gomart and Taine criterion is fulfilled, i.e.

K ef f (ω, g) δ > dT T η, (5) 
where dT is the temperature variation along any spatial scale δ and η is a constant parameter which depends on the wished level of accuracy on Fourier's law. The conditions i) and ii) are assumed fulfilled in the following for the spatial scale δ.

Radiative transfer equation with three source terms

Radiative transfer within a porous medium with a solid opaque phase and a semitransparent gas-particle mixture (water droplets and steam) is now considered, at the local scale which has been defined in Sec. 2.1. More precisely, three phases, i.e.

a homogenized phase associated with opaque solid interfaces w, as developed in Sec.

2.1 and in Refs. [START_REF] Taine | Generalized radiative transfer equation for porous medium upscaling ; application to radiative fourier law[END_REF] and [START_REF] Bellet | RDFI determination of anisotropic and scattering dependent radiative conductivity tensors in porous media: Application to rod bundles[END_REF], water vapor v and water droplets d, are accounted for. They are characterized by different temperature fields: T w , T v and T d , respectively. The specificity of the considered case is that the radiation intensities which are emitted by the three phases are associated with the same propagation medium, i.e. only the fluid phase. The gas absorbs radiation and does not scatter it. The particles absorb radiation and possibly scatter it. The homogenized phase w and the gaseous phase v are characterized by the refractive indices n w,ν (θ, ϕ) and n v,ν , which is in practice equal to 1. At any point, the whole medium is the superimposition of the homogenized phase w and the gas-particle mixture (v, d). Indeed, this mixture is considered as a unique phase whose effective extinction and absorption coefficients are the sum of the extinction and absorption coefficients of the gas and the particles.

Particle radiation is treated, as commonly done, under the far field approximation.

As the porosity Π is the presence probability of the fluid phase within any volume element dV of the whole porous medium, the homogenized phase w is also characterized by the same porosity within dV [START_REF] Taine | Upscaling statistical methodology for radiative transfer in porous media: New trends[END_REF]. The conservation laws between the virtual propagation phases w and the real one v, i.e. Clausius theorem [START_REF] Born | Principle of Optics[END_REF] and flux conservation, are applied to corresponding rays through a fictitious elementary surface dS belonging to both propagation phases w and v. Clausius theorem reads

n 2 w,ν cos θ w dS dΩ w = n 2 v,ν cos θ v dS dΩ v , (6) 
where θ w and θ v are the angles between the unit vector which is normal to dS and the propagation directions of the rays. Moreover, an incident ray is transmitted in the same direction in the other phase, i.e. cos θ w = cos θ v , and Eq. ( 6) becomes

n 2 w,ν dΩ w = n 2 v,ν dΩ v . (7) 
The flux conservation between w and v reads, at any point of the homogenized volume,

I w,ν cos θ w dΩ w = I v,ν cos θ v dΩ v , (8) 
where I w,ν and I v,ν are the intensities within the propagation phases w and v, respectively. Eq. ( 8) becomes

I w,ν dΩ w = I v,ν dΩ v . (9) 
Eqs. ( 7) and ( 9) prove then the conservation of the intensity under vacuum between w and v, which reads:

I w,ν /n 2 w,ν = I v,ν /n 2 v,ν .
For instance, the spectral absorbed flux is the sum, at any point, of the spectral fluxes absorbed by the phases w, v and d, i.e.

dΦ a ν dν = K w,ν I w,ν dΩ w + (κ v,ν + κ d,ν ) I v,ν dΩ v . (10) 
With the previous conservation laws given by Eqs. ( 7) and ( 9), dΦ a ν /dν can be written either in the propagation phase w or in the propagation phase v, i.e.

dΦ a ν dν = [K w,ν (u) + κ v,ν + κ d,ν ] I w,ν dΩ w = [K w,ν (u) + κ v,ν + κ d,ν ] I v,ν dΩ v . (11) 
In the same way, the spectral elementary radiative fluxes which are emitted, dΦ e ν /dν, extinguished by scattering, dΦ sc - ν /dν, and issued from the scattering source term, dΦ sc + ν /dν are given in the phase v by

dΦ e ν dν = Π [K w,ν (u) I • ν (T w ) + κ v,ν I • ν (T v ) + κ d,ν I • ν (T d )] n 2 v,ν dΩ v , (12) 
dΦ sc - ν dν = [Σ w,ν (u) + σ d,ν ] I v,ν dΩ v , (13) 
dΦ sc + ν dν = 1 n 2 w,ν (u) 4π Σ w,ν (u ) p w (u , u) n 2 w,ν (u ) I v,ν (u ) dΩ (14) + σ d,ν 4π p d,ν (u .u) I v,ν (u ) dΩ dΩ v 4π ,
where σ d,ν and p d,ν (u .u) are the scattering coefficient of the particles and their scattering phase function, which only depends on the scattering angle cosine u .u.

The RTE simply reads

dI w,ν ds dΩ w = dI v,ν ds dΩ v+d = - dΦ a ν dν - dΦ sc - ν dν + dΦ e ν dν + dΦ sc + ν dν . ( 15 
)
It can also be expressed in phase v, i.e.

dI v,ν ds = -[B w (u) + κ v,ν + κ d,ν + σ d,ν ] I v,ν + Π n 2 v,ν [K w,ν (u) I • ν (T w ) + κ v,ν I • ν (T v ) + κ d,ν I • ν (T d )] + Σ w,ν (u) 4π 4π p w (u , u) I v,ν (u ) dΩ (16) 
+ σ d,ν 4π 4π p d,ν (u .u) I v,ν (u ) dΩ ,
where the fact that the product n 2 w,ν Σ w,ν is constant [START_REF] Bellet | RDFI determination of anisotropic and scattering dependent radiative conductivity tensors in porous media: Application to rod bundles[END_REF] has been used. The RTE given by Eq. ( 16) is solved by a perturbation technique in order to obtain expressions, at local scale, of the radiative power per unit volume within any phase and the radiative flux at the opaque interface. After introduction of the dimensionless abscissa s + = s/δ in Eq. ( 16) and division of all its terms by n 2 w,ν B w + κ v,ν + κ d,ν + σ d,ν , the transport term of the RTE becomes Kn R dI v,ν ds + , in which appears the radiative Knudsen's number Kn R , perturbation parameter which is small compared to 1, i.e.

Kn R = 1 n 2 w,ν B w + κ v,ν + κ d,ν + σ d,ν δ 1. ( 17 
)
The perturbation solution of Eq. ( 16) writes:

I v,ν = I (0) v,ν + I (1) 
v,ν . It corresponds to a truncated Taylor series with respect to Kn R . I (0) v,ν and I (1) v,ν are the zeroth order and first order solutions of the RTE and are respectively independent of Kn R and proportional to Kn R . A similar approach is detailed in Refs. [START_REF] Bellet | RDFI determination of anisotropic and scattering dependent radiative conductivity tensors in porous media: Application to rod bundles[END_REF][START_REF] Taine | Generalized radiative transfer equation for porous medium upscaling ; application to radiative fourier law[END_REF][START_REF] Siegel | Thermal Radiation Heat Transfert[END_REF].

The zeroth order solution I (0) v,ν allows the radiative powers that are exchanged between the phases within the elementary volume dV itself to be calculated, as detailed in Sec.2.3. It is the main contribution. The first order corrective solution I

(1) v,ν depends on the transport term, i.e. the first term of the first member of Eq. ( 16), and allows radiative exchanges between an elementary volume and its environment to be determined, as detailed in Sec.2.4.

Coupled radiative powers

After identification of the terms of zeroth order in Kn R in Eq. ( 16), the intensity I (0) v,ν (u) is obtained from the implicit equation

I (0) v,ν (u) = Π n 2 v,ν [K w,ν (u) I • ν (T w ) + κ v,ν I • ν (T v ) + κ d,ν I • ν (T d )] B w (u) + κ v,ν + κ d,ν + σ d,ν + L ν u → I (0) v,ν (u ) (u), (18) 
where L ν is a dimensionless linear functional defined by

L ν u → X(u ) (u) (19) = 1 4π [B w (u) + κ v,ν + κ d,ν + σ d,ν ] 4π Σ w,ν (u)p w (u , u) + σ d,ν p d,ν (u .u) X(u ) dΩ .
The solution of Eq. ( 18) is the sum of three contributions, associated with emission by the the different phases w, v and d, i.e.

I (0) v,ν (u) = I w (0) v,ν (u) + I v (0) v,ν (u) + I d (0) v,ν (u), (20) 
where for any phase c (w, v or d) I c (0) v,ν is given by

I c (0) v,ν (u) = Π n 2 v,ν I • ν (T c ) ∞ k=0 L k ν u → κ c,ν B w (u ) + κ v,ν + κ d,ν + σ d,ν (u). (21) 
In Eq. ( 21), L k ν represents the functional L ν applied k times and κ c,ν stands for K w,ν (u), κ v,ν or κ d,ν . The uniform zeroth order radiative power per unit volume associated with a phase c (w, v or d) is then the difference between the emission and absorption contributions, i.e. w , at local interfaces of the considered elementary volume dV , is defined by

P (0) c = ∞ 0 4π κ c,ν I (0) v,ν -Π n 2 v I • ν (T c ) dΩ dν. ( 22 
)
P (0) c (c = w, v or 
ϕ (0) w = P (0) w A , ( 23 
)
where A is the specific area per unit volume of the whole porous medium.

Coupled radiative conductivity tensors

Similarly, the first order solution of Eq. ( 16) is given by

I (1) v,ν (u) = - 1 B w (u) + κ v,ν + κ d,ν + σ d,ν dI (0) v,ν ds (u) + L ν u → I (1) v,ν (u ) (u). ( 24 
)
The solution of Eq. ( 24) is also the sum of the emission contributions of the three phases

I (1) v,ν (u) = I w (1) v,ν (u) + I v (1) v,ν (u) + I d (1) v,ν (u), (25) 
where, for a phase c (w, v or d),

I c (1) v,ν (u) = - ∞ k=0 L k ν u → 1 B w (u ) + κ v,ν + κ d,ν + σ d,ν dI c (0) v,ν ds (u ) (u) . (26) 
The zeroth order solution of Eq. ( 16) does not generate any flux because of symmetries, whereas the first order flux can be expressed as a coupled conductive Fourier's law given, in tensorial notations, by

q (1) i = ∞ 0 4π I (1) v,ν (u) u i dΩ dν = -k ij w ∂T w ∂x j -k ij v ∂T v ∂x j -k ij d ∂T d ∂x j , (27) 
where the coupled conductivity tensor associated with c (w, v or d) is

k ij c = ∞ 0 4π ∞ k=0 L k ν u → u j B w (u ) + κ v,ν + κ d,ν + σ d,ν dI (0) v,ν dT c (u ) (u) u i dΩ dν. (28) 
In Eq. ( 27 

is equal to -F cc k ij c ∂T c ∂x j
, where F cc is given by

F cc = ∞ 0 4π κ c ,ν I c (1) v,ν dΩ dν ∞ 0 4π [K w,ν (u) + κ v,ν + κ d,ν ] I c (1) v,ν dΩ dν . ( 29 
)
Consequently, the radiative power per unit volume emitted by c and absorbed by c is, at the first order of perturbation, P

= ∂ ∂x i F cc k ij c ∂T c ∂x j (1) cc 
and the radiative power associated with a phase c becomes

P (1) c = ∂ ∂x i F c c k ij c ∂T c ∂x j + F c c k ij c ∂T c ∂x j -(F cc + F cc ) k ij c ∂T c ∂x j . ( 31 
)
This expression is physically meaningful for steam and water droplets (v and d). In the case of wall, the interfacial flux, which is applied at the first order of perturbation is

ϕ (1) w = P (1) w A . (32) 
It is worth noticing that in most cases the radiative conductivity tensors k ij c are diagonal. Finally Eqs. ( 22), ( 23), ( 31) and ( 32) define all the radiative source terms of a transfer model which would be applied to the three phases of the material system.

Application to the reflooding of nuclear rod bundles

The considered porous medium is a small-scale experimental facility of the international program PHEBUS [START_REF] Berthet | PHEBUS PF FPT1 -Preliminary Report[END_REF] which simulates the degradation process during a severe accident of a nuclear reactor. It is a bundle of 21 fuel rods. All the rods of 1 m long and 9.6 mm diameter are regularly spaced in squared pitch of 1.27 cm. The treatment of data, which are issued from γ-tomography, is first presented. The determination of the extinction cumulative distribution function G ext and the scattering phase function p for this experimental system is then detailed. The results related to G ext and the obtained values of the directional generalized extinction coefficients at equilibrium and directional scattering asymmetry parameters are discussed. The radiative properties of the reflooding fluid, i.e. steam and water droplets, are also characterized. Finally, some results related to the radiative powers per unit volume associated with each phase and to the interfacial flux are discussed.

Characterization of the solid phase morphology

The present work is based on the experimental results of the FPT1 and FPT2 tests, which reproduce two sequences of a severe accident. The rod bundle (Fig. 1) has been placed at the center of an experimental reactor core. A first treatment of γ-tomography data leads to 408 cross-sectional images, equally spaced by 3 mm from the bottom of the system (z = -72 mm) to its top (z = 1149 mm) for each test. Each image, as shown in Fig. 2, is a 512 × 512 medium density matrix of spatial resolution 0.24 × 0.24 mm 2 . A numerical process has allowed a 3D-matrix to be generated by interpolation of densities along the vertical z-axis.

The porosity Π and the specific area per unit volume of the whole medium A have been calculated for all cross-sectional images of FPT1 and FPT2. Study zones i, i.e. set of images such as Π i and A i are uniform with an accuracy better than 10%, have been identified: 12 axial zones for FPT1 and 23 zones for FPT2. Examples are given in Fig. 3.

The fluid-solid interfaces have been located within these matrix by using the marching cube algorithm, which has been developed by Delesse et al. [START_REF] Delesse | New data structure for the computation of equivalent properties in 3d porous media[END_REF] and applied by Zeghondy et al. to mullite foams [START_REF] Zeghondy | Determination of the anisotropic radiative properties of a porous material by radiative distribution function identification (RDFI)[END_REF]. The density threshold, which defines the interface location, is a key parameter. It has been adjusted by equalizing the values of the generalized extinction coefficients defined in Eq. ( 2) which are obtained from:

i) The experimental tomography of an intact small-scale facility; ii) An analytical definition of the same geometry [START_REF] Bellet | RDFI determination of anisotropic and scattering dependent radiative conductivity tensors in porous media: Application to rod bundles[END_REF].

[Figure 1 

Radiative characterization of the opaque interfaces

The extinction cumulative distribution function G ext (ss, θ, ϕ) and the scattering phase function p (θ i , ϕ i , θ sc , ϕ sc ) have been calculated for the 35 identified zones of FPT1 and FPT2 tests. For each zone i, the computational domain is the fluid region which is included in a parallelepipedic volume: i) Defined, as shown in Fig. 2, by nine central intact rods; ii) Bounded by two cross-sections z min i and z max i . A huge number of rays, typically 10 10 rays, have been generated from randomly chosen points M within the fluid phase, which is assumed transparent at this step, into randomly chosen solid angles; each of them is characterized by a direction (θ, ϕ); θ is the angle of a ray with the z-axis, ϕ the azimuth. A perfect specular reflection law has been applied to each ray which impacts any boundary of the parallelepiped which encompasses the computational domain. This algorithm allows the geometry to be indefinitely extended according to the symmetries of the intact system. Indeed, due to the small size of the domain, a large number of rays would never impact a wall element without this extension. This difficulty is not encountered within a real nuclear reactor core which is much larger than the experimental facility. The ratio of the total number of points M which are generated within the fluid phase to the total number of points which are generated within the entire computational domain statistically converges towards Π. A is calculated using the marching cube algorithm [START_REF] Delesse | New data structure for the computation of equivalent properties in 3d porous media[END_REF].

Each zone of the small-scale experimental facility was, before its degradation, characterized by some symmetries due to the square arrangement of rods, as shown in Fig. 2: i) A perfect mirror symmetry with respect to ϕ = π/4; ii) A π/2 periodicity in ϕ; iii) A perfect mirror symmetry with respect to the cross plane θ = π/2. Finally, a 1/8 symmetry in the cross section and 1/2 symmetry in the axial direction are obtained. A given realization of the degraded medium does not exhibit these symmetries for uncontrolled experimental reasons. But, it is assumed that the radiative properties of the degraded rods statistically verify these symmetries, as the effects of gravity can be neglected for small sized zones along z-axis. Consequently, the calculations of G ext (ss, θ, ϕ) and p (θ i , ϕ i , θ sc , ϕ sc ) have been carried out for 120 values of ϕ regularly spaced in the range [0, 2π] and 17 values of cos θ regularly spaced in the range [-1; 1], i.e. by shooting rays in 4π steradians. Because of the symmetries previously discussed, the radiative statistical functions have been cumulated by folding back the results related to any direction into the corresponding direction which is defined by values of θ and ϕ in the ranges [0, π/2] and [0, π/4], respectively. The convergence of the Monte-Carlo method is characterized by a relative standard deviation on G ext of about 10 -5 between 10 sets of 2 × 10 9 rays. The ratio of the standard deviation on the scattering phase function to its maximum value is of about 5.10 -3 between 10 sets of 2 × 10 9 rays. An important result is that the functions G ext which are associated with a damaged core are not exponential, and consequently do not follow Beer's law, as shown in Fig. 4. Moreover, G ext (θ, ϕ) is strongly anisotropic. Finally, more than 95% of rays which are shot in all the directions are extinguished in the range [0, 10/β ref ], in practice [0, 5cm]. The reference extinction coefficient β ref has been chosen equal to A/(πΠ), as in the case of an intact rod bundle [START_REF] Bellet | RDFI determination of anisotropic and scattering dependent radiative conductivity tensors in porous media: Application to rod bundles[END_REF].

It appears in Fig. 4 that ln[1 -G ext (ss)] can be approximated by a straight line of slope equal to -1 for small values of β ref (ss) and for all directions. Consequently, G ext verify Beer's law at the optically thin limit with an effective extinction coefficient equal to β ref = A/(πΠ) and the specific area A can also be pragmatically determined from the slope of G ext at ss = 0. On the other side, G ext converges at the optically thick limit to an exponential function for all directions. When the two conditions given at the end of Sec.2.1 are fulfilled, a directional generalized extinction coefficient at equilibrium B(θ, ϕ) is computed from Eq. ( 2); results are given in Fig. 5. Nevertheless, B(θ, ϕ) has no physical meaning for optical thickness in the range [0.1, 3] as discussed in Ref. [START_REF] Taine | Generalized radiative transfer equation for porous medium upscaling ; application to radiative fourier law[END_REF]. The directional scattering asymmetry parameter g (θ, ϕ) is always negative, as shown in Fig. 6, and corresponds to a backscattering phenomenon. Consequently, the scattering source term acts as a complementary radiative extinction which will contribute to decrease the radiative conductivities, as developed in Sec.3.4.

[Figure 4 respectively, where T sat is the saturation temperature. These data correspond to typical conditions of a some severe accidents of a nuclear reactor. More precisely, k-distribution functions have been calculated from Laplace transform of transmissivities computed from a Statistical Narrow-Band (SNB) model [START_REF] Lacis | A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres[END_REF], based on a Malkmus formulation [START_REF] Malkmus | Random lorentz band model with exponential-tailed s-1 line intensity distribution function[END_REF]. The SNB parameters are issued from Ref. [START_REF] Rivière | An Approximate Data Base of H 2 O Infrared Lines for High Temperature Applications at Low Resolution. Statistical Narrowband Model Parameters[END_REF]. 43 spectral bands in the range [137.5 cm -1 , 9312.5 cm -1 ] are considered. The CK model is based on a 7 points Gauss-Lobato quadrature detailed in Refs. [START_REF] Rivière | Correlated-k and fictitious gas method for H 2 O near 2.7µm[END_REF][START_REF] Rivière | An Approximate Data Base of H 2 O Infrared Lines for High Temperature Applications at Low Resolution. Statistical Narrowband Model Parameters[END_REF].

Radiative properties of spherical water droplets have been computed from Mie theory. The data related to the spectral complex index of liquid water are issued from Ref. [START_REF] Bohren | Absorption and scattering of light by small particles[END_REF]. The spherical droplets of radii in the range [25 µm,1 mm] are characterized by a volume fraction f v of 10 -3 , corresponding to independent scattering conditions; the effects of droplets are then additive. Moreover, it has been proved that forward scattering by droplets can be neglected for wall temperatures higher than 600 K; No difference with transmission of radiation appears in these conditions. Indeed, the width at half maximum of the phase function is always smaller than the size of the elementary solid angle used for Monte Carlo calculations, excepted for frequencies in the range [137.5 cm -1 , 387.5 cm -1 ] in the case of droplets of radius 25 µm. These frequencies play a non negligible role in the radiative transfer for temperatures smaller than 600 K, of weak interest in sequences of a nuclear severe accident. Consequently only emission and absorption by isothermal droplets, of fraction per unit volume equal to 10 -3 , are considered in the following. The solid wall is assumed made of Zirconia ZrO 2 ; its absorptivity is given by Ref. [START_REF] Touloukian | Thermal radiative properties. Metallic elements and alloys, volume 7 of Thermophysical properties of matter[END_REF] and is shown in Fig. 8. Figure 7 shows that the transmissivities associated with steam, water droplets and opaque interfaces, separately considered, have similar orders of magnitude, in the studied conditions. These three phenomena are then considered as coupled in the following.

[Figure 7 22) and ( 31) and radiative conductivities k ij c given by Eq. ( 28) have been computed for the 35 previously identified zones of FPT1 and FPT2 tests by considering four different fluid phases: i) A transparent one; ii) Steam; iii) Water droplets; iv) A mixture of steam and droplets. More precisely, the zeroth order radiative interfacial flux ϕ (0) w has been determined for the three last cases from the zeroth order solution I (0) v of the GRTE, by using Eq. [START_REF] Taine | Upscaling statistical methodology for radiative transfer in porous media: New trends[END_REF]. Similarly, as detailed in Sec.2.4, the radiative conductivity tensor k ij c associated with a phase c can be computed from the first order solution I

(1) v , as defined by Eq. [START_REF] Lacis | A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres[END_REF]. Due to symmetries discussed in Sec.3.2, it has been analytically shown that the tensor k ij c is diagonal, i.e. k ij c = 0 for i = j and that: k xxc = k yyc = k rc ; k zzc is simply noted k zc in the following. As previously discussed, water droplets are assumed isothermal at temperature T sat (p v ), of fraction per unit volume f v equal to 10 -3 and purely absorbing.

The quantity F cc k ij c corresponds to emission by a phase c and absorption by a phase c . The fractions F cc are given by Eq. ( 29) and have been computed by assuming that the radial gradients of T w and T v are negligible in front of the corresponding axial temperature gradients, as observed in sequences of a severe accident of a nuclear core, i.e.

∂T c ∂x << ∂T c ∂z and ∂T c ∂y << ∂T c ∂z (c = w or v), (33) 
∂T d ∂x = ∂T d ∂y = ∂T d ∂z = 0. (34) 
Moreover, it has been assumed for estimating the different contributions in this Section, that: ∂T w ∂z ∂T v ∂z , which allows the fractions F cc to be explicitly computed from Eq. ( 29) where

I c (1) v,ν = - ∞ k=0 L k ν u → u z B w (u ) + κ v,ν + κ d,ν ∂I c (0) v,ν ∂T w (u ) + ∂I c (0) v,ν ∂T v (u ) (u) ∂T w ∂z . (35) 
Studied cases and associated computed quantities are summarized in Tab.1.

[Table 1 

about here.]

A transparent fluid phase is defined as reference case. The associated radiative conductivity k trans only corresponds to emission and absorption by interfaces.

[Figure 8 about here.]

k trans has been fitted with a relative error smaller than 0.20, as shown in Fig. 9, by simple functions of Π, A and T w , i.e.

k trans r (x) = 5.68 Π 2 A 4 σ s T 3 w (x), (36) 
k trans z (x) = 15.25 Π 2 A 4 σ s T 3 w (x). (37) 
[Figure 9 about here.]

Exchanges between different phases at zeroth order correspond to exchanges between the solid phase and the semitransparent ones within the same elementary volume of the system. P d given respectively in Figs. 11 and12 shows that steam at high pressure is only as efficient, for cooling fuel rods, as large water droplets of radius R d = 300µm. But these large droplets are much less efficient coolers than small droplets of radius R d = 50µm and same volume fraction f v = 10 -3 (before their complete vaporization). Steam at atmospheric pressure is then a bad cooler. However, it is used in practice, since the pressure has to be decreased in order to prevent the risk of pipe explosion.

[Figure 10 Exchanges between adjacent volume elements of the system only appear at first order perturbation . The dimensionless quantities F ww k rw /k trans r and F ww k zw /k trans z compare respectively radial and axial radiative conductivities associated with the phase w, with and without a semitransparent fluid phase. As shown in Fig. 13 (a), the semitransparent fluid phase decreases radial conductivities of about 20% and, as shown in Fig. 13 (b), axial conductivities of about 50%. These effects can be explained by the following argument. The radiative conductivity associated with a statistically isotropic non Beerian porous medium is simply given [START_REF] Taine | Generalized radiative transfer equation for porous medium upscaling ; application to radiative fourier law[END_REF] by

k R (T w ) = 4πΠ 3 ∞ 0 n 2 ν K ν + (1 -g ν )Σ ν dI • ν dT w (T w ) dν. (38) 
In this simpler case, the radiative conductivity is a decreasing function of the absorption coefficient K ν . In the present case, the presence of a semitransparent fluid phase increases the absorption coefficient; consequently, radiative conductivities with a semitransparent fluid phase are smaller than radiative conductivities with a transparent one, as for a statistically isotropic medium ruled by Eq. (38).

[Figure 13 about here.]

The fractions F cc ,relative to emission by a phase c (w, v or d) and absorption by a phase c (w, v or d), have been computed from Eqs. [START_REF] Malkmus | Random lorentz band model with exponential-tailed s-1 line intensity distribution function[END_REF][START_REF] Rivière | An Approximate Data Base of H 2 O Infrared Lines for High Temperature Applications at Low Resolution. Statistical Narrowband Model Parameters[END_REF][START_REF] Rivière | Correlated-k and fictitious gas method for H 2 O near 2.7µm[END_REF][START_REF] Bohren | Absorption and scattering of light by small particles[END_REF][START_REF] Touloukian | Thermal radiative properties. Metallic elements and alloys, volume 7 of Thermophysical properties of matter[END_REF]34). The results depend on the studied zone. A typical matrix F cc is given, for zone 2, by

   F ww F wv F wd F vw F vv F vd F dw F dv F dd      
0.95 0.03 0.02 0.58 0.38 0.04 0.99 0.01 0.00

   . ( 39 
)
All the radiative energy which is emitted by the phases w or d and leaves the considered volume element of the system is practically absorbed by the interfaces w of the adjacent volume elements. Indeed, the semitransparent phase is optically thin at the scale of the volume element. Moreover, the radiative energy emitted by the steam v is mainly absorbed by the interfaces w but also by the steam itself within the adjacent volume elements. The absorption efficiency of interfaces is due to the high value of ZrO 2 averaged absorptivity, equal to 0.8 as shown in Fig. 8.

Contributions of the first order fluxes

In a second step, the interfacial fluxes at the first order perturbation ϕ

w have also been computed from Eqs. [START_REF] Touloukian | Thermal radiative properties. Metallic elements and alloys, volume 7 of Thermophysical properties of matter[END_REF] and (34). The associated radiative Fourier law is only valid when the Gomart and Taine criterion given by Eq. ( 5) is fulfilled, i.e. when the temperature gradient fulfills the condition

∂T w ∂z < 60 K/cm at 2000 K. (40) 
The criterion given by Eq. (40) allows radiative fluxes to be determined with a 10% accuracy.

Zeroth order exchanges between phases can then be compared with first orders ones.

ϕ

w practically depends only on the temperature gradient ∂T w /∂z. The perturbation technique is valid as long as ϕ 

0) w ∂ ∂T w F wv + F wd k zw -F vw k zv + ∂ ∂T v F wv + F wd k zw -F vw k zv 1/2 . ( ( 
) 41 
The critical axial temperature gradient defined by Eq. ( 41) has been computed for the 35 studied zones and for two couples of temperatures: i) (T w , T v ) = (2000 K, 600 K), which corresponds to a strong non equilibrium observed when water is injected for cooling the reactor; ii) (T w , T v ) = (1500 K, 800 K), observed when temperature of rods has decreased by heating surrounding steam. For all studied zones and for these two couples of temperatures, the first order exchanges are negligible as long as the temperature gradient does not exceed 300 K/cm. This condition is practically always verified, but is less restrictive than Eq. (40). Consequently, corrections associated with the first order perturbation are negligible for the considered application.

Conclusion

An original model has been developed for computing, after phase homogenization, coupled radiative transfer between the phases of a strongly anisotropic porous medium with opaque and semitransparent phases. The homogenized phase associated with opaque wall elements does not follow Beer's law related to radiation extinction. At the optically thick limit, effective extinction and scattering coefficients characterize this homogenized phase. They have been determined from the Generalized Radiative Transfer Equation developed by Taine et al. [START_REF] Taine | Generalized radiative transfer equation for porous medium upscaling ; application to radiative fourier law[END_REF] for non Beerian porous media. The radiative transfer model is based on a RTE with three source terms, which are associated with the temperature fields of the interfaces and of two semitransparent phases (steam and water droplets). This specific RTE has been solved by a perturbation technique, which allows radiative powers per unit volume and radiative interfacial fluxes, which are exchanged between phases at local scale, to be computed.

Both contributions of zeroth order perturbation and corrections associated with the first order perturbation have been determined. In the second case, radiative fluxes have been expressed as coupled Fourier's laws which are characterized by radiative conductivity tensors associated with each phase. This approach has been applied to a radiative model for a tentative case of reflooding a nuclear reactor core, in thermohydraulics conditions which correspond to some types of severe accident. The radiative statistical functions associated with the opaque interfaces of the small scale facility of a nuclear reactor core, which reproduces damages after an accident, have first been determined. These non Beerian statistical functions have been directly computed from γ-tomography images, by a Monte Carlo method. The radiative properties of the fluid phase, which is a mixture of steam and water droplets, have also been characterized. The orders of magnitude of the different contributions to the radiative interfacial flux have been compared. In this application, the first order perturbation contribution can be neglected.

The developed radiative model can be coupled, at local scale, with a model based on three local temperature fields, which would account for other heat transfer modes [START_REF] Leroy | Coupled upscaling approaches for convection and radiation in porous media[END_REF]. 
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  d) is a source term for the energy balance equation related to the phase c at homogenization scale. Radiation emitted by a phase in an elementary volume dV at zeroth order is absorbed in the same dV , and the global power P is therefore equal to 0. A uniform zeroth order radiative flux ϕ (0)

  ), a term -k ij c ∂T c ∂x j physically corresponds to fluxes emitted by the phase c at temperature T c and absorbed by the three phases w, v or d. The term results in fact from reciprocal exchanges between a volume element and the surrounding elements. The fraction of this term corresponding to emission by a phase c (w, v or d) and absorption by a phase c (w, v or d)
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  about here.] [Figure 5 about here.] [Figure 6 about here.] 3.3. Radiative properties of steam, water droplets and opaque interfaces Radiative properties of steam have been characterized by using a CK model for pressures p v and temperatures T v in ranges [1, 10 atm] and [T sat (p v ), 2900 K]
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  are respectively shown in Figs.10-12 for temperatures T w = 2000 K and T v = 600 K. This choice corresponds to a classical case observed in the sequence of a severe accident of a nuclear reactor. As shown by comparison of the top and bottom graphs of Figs.10 and 11, steam is more efficient at high pressure for cooling hot fuel rods than at atmospheric pressure.Moreover, the comparison of orders of magnitude of P
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 1 w is small compared to ϕ (0) w . The critical value of ∂T w /∂z such as ϕ
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Figure 1 :

 1 Figure1: Axial cross section of the intact system (above) and the degraded system (below) along the vertical z-axis (PHEBUS-FPT1,[START_REF] Berthet | PHEBUS PF FPT1 -Preliminary Report[END_REF]).

Figure 2 :

 2 Figure 2: Example of image associated with a 2D cross-sectional γ-tomography; intact system (PHEBUS-FPT1, [26]).
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Figure 3 :

 3 Figure 3: γ-tomographies of the zone 2 of PHEBUS-FPT1 and 14 zones of PHEBUS-FPT2, delimited axially by (z min , z max ) [mm] and associated values of Π and A [mm -1 ].

Figure 4 :

 4 Figure 4: Extinction cumulative distribution function G ext (ss, θ = π/2, ϕ) for θ = π/2 and different ϕ values (1.5 • +, 16.5 • ×, 31.5 • •, 43.5 • ) and corresponding extinction cumulative function over all ϕ (thick line) [zone 2].

Figure 5 :

 5 Figure 5: Directional generalized extinction coefficient at equilibrium [mm -1 ] vs ϕ for different values of θ (14.0 • +, 34.1 • ×, 44.9 • •, 53.9 • , 69.3 • , 90 • ) [zone 2].

Figure 6 :

 6 Figure 6: Directional scattering asymmetry parameter vs ϕ for different values of θ (14.0 • +, 34.1 • ×, 44.9 • •, 53.9 • , 69.3 • , 90 • ) [zone 2].

Figure 7 :

 7 Figure 7: Transmissivity of columns of lenghts 1cm (a) and 5cm (b) associated with interfaces (dashed line), water droplets at (R d = 25 µm, f v = 10 -3 ) ( ), steam at temperature T v = 1000 K and pressure p v = 1 atm (×) or p v = 5 atm (•).

Figure 8 :

 8 Figure 8: Local absorptivity of Zirconium oxide ZrO 2 vs T w [33].

Figure 9 :

 9 Figure 9: Dimensionless radiative conductivities k + r et k + z vs Π and corresponding fits.

Figure 10 w

 10 Figure 10: -P (0) w vs porosity associated with a semitransparent phase made of: i) Both steam and droplets of radius R d = 50µm (×) or R d = 300µm (+); ii) Only steam (•); ii) Only droplets of radius R d = 50µm ( ); T w = 2000 K, T v = 600 K, f v = 10 -3 and p v = 5 atm (a) or p v = 1 atm (b).

Figure 12 d

 12 Figure 12: P (0) d vs porosity associated with a semitransparent phase made of: i) Both steam and droplets of radius R d = 50µm (×) or R d = 300µm (+); ii) Only droplets of radius R d = 50µm ( ); T w = 2000 K, T v = 600 K, f v = 10 -3 and p v = 5 atm (a) or p v = 1 atm (b) .

Figure 13 :

 13 Figure 13: Dimensionless quantities F ww k rw /k trans r
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