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Exceptional values of p-adic analytic functions and derivatives

by Alain Escassut and Jacqueline Ojeda

Abstract Let K be an algebraically closed field of characteristic 0, complete with respect
to an ultrametric absolute value | . |. Given a meromorphic function f in K (resp. inside an

”open” disk D) we check that the field of small meromorphic functions in K (resp. inside

D) is algebraically closed in the whole field of meromorphic functions in K (resp. inside D).

If two analytic functions h, l in K, other than affine functions, satisfy h′l − hl′ = c ∈ K,
then c = 0. The space of the entire functions solutions of the equation y′′ = φy, with φ

a meromorphic function in K or an unbounded meromorphic function in D, is at most
of dimension 1. If a meromorphic function in K has no multiple pole, then f ′ has no
exceptional value. Let f be a meromorphic function having finitely many zeroes. Then for

every c 6= 0, f ′− c has an infinity of zeroes. If 1
f

is not a constant or an affine function and

if f has no simple pole with a residue equal to 1, then f ′ + f2 admits at least one zero.
When the field K has residue characteristic zero, then we can extend to analytic functions
in D some results showed for entire functions.

2000 Mathematics subject classification: Primary 12J25 Secondary 46S10

Notation and definitions: Let K be an algebraically closed field of characteristic 0,
complete with respect to an ultrametric absolute value | . |. We set K∗ = K \ {0}. Given

α ∈ K and R ∈ IR∗
+, we denote by d(α,R) the disk {x ∈ K | |x − α| ≤ R} and by

d(α,R−) the disk {x ∈ K | |x− α| < R}, by A(K) the K-algebra of analytic functions in

K (i.e. the set of power series with an infinite radius of convergence) and by A(d(α,R−))

the K-algebra of analytic functions in d(α,R−) (i.e. the set of power series in (x−α) with

a radius of convergence r ≥ R).

We denote by M(K) the field of meromorphic functions in K (i.e. the field of fractions

of A(K)) and by M(d(α,R−)) the field of meromorphic functions in d(a,R−) (i.e. the

field of fractions of A(d(α,R−))).

Similarly, we denote by Ab(d(α,R
−)) the K-algebra of bounded analytic functions in

d(α,R−) and by Mb(d(α,R
−)) the field of fractions of Ab(d(α,R

−)). On Ab(d(α,R
−))

we denote by ‖ . ‖d(α,R−) the norm of uniform convergence on d(α,R−).

Next we set Au(d(α,R−)) = A(d(α,R−)) \ Ab(d(α,R
−)) and

Mu(d(α,R−)) = M(d(α,R−)) \Mb(d(α,R
−)).

Given f ∈ A(d(0, R−)) =

∞∑

n=0

anx
n, it is well known that |f(x)| has a limit denoted by

|f |(r) when |x| tends to r, while being different from r [4]. Then |f |(r) = supn∈ IN |an|r
n.

This is an absolute value on A(d(0, R−)) that expands to M(d(0, R−)).

We call affine function a function h of the form h(x) = ax + b, a, b ∈ K and linear

fractional function a function h of the form h(x) =
ax+ b

cx+ d
, a, b, c, d ∈ K.
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Let us recall some notation concerning the ultrametric Nevanlinna Theory. Let f ∈

M(d(0, R−).

Let a ∈ d(0, R−). If a is zero of order q of f , we set ωa(f) = q. If a is pole of order q

of f , we set ωa(f) = −q. And if a is neither a zero nor a pole of f , we set ωa(f) = 0.

Let r ∈]0, R[. Assume that f(0) 6= 0, ∞. We denote by Z(r, f) the counting function

of zeroes of f in d(0, r) i.e. if (an) is the finite or infinite sequence of zeroes of f in d(0, R−)

with respective multiplicity order sn, we put Z(r, f) =
∑

|an|≤r

sn(log r − log |an|).

In the same way, considering the sequence (bn) of poles of f in d(0, r) with respective

multiplicity order tn, we put N(r, f) =
∑

|bn|≤r

tn(log r − log |bn|).

Next, we must define the Nevanlinna function T (r, f) as max{Z(r, f)+log(|f(0)|), N(r, f)}.

Remark: If we change the origin, the functions Z, N, T are not changed, up to an
additive constant. Consequently, if we deal with a function f admitting either a zero or a
pole at 0, we may perform a change of origin that lets us define the functions Z, N, T :
the behaviour of such functions does not depend on the origin we choose.

For each f ∈ M(K) (resp. f ∈ M(d(0, R−))) we set f̃(x) = x−ω0(f)f and we denote

by Mf (K) (resp. Mf (d(0, R−))) the set of functions h ∈ M(K) (resp. h ∈ M(d(0, R−)))

such that T (r, h̃) = o(T (r, f̃)) when r tends to +∞ (resp. when r tends to R). The

elements of Mf (K) (resp. Mf (d(0, R−))) are called small functions with regards to f .

Given f ∈ M(K) or f ∈ Mu(d(α,R−)), it is well known that there exists at most one

value b ∈ K such that f(x) 6= b ∀x ∈ K and when such a value b exists, it is then called an

exceptional value of f (or a Picard value of f). Given f ∈ A(K) or f ∈ Au(d(α,R−)), there

exists no b ∈ K such that f(x) 6= b ∀x ∈ K. Actually, we know that given f ∈ M(K)\K(x)

or f ∈ Mu(d(α,R−)), there exists at most one value b ∈ K such that f(x) − b has only

finitely many zeroes, and if f ∈ A(K) \K[x] (resp. if f ∈ Au(d(α,R−))) then f − b has
an infinity of zeroes, for every b ∈ K.

In a previous work [8], the second author gave solutions to the Hayman Conjecture

[5], [6] by showing that given a meromorphic function f ∈ M(K) or f ∈ Mu(d(α,R−)),

and τ ∈ K(x), then f ′ + τfm has infinitely many zeroes that are not zeroes of f , whenever
m ≥ 5 and when m = 1. Here we mean to look for other results more or less linked to
these problems. We shall first examine the field of small functions.

Let us recall the following theorems [1], [2], [3], [7]:

Theorem A: Let f(x) =
∞∑

k=0

akx
k ∈ A(d(0, R−)). Let r ∈]0, R−[. If f has q zeroes in

d(0, r) then |f |(r) = |aq|r
q. Moreover if f(0) 6= 0, then Z(r, f) + log |f(0)| = log |f ](r).
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Theorem B: Let f ∈ M(d(0, R−)). For all r < R, we have |f ′|(r) ≤
|f |(r)

r
. Moreover,

T (r, f) is bounded if and only if f belongs to Mb(d(0, R
−))

Theorem C: Let f ∈ M(K) (resp. f ∈ M(d(0, R−))). Let P (Y ) ∈ Mf (K)[Y ], (resp.

P ∈ Mf (d(0, R−))[Y ]), let n = deg(P ) and assume that f and P (f) have no zero and no

pole at 0. Then T (r, P (f)) = nT (r, f) + o(T (r, f)) and T (r,
1

f
) = T (r, f)+O(1). Further,

for every g ∈ M(K) (resp. g ∈ M(d(0, R−))), we have T (r, P (g)) ≤ nT (r, g)+ o(T (r, f)).

By Theorem C we can easily check Theorem 1:

Theorem 1: Let f ∈ M(K) (resp. f ∈ M(d(α,R−)))). Then Mf (K) (resp. Mf (d(α,R−)))

is a field algebraically closed in M(K) (resp. in M(d(α,R−))).

Proof: Let g ∈ M(K) (resp. g ∈ M(d(α,R−)) and assume that g is algebraic on

Mf (K) (resp. on Mf (d(α,R−))). Let P (Y ) =

n∑

j=0

aj(x)Y
n ∈ Mf (K)[Y ] (resp. P (Y ) ∈

Mf (d(α,R−))[Y ] be its minimal polynomial on Mf (K) (resp. on Mf (d(α,R−)) (so

an = 1).

Without loss of generality we may assume that α = 0 and that none of the aj have

any zero or any pole at 0. Let Q(Y ) =
n−1∑

j=0

aj(x)Y
n. Then T (r, gn) = nT (r, g) + O(1).

On the other hand, and by Theorem C, T (r, Q(g)) ≤ (n − 1)T (r, g) + o(T (r, f)), hence

T (r, g) = o(T (r, f)), i.e. g lies in Mf (K) (resp. in f ∈ Mf (d(0, R−)))).

Similarly, we can show Theorem 2:

Theorem 2: The field Mb(K) (resp. Mb(d(α,R
−)))) is algebraically closed in M(K)

(resp. in M(d(α,R−))).

We shall notice a property of differential equations of the form y(n) − ψy = 0 that is
almost classical.

Theorem 3: Let ψ ∈ A(K) (resp. let ψ ∈ A(d(α,R−))) and let E be the differential

equations y(n) − ψy = 0. Let E be the sub-vector space of A(K) (resp. of A(d(α,R−)))

of the solutions of E . If ψ belongs to A(K) (resp. if ψ belongs to Au(d(α,R−))), then

E = {0}.

If ψ belongs to Ab(d(α,R
−)) and satisfies ‖ψ‖d(α,R−) >

1

Rn
, then E = {0}.

Proof: In each case, we assume that E admits a non-identically zero solution h. Then

h(n) may not be identically zero.
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Suppose first that ψ lies in A(K). Then |ψ|(r) =
|h(n)|(r)

|h|(r)
is an increasing function

in r in ]0,+∞[, a contradiction to the inequality
|h(n)|(r)

|h|(r)
≤

1

rn
coming from Theorem B.

Now, suppose that ψ ∈ Au(d(α,R−)). Without loss of generality, we may assume

α = 0. Similarly, |ψ|(r) is unbounded in ]0, R−[, a contradiction to
|h(n)|(r)

|h|(r)
≤

1

rn
again.

In the same way, if ψ belongs to Ab(d(0, R
−)) and satisfies ‖ψ‖d(0,R−) >

1

Rn
, the

inequality
|h(n)|(r)

|h|(r)
≤

1

rn
is then violated when r tends to R.

The problem of a constant Wronskian is involved in several questions.

Theorem 4: Let h, l ∈ A(K) (resp. h, l ∈ A(d(α,R−))) and satisfy h′l − hl′ = c ∈ K,

with h non-affine. If h, l belong to A(K), then c = 0 and
h

l
is a constant. If c 6= 0 and if

h, l ∈ A(d(α,R−)), there exists φ ∈ A(d(α,R−)) such that h′′ = φh, l′′ = φl. Further, if

K has a residue characteristic 0 and if h has at least 2 zeroes in d(α,R−), then c = 0 and
h

l
is a constant.

Proof: Suppose c 6= 0, if h(a) = 0, then l(a) 6= 0. Next, h and l satisfy

(1)
h′′

h
=
l′′

l
.

Remark first that since h is not affine, h′′ is not identically zero. Next, every zero of h or
l of order ≥ 2 is a trivial zero of h′l− hl′. So we can assume that all zeroes of h and l are
of order 1.

Now suppose that a zero a of h is not a zero of h′′. Since a is a zero of h of order 1,
h′′

h

has a pole of order 1 at a and so does
l′′

l
, hence l(a) = 0, a contradiction. Consequently,

each zero of h is a zero of order 1 of h and is a zero of h′′. Hence,
h′′

h
is an element φ of

M(K) (resp. of M(d(α,R−)))) that has no pole in K (resp. in d(α,R−)) and therefore φ

lies in A(K) (resp. in A(d(α,R−))).

The same holds for l and so, l′′ is of the form ψl with ψ ∈ A(K) (resp. in A(d(α,R−))).

But since
h′′

h
=
l′′

l
, we have φ = ψ.

Now, suppose h, l belong to A(K). Since h′′ is of the form φh with φ ∈ A(K),

we have |h′′|(r) = |φ|(r)|h|(r). But by Theorem B, we know that |h′′|(r) ≤
1

r2
|h|(r), a

contradiction when r tends to +∞. Consequently, c = 0. But then h′l − hl′ = 0 implies

that the derivative of
h

l
is identically zero, hence

h

l
is constant.
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Suppose now that K has a residue characteristic 0 and h has at least 2 zeroes in

d(α,R−) (taking multiplicity into account) and suppose again that c 6= 0. We can find a

disk d(0, s) with s < R such that h has q ≥ 2 zeroes in this disk. Let t ∈]s, R[ be such that

h has q zeroes in d(0, t) and let h(x) =
∞∑

k=0

akx
k. Then by Theorem A we have |h|(r) =

|aq|r
q ∀r ∈ [s, t] and since K has residue characteristic 0, |h′′|(r) = |aq|r

q−2 ∀r ∈ [s, t] and

hence
|h′′|(r)

|h|(r)
=

1

r2
∀r ∈ [s, t]. But then, |φ|(r) =

1

r2
∀r ∈ [s, t], although φ ∈ A(d(0, R−)),

hence |φ|(r) may not be a decreasing function in r. This finishes proving that c = 0 again

and therefore
h

l
is a constant.

Corollary : Let h, l ∈ A(K) with coefficients in lQ, also be entire functions in lC, with

h non-affine. If h′l − hl′ is a constant c, then c = 0.

Remarks: The entire functions in lC: h(x) = coshx, l(x) = sinhx satisfy h′l − hl′ = 1

but are not entire functions in K: the radius of convergence of both h, l is p
−1

p−1 when K
has residue characteristic p 6= 0, is and is 1 when K has residue characteristic 0.

Here we can find again the following result that is known and may be proved without
ultrametric properties: Let F be an algebraically closed field of characteristic zero and let
P, Q ∈ F [x] be such that PQ′ − P ′Q is a constant c, with deg(P ) ≥ 2. Then c = 0.

Theorem 5: Let ψ ∈ M(K) (resp. let ψ ∈ Mu(d(α,R−))) and let E be the differential

equations y′′ − ψy = 0. Let E be the sub-vector space of A(K) (resp. of A(d(α,R−))) of
the solutions of E . Then, the dimension of E is 0 or 1.

Proof: Let h, l ∈ E be non-identically zero. Then h′′l − hl′′ = 0 and therefore h′l − hl′

is a constant c. On the other hand, since h, l are not identically zero, neither are h′′, l′′,
so h, l are not affine functions.

Suppose first that ψ lies in M(K). If ψ lies in A(K), then by Theorem 3, E = {0}.

Now, suppose that ψ lies in M(K) \ A(K). If c 6= 0, by Theorem 4, we have ψ ∈ A(K).

Consequently, c = 0. Therefore h′l−hl′ = 0 and hence
h

l
is a constant, hence E is at most

of dimension 1.
We now assume that ψ ∈ Mu(d(α,R−)). Without loss of generality, we may assume

α = 0. Suppose c 6= 0. By Theorem 4, we can see again that ψ belongs to A(d(0, R−)),

hence to Au(d(0, R−)), hence by Theorem 3, E = {0}. Now, suppose c = 0. Thus
h

l
is a

constant, so E is at most of dimension 1

Remark: The hypothesis ψ unbounded in d(α,R−) is indispensable to show that the
space E is of dimension 0 or 1, as shows the example given again by the p-adic hyperbolic

functions h(x) = coshx and l(x) = sinhx. The radius of convergence of both h, l is p
−1

p−1
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when K has residue characteristic p and is 1 when K has residue characteristic 0. Of
course, both functions are solutions of y′′ − y = 0 but they are bounded.

Theorem 6: Let f ∈ M(K) be not constant, have no pole of order ≥ 2 and don’t let it

be a linear fractional function. Then f ′ has no exceptional value.

Proof: We can write it
h

l
with h, l ∈ A(K), having no common zero. Since f is not a

linear fractional function,at least one of h, l is not an affine function. Since f has no pole
of order ≥ 2, h′l − hl′ and l have no common zero, i.e. the zeroes of f ′ are exactly the
zeroes of h′l − hl′. Suppose that f ′ has no zero. Then, neither has h′l − hl′ and therefore
this is a constant c 6= 0, a contradiction by Theorem 4.

Now, suppose f ′ has an exceptional value b. Then f ′ − b is the derivative of f − bx

whose poles are those of f , as we just saw, f ′ − b must have at least one zero.

Remark: In Theorem 6, we can’t remove the hypothesis f has no pole of order ≥ 2, as

shows f(x) =
1

x2
.

Similarly to a theorem in complex analysis, we can show Theorem 7:

Notation: Let f ∈ M(K), (resp. f ∈ M(d(0, R−))) and let P be a property satisfied
by f at certain points.

Let r ∈]0, R[. Assume that f(0) 6= 0, ∞. We denote by Z(r, f | P) the counting

function of zeroes of f in d(0, r) at the points where f satisfies P, i.e. if (an) is the finite

or infinite sequence of zeroes of f in d(0, R−) with respective multiplicity order sn, where

P is satisfied, we put Z(r, f) =
∑

|an|≤r,P

sn(log r − log |an|).

Theorem 7: Let f ∈ M(K) be transcendental (resp. Let f ∈ Mu(d(α,R−))). If there

exists b ∈ K such that f − b has finitely many zeroes, then for every c ∈ K∗, f ′ − c has
infinitely many zeroes.

Proof: Without loss of generality, we may assume α = 0. Let b ∈ K and suppose that
f − b only has a finite number of zeroes. There exist P ∈ K[x] and l ∈ A(K) \K[x] (resp.

and l ∈ Au(d(0, R−))) without common zeroes, such that f = b+
P

l
.

Particularly, considering the counting function of zeroes of certain function g whenever
l(x) = 0 or l(x) 6= 0, we shall denote them by Z(r, g | l(x) = 0) and Z(r, g | l(x) 6= 0),
respectively.

Let c ∈ K∗. Remark that f ′ − c =
P ′l − Pl′ − cl2

l2
. Let a be a zero of l. Then

(1) ωa((P ′l − Pl′ − cl2) = ωa(l) − 1 due to the fact that ωa(P ) 6= 0. Consequently, if a

is a zero of l, it is not a zero of f ′ − c. Else, if a is not a zero of l, then

(2) ωa(f ′ − c) = ωa(P ′l − Pl′ − cl2)
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Consequently, Z(r, f ′ − c) = Z(r, (P ′l − Pl′ − cl2) | l(x) 6= 0). But now, by (1) we
have
(3) Z(r, (P ′l − Pl′ − cl2) | l(x) = 0) < Z(r, l).

and therefore by (2) and (3) we obtain

(4) Z(r, f ′ − c) = Z(r, (P ′l − Pl′ − cl2) | l(x) 6= 0) > Z(r, P ′l − Pl′ − cl2) − Z(r, l)

Now, let us examine Z(r, P ′l − Pl′ − cl2). Let r ∈]0,+∞[
(
resp. let r ∈]0, R[

)
.

Since l ∈ A(K) is transcendental (resp. l ∈ Au(d(0, R−))), we can check that when

r is big enough, we have |Pl′|(r) < |c|
(
|l|(r)

)2
and |Pl|(r) < |c|

(
|l|(r)

)2
, hence clearly

|P ′l − Pl′|(r) < |c|
(
|l|(r)

)2
and hence |P ′l − Pl′ − cl2|(r) = |c|

(
|l|(r)

)2
. Consequently, by

Theorem A we have Z(r, P ′l − Pl′ − cl2) = Z(r, l2) + O(1) = 2Z(r, l) + O(1). Therefore

by (4) we check that

(5) Z(r, f ′ − c) > Z(r, l).

Now, if l ∈ A(K), since l is transcendental, by (5), for every q ∈ IN, we have

Z(r, f ′ − c) > Z(r, l) > q log r, when r is big enough, hence f ′ − c has infinitely many

zeroes in K. And similarly if l ∈ Au(d(0, R−)), then by (5), Z(f ′ − c) is unbounded when

r tends to R, hence f ′ − c has infinitely many zeroes in d(0, R−).

The following Lemma is useful to prove Theorem 5:

Lemma Let f ∈ M(K) (resp. f ∈ M(d(α,R−))) and let a ∈ K (resp. a ∈ d(α,R−)))

be a zero of f ′

f2 + 1 that is not a zero of f ′ + f2. Then a is a pole of order 1 of f and the

residue of f at a is 1.

Proof: Without loss of generality, we assume α = 0. We may find r > |a| (resp. r ∈

]|a|, R[) such that f ∈ A(d(0, r−)) There exist h, l ∈ A(d(0, r−)) without common zeroes

such that f = h
l
.

Since a is not a zero of f ′ + f2, it is a zero of l and hence it is not a zero of h.

Consequently, h(a)l′(a) − h2(a) = 0 and hence l′(a) = h(a) because h(a) 6= 0. Thus, a is

a pole of order 1 of f and the residue of f at a, of course, is h(a)
l′(a)

= 1.

Theorem 8 Let f ∈ M(K) be not constant and assume that 1
f

is not an affine function.

Let b ∈ K∗. If f ′ + bf2 has no zero, then f must admit at least one pole a of order 1 and

the residue of f at a is equal to 1
b
.

Proof: Without loss of generality, up to a change of variable, we may clearly assume

that b = 1. Suppose that f ′ + f2 has no zero in K. So, all zeroes of f are of order 1 and

hence all poles of f ′

f2 + 1 are of order 2. Then, for any zero of f ′

f2 + 1, by the previous

Lemma, a is a pole of order 1 of f and the residue of f at a is 1. Each pole of f ′

f2 + 1 is a

zero of f and hence is a pole of order 2 of f ′

f2 + 1. Consequently, − 1
f

+ x only has poles of

order 1.
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Suppose that − 1
f

+ x is not a linear fractional function. By Theorem 6, f ′

f2 + 1 has

no exceptional value and therefore it admits a zero a, a contradiction. Since 1
f

is not an

affine function, we may assume − 1
f

+ x to be ux+e
sx+t

with e, t ∈ K, u, s ∈ K∗ and e
u
6= t

s
.

Then,

1

f
= x−

ux+ e

sx+ t
=
sx2 + tx− ux− e

sx+ t

and, putting D = sx2 + tx− ux− e, we have

f ′ + f2 =
−sD + (sx+ t)(−sx+ u)

D2
.

When the denominator (sx2 + x(t− u) − e)2 vanishes, we notice that the numerator may

not vanish. Indeed, suppose that both have a zero at a point α. So, we have D(α) =

0 = (sα + t)(−sα + u); now, if −sα + u = 0, we can derive sα + t = 0 = uα + e, hence

ut = es, a contradiction because e
u
6= t

s
; and similarly, if uα + e = 0, we can derive the

same. And since s 6= 0, the zeroes of −sD + (sα+ t)(−sα+ u) do exist. Thus, the zeroes

of −sD + (sx+ t)(−sx+ u) are not zeroes of D and consequently, f ′ + f2 admits zeroes,
which ends the proof.

Remarks: Of course, if 1
f

is an affine function, f ′ + f2 has no zeroes, except if it is

identically zero. And if it is not identically zero, the residue at the pole is not 1 in the
general case.

On a p-adic field, the Hayman Conjecture was solved for m ≥ 5. Particularly it was
shown that f ′ + fm admits zeroes that are not zeroes of f for any integer m ≥ 5 and for

m = 1. Moreover, it was shown that for m = 4, f ′ + f4 admits at least one zero that is

not a zero of f [8]. Here we can see that f ′ + f2 admits at least one zero provided 1
f

is

neither a constant nor an affine function and f has no pole of order 1 with a residue equal

to 1. Thus, if f ∈ M(K) has no pole of order 1 with a residue equal to 1 and if 1
f

is not

an affine function, we can say that f ′ + fm admits at least one zero for every m ∈ IN∗

except maybe m = 3.
In the field lC the classical example of f(x) = tan(x) shows that a meromorphic

function f may be so that f ′ + f2 admits no zeroes. Precisely, each pole is of order 1 and
the residue at each pole is 1. Consequently, in the field K we can ask whether there exist
meromorphic functions that only have poles of order 1, with residue 1 at each pole, such

that f ′ + f2 have no zero.
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