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Let K be an algebraically closed field of characteristic 0, complete with respect to an ultrametric absolute value | . |. Given a meromorphic function f in K (resp. inside an "open" disk D) we check that the field of small meromorphic functions in K (resp. inside D) is algebraically closed in the whole field of meromorphic functions in K (resp. inside D). If two analytic functions h, l in K, other than affine functions, satisfy h ′ lhl ′ = c ∈ K, then c = 0. The space of the entire functions solutions of the equation y ′′ = φy, with φ a meromorphic function in K or an unbounded meromorphic function in D, is at most of dimension 1. If a meromorphic function in K has no multiple pole, then f ′ has no exceptional value. Let f be a meromorphic function having finitely many zeroes. Then for every c = 0, f ′c has an infinity of zeroes. If 1 f is not a constant or an affine function and if f has no simple pole with a residue equal to 1, then f ′ + f 2 admits at least one zero. When the field K has residue characteristic zero, then we can extend to analytic functions in D some results showed for entire functions.

2000 Mathematics subject classification: Primary 12J25 Secondary 46S10 Notation and definitions: Let K be an algebraically closed field of characteristic 0, complete with respect to an ultrametric absolute value | . |. We set K * = K \ {0}. Given α ∈ K and R ∈ IR * + , we denote by d(α, R) the disk {x ∈ K | |x -α| ≤ R} and by d(α, R -) the disk {x ∈ K | |x -α| < R}, by A(K) the K-algebra of analytic functions in K (i.e. the set of power series with an infinite radius of convergence) and by A(d(α, R -)) the K-algebra of analytic functions in d(α, R -) (i.e. the set of power series in (xα) with a radius of convergence r ≥ R).

We denote by M(K) the field of meromorphic functions in K (i.e. the field of fractions of A(K)) and by M(d(α, R -)) the field of meromorphic functions in d(a, R -) (i.e. the field of fractions of A(d(α, R -))).

Similarly, we denote by A b (d(α, R -)) the K-algebra of bounded analytic functions in d(α, R -) and by M b (d(α, R -)) the field of fractions of A b (d(α, R -)). On A b (d(α, R -)) we denote by . d(α,R -) the norm of uniform convergence on d(α, R -).

Next we set

A u (d(α, R -)) = A(d(α, R -)) \ A b (d(α, R -)) and M u (d(α, R -)) = M(d(α, R -)) \ M b (d(α, R -)). Given f ∈ A(d(0, R -)) = ∞ n=0
a n x n , it is well known that |f (x)| has a limit denoted by |f |(r) when |x| tends to r, while being different from r [START_REF] Escassut | Analytic Elements in p-adic Analysis[END_REF]. Then |f |(r) = sup n∈ IN |a n |r n . This is an absolute value on A(d(0, R -)) that expands to M(d(0, R -)).

We call affine function a function h of the form h(x) = ax + b, a, b ∈ K and linear fractional function a function h of the form h

(x) = ax + b cx + d , a, b, c, d ∈ K.
Let us recall some notation concerning the ultrametric Nevanlinna Theory. Let f ∈ M(d(0, R -).

Let a ∈ d(0, R -). If a is zero of order q of f , we set ω a (f ) = q. If a is pole of order q of f , we set ω a (f ) = -q. And if a is neither a zero nor a pole of f , we set ω a (f ) = 0.

Let r ∈]0, R[. Assume that f (0) = 0, ∞. We denote by Z(r, f ) the counting function of zeroes of f in d(0, r) i.e. if (a n ) is the finite or infinite sequence of zeroes of f in d(0, R -) with respective multiplicity order s n , we put Z(r, f ) =

|a n |≤r s n (log r -log |a n |).
In the same way, considering the sequence (b n ) of poles of f in d(0, r) with respective multiplicity order t n , we put N (r, f ) =

|b n |≤r t n (log r -log |b n |).
Next, we must define the Nevanlinna function T (r, f ) as max{Z(r, f )+log(|f (0)|), N (r, f )}.

Remark: If we change the origin, the functions Z, N, T are not changed, up to an additive constant. Consequently, if we deal with a function f admitting either a zero or a pole at 0, we may perform a change of origin that lets us define the functions Z, N, T : the behaviour of such functions does not depend on the origin we choose.

For each f ∈ M(K) (resp. f ∈ M(d(0, R -))) we set f (x) = x -ω 0 (f ) f and we denote by M f (K) (resp. M f (d(0, R -))) the set of functions h ∈ M(K) (resp. h ∈ M(d(0, R -)))
such that T (r, h) = o(T (r, f)) when r tends to +∞ (resp. when r tends to R). The elements of M f (K) (resp. M f (d(0, R -))) are called small functions with regards to f .

Given f ∈ M(K) or f ∈ M u (d(α, R -)), it is well known that there exists at most one value b ∈ K such that f (x) = b ∀x ∈ K and when such a value b exists, it is then called an exceptional value of f (or a Picard value of f ). Given f ∈ A(K) or f ∈ A u (d(α, R -)), there exists no b ∈ K such that f (x) = b ∀x ∈ K. Actually, we know that given f ∈ M(K)\K(x) or f ∈ M u (d(α, R -)), there exists at most one value b ∈ K such that f (x)b has only finitely many zeroes, and if

f ∈ A(K) \ K[x] (resp. if f ∈ A u (d(α, R -))) then f -b has an infinity of zeroes, for every b ∈ K.
In a previous work [START_REF] Ojeda | s conjecture in a p-adic field[END_REF], the second author gave solutions to the Hayman Conjecture [START_REF] Hayman | Picard values of meromorphic functions and their derivatives[END_REF], [START_REF] Hayman | Research Problems in Function Theory[END_REF] by showing that given a meromorphic function f ∈ M(K) or f ∈ M u (d(α, R -)), and τ ∈ K(x), then f ′ + τ f m has infinitely many zeroes that are not zeroes of f , whenever m ≥ 5 and when m = 1. Here we mean to look for other results more or less linked to these problems. We shall first examine the field of small functions.

Let us recall the following theorems [START_REF] Amice | Les nombres p-adiques, Presses Universitaires de France, Collection SUP[END_REF], [START_REF] Boutabaa | Théorie de Nevanlinna p-adique[END_REF], [START_REF] Boutabaa | Urs and Ursim for p-adic meromorphic functions inside a p-adic disk[END_REF], [START_REF] Hu | Meromorphic Functions over non-Archimedean Fields[END_REF]:

Theorem A: Let f (x) = ∞ k=0 a k x k ∈ A(d(0, R -)). Let r ∈]0, R -[. If f has q zeroes in d(0, r) then |f |(r) = |a q |r q . Moreover if f (0) = 0, then Z(r, f ) + log |f (0)| = log |f ](r). Theorem B: Let f ∈ M(d(0, R -)). For all r < R, we have |f ′ |(r) ≤ |f |(r) r . Moreover, T (r, f ) is bounded if and only if f belongs to M b (d(0, R -)) Theorem C: Let f ∈ M(K) (resp. f ∈ M(d(0, R -))). Let P (Y ) ∈ M f (K)[Y ], (resp. P ∈ M f (d(0, R -))[Y ]
), let n = deg(P ) and assume that f and P (f ) have no zero and no pole at 0. Then T (r,

P (f )) = nT (r, f ) + o(T (r, f )) and T (r, 1 f ) = T (r, f ) + O(1). Further, for every g ∈ M(K) (resp. g ∈ M(d(0, R -))), we have T (r, P (g)) ≤ nT (r, g) + o(T (r, f )).
By Theorem C we can easily check Theorem 1:

Theorem 1: Let f ∈ M(K) (resp. f ∈ M(d(α, R -)))). Then M f (K) (resp. M f (d(α, R -))) is a field algebraically closed in M(K) (resp. in M(d(α, R -))). Proof: Let g ∈ M(K) (resp. g ∈ M(d(α, R -))
and assume that g is algebraic on

M f (K) (resp. on M f (d(α, R -))). Let P (Y ) = n j=0 a j (x)Y n ∈ M f (K)[Y ] (resp. P (Y ) ∈ M f (d(α, R -))[Y ] be its minimal polynomial on M f (K) (resp. on M f (d(α, R -)) (so a n = 1).
Without loss of generality we may assume that α = 0 and that none of the a j have any zero or any pole at 0. Let

Q(Y ) = n-1 j=0 a j (x)Y n . Then T (r, g n ) = nT (r, g) + O(1).
On the other hand, and by Theorem C, T (r,

Q(g)) ≤ (n -1)T (r, g) + o(T (r, f )), hence T (r, g) = o(T (r, f )), i.e. g lies in M f (K) (resp. in f ∈ M f (d(0, R -)))).
Similarly, we can show Theorem 2:

Theorem 2: The field M b (K) (resp. M b (d(α, R -)))) is algebraically closed in M(K) (resp. in M(d(α, R -))).
We shall notice a property of differential equations of the form y (n)ψy = 0 that is almost classical.

Theorem 3: Let ψ ∈ A(K) (resp. let ψ ∈ A(d(α, R -))) and let E be the differential equations y (n) -ψy = 0. Let E be the sub-vector space of A(K) (resp. of A(d(α, R -))) of the solutions of E. If ψ belongs to A(K) (resp. if ψ belongs to A u (d(α, R -))), then E = {0}. If ψ belongs to A b (d(α, R -)) and satisfies ψ d(α,R -) > 1 R n , then E = {0}. Proof:
In each case, we assume that E admits a non-identically zero solution h. Then h (n) may not be identically zero.

Suppose first that ψ lies in

A(K). Then |ψ|(r) = |h (n) |(r) |h|(r) is an increasing function in r in ]0, +∞[, a contradiction to the inequality |h (n) |(r) |h|(r) ≤ 1 r n coming from Theorem B. Now, suppose that ψ ∈ A u (d(α, R -))
. Without loss of generality, we may assume

α = 0. Similarly, |ψ|(r) is unbounded in ]0, R -[, a contradiction to |h (n) |(r) |h|(r) ≤ 1 r n again.
In the same way, if ψ belongs to A b (d(0, R -)) and satisfies

ψ d(0,R -) > 1 R n , the inequality |h (n) |(r) |h|(r) ≤ 1 r n is then violated when r tends to R.
The problem of a constant Wronskian is involved in several questions.

Theorem 4: Let h, l ∈ A(K) (resp. h, l ∈ A(d(α, R -))) and satisfy h ′ l -hl ′ = c ∈ K, with h non-affine. If h, l belong to A(K), then c = 0 and h l is a constant. If c = 0 and if h, l ∈ A(d(α, R -)), there exists φ ∈ A(d(α, R -)) such that h ′′ = φh, l ′′ = φl. Further, if
K has a residue characteristic 0 and if h has at least 2 zeroes in d(α, R -), then c = 0 and h l is a constant.

Proof: Suppose c = 0, if h(a) = 0, then l(a) = 0. Next, h and l satisfy (1) h ′′ h = l ′′ l .
Remark first that since h is not affine, h ′′ is not identically zero. Next, every zero of h or l of order ≥ 2 is a trivial zero of h ′ lhl ′ . So we can assume that all zeroes of h and l are of order 1.

Now suppose that a zero a of h is not a zero of h ′′ . Since a is a zero of h of order 1, h ′′ h has a pole of order 1 at a and so does l ′′ l , hence l(a) = 0, a contradiction. Consequently, each zero of h is a zero of order 1 of h and is a zero of h ′′ . Hence,

h ′′ h is an element φ of M(K) (resp. of M(d(α, R -)))) that has no pole in K (resp. in d(α, R -)) and therefore φ lies in A(K) (resp. in A(d(α, R -))).
The same holds for l and so, l ′′ is of the form ψl with ψ ∈ A(K) (resp. in A(d(α, R -))). Suppose now that K has a residue characteristic 0 and h has at least 2 zeroes in d(α, R -) (taking multiplicity into account) and suppose again that c = 0. We can find a disk d(0, s) with s < R such that h has q ≥ 2 zeroes in this disk. Let t ∈]s, R[ be such that h has q zeroes in d(0, t) and let h(x) = ∞ k=0 a k x k . Then by Theorem A we have |h|(r) = |a q |r q ∀r ∈ [s, t] and since K has residue characteristic 0, |h ′′ |(r) = |a q |r q-2 ∀r ∈ [s, t] and

But since

h ′′ h = l ′′ l , we have φ = ψ.
hence |h ′′ |(r) |h|(r) = 1 r 2 ∀r ∈ [s, t]. But then, |φ|(r) = 1 r 2 ∀r ∈ [s, t], although φ ∈ A(d(0, R -))
, hence |φ|(r) may not be a decreasing function in r. This finishes proving that c = 0 again and therefore h l is a constant.

Corollary : Let h, l ∈ A(K) with coefficients in l Q, also be entire functions in l C, with h non-affine. If h ′ lhl ′ is a constant c, then c = 0.

Remarks: The entire functions in l C: h(x) = coshx, l(x) = sinhx satisfy h ′ lhl ′ = 1 but are not entire functions in K: the radius of convergence of both h, l is p -1

p-1 when K has residue characteristic p = 0, is and is 1 when K has residue characteristic 0.

Here we can find again the following result that is known and may be proved without ultrametric properties: Let F be an algebraically closed field of characteristic zero and let

P, Q ∈ F [x] be such that P Q ′ -P ′ Q is a constant c, with deg(P ) ≥ 2. Then c = 0. Theorem 5: Let ψ ∈ M(K) (resp. let ψ ∈ M u (d(α, R -)))
and let E be the differential equations y ′′ψy = 0. Let E be the sub-vector space of A(K) (resp. of A(d(α, R -))) of the solutions of E. Then, the dimension of E is 0 or 1.

Proof: Let h, l ∈ E be non-identically zero. Then h ′′ lhl ′′ = 0 and therefore h ′ lhl ′ is a constant c. On the other hand, since h, l are not identically zero, neither are h ′′ , l ′′ , so h, l are not affine functions.

Suppose first that ψ lies in M(K). If ψ lies in A(K), then by Theorem 3, E = {0}. Now, suppose that ψ lies in M(K) \ A(K). If c = 0, by Theorem 4, we have ψ ∈ A(K).

Consequently, c = 0. Therefore h ′ lhl ′ = 0 and hence h l is a constant, hence E is at most of dimension 1.

We now assume that ψ ∈ M u (d(α, R -)). Without loss of generality, we may assume α = 0. Suppose c = 0. By Theorem 4, we can see again that ψ belongs to A(d(0, R -)), hence to A u (d(0, R -)), hence by Theorem 3, E = {0}. Now, suppose c = 0. Thus h l is a constant, so E is at most of dimension 1

Remark: The hypothesis ψ unbounded in d(α, R -) is indispensable to show that the space E is of dimension 0 or 1, as shows the example given again by the p-adic hyperbolic functions h(x) = coshx and l(x) = sinhx. The radius of convergence of both h, l is p

-1 p-1
when K has residue characteristic p and is 1 when K has residue characteristic 0. Of course, both functions are solutions of y ′′y = 0 but they are bounded.

Theorem 6: Let f ∈ M(K) be not constant, have no pole of order ≥ 2 and don't let it be a linear fractional function. Then f ′ has no exceptional value.

Proof: We can write it h l with h, l ∈ A(K), having no common zero. Since f is not a linear fractional function,at least one of h, l is not an affine function. Since f has no pole of order ≥ 2, h ′ lhl ′ and l have no common zero, i.e. the zeroes of f ′ are exactly the zeroes of h ′ lhl ′ . Suppose that f ′ has no zero. Then, neither has h ′ lhl ′ and therefore this is a constant c = 0, a contradiction by Theorem 4. Now, suppose f ′ has an exceptional value b. Then f ′b is the derivative of fbx whose poles are those of f , as we just saw, f ′b must have at least one zero.

Remark: In Theorem 6, we can't remove the hypothesis f has no pole of order ≥ 2, as

shows f (x) = 1 x 2 .
Similarly to a theorem in complex analysis, we can show Theorem 7:

Notation: Let f ∈ M(K), (resp. f ∈ M(d(0, R -))
) and let P be a property satisfied by f at certain points. Let r ∈]0, R[. Assume that f (0) = 0, ∞. We denote by Z(r, f | P) the counting function of zeroes of f in d(0, r) at the points where f satisfies P, i.e. if (a n ) is the finite or infinite sequence of zeroes of f in d(0, R -) with respective multiplicity order s n , where

P is satisfied, we put Z(r, f ) = |a n |≤r,P s n (log r -log |a n |). Theorem 7: Let f ∈ M(K) be transcendental (resp. Let f ∈ M u (d(α, R -))).
If there exists b ∈ K such that fb has finitely many zeroes, then for every c ∈ K * , f ′c has infinitely many zeroes.

Proof: Without loss of generality, we may assume α = 0. Let b ∈ K and suppose that fb only has a finite number of zeroes. There exist

P ∈ K[x] and l ∈ A(K) \ K[x] (resp. and l ∈ A u (d(0, R -))) without common zeroes, such that f = b + P l .
Particularly, considering the counting function of zeroes of certain function g whenever l(x) = 0 or l(x) = 0, we shall denote them by Z(r, g | l(x) = 0) and Z(r, g | l(x) = 0), respectively.

Let c ∈ K * . Remark that f ′ -c = P ′ l -P l ′ -cl 2 l 2
. Let a be a zero of l. Then

(1) ω a ((

P ′ l -P l ′ -cl 2 ) = ω a (l) -1 due to the fact that ω a (P ) = 0. Consequently, if a is a zero of l, it is not a zero of f ′ -c. Else, if a is not a zero of l, then (2) ω a (f ′ -c) = ω a (P ′ l -P l ′ -cl 2 )
Consequently, Z(r, f ′c) = Z(r, (P ′ l -P l ′cl 2 ) | l(x) = 0). But now, by (1) we have (3) Z(r, (P ′ l -P l ′cl 2 ) | l(x) = 0) < Z(r, l). and therefore by ( 2) and (3) we obtain (4) Z(r, f ′c) = Z(r, (P ′ l -P l ′cl 2 ) | l(x) = 0) > Z(r, P ′ l -P l ′cl 2 ) -Z(r, l)

Now, let us examine Z(r, P ′ l -P l ′cl 2 ). Let r ∈]0, +∞[ resp. let r ∈]0, R[ . Since l ∈ A(K) is transcendental (resp. l ∈ A u (d(0, R -))), we can check that when r is big enough, we have |P l ′ |(r) < |c| |l|(r) Therefore by ( 4) we check that (5) Z(r, f ′c) > Z(r, l). Now, if l ∈ A(K), since l is transcendental, by [START_REF] Hayman | Picard values of meromorphic functions and their derivatives[END_REF], for every q ∈ IN, we have Z(r, f ′c) > Z(r, l) > q log r, when r is big enough, hence f ′c has infinitely many zeroes in K. And similarly if l ∈ A u (d(0, R -)), then by [START_REF] Hayman | Picard values of meromorphic functions and their derivatives[END_REF], Z(f ′c) is unbounded when r tends to R, hence f ′c has infinitely many zeroes in d(0, R -).

The following Lemma is useful to prove Theorem 5:

Lemma Let f ∈ M(K) (resp. f ∈ M(d(α, R -))) and let a ∈ K (resp. a ∈ d(α, R -))) be a zero of f ′ f 2 + 1 that is not a zero of f ′ + f 2 .
Then a is a pole of order 1 of f and the residue of f at a is 1.

Proof: Without loss of generality, we assume α = 0. We may find r > |a| (resp. r ∈ ]|a|, R[) such that f ∈ A(d(0, r -)) There exist h, l ∈ A(d(0, r -)) without common zeroes such that f = h l . Since a is not a zero of f ′ + f 2 , it is a zero of l and hence it is not a zero of h. Consequently, h(a)l ′ (a)h 2 (a) = 0 and hence l ′ (a) = h(a) because h(a) = 0. Thus, a is a pole of order 1 of f and the residue of f at a, of course, is h(a) l ′ (a) = 1.

Theorem 8 Let f ∈ M(K) be not constant and assume that 1 f is not an affine function. Let b ∈ K * . If f ′ + bf 2 has no zero, then f must admit at least one pole a of order 1 and the residue of f at a is equal to 1 b . Proof: Without loss of generality, up to a change of variable, we may clearly assume that b = 1. Suppose that f ′ + f 2 has no zero in K. So, all zeroes of f are of order 1 and hence all poles of f ′ f 2 + 1 are of order 2. Then, for any zero of f ′ f 2 + 1, by the previous Lemma, a is a pole of order 1 of f and the residue of f at a is 1. Each pole of f ′ f 2 + 1 is a zero of f and hence is a pole of order 2 of f ′ f 2 + 1. Consequently, -1 f + x only has poles of order 1.

Suppose that -1 f + x is not a linear fractional function. By Theorem 6, f ′ f 2 + 1 has no exceptional value and therefore it admits a zero a, a contradiction. Since 1 f is not an affine function, we may assume -1 f + x to be ux+e sx+t with e, t ∈ K, u, s ∈ K * and e u = t s . Then,

1 f = x - ux + e sx + t = sx 2 + tx -ux -e sx + t
and, putting D = sx 2 + txuxe, we have

f ′ + f 2 = -sD + (sx + t)(-sx + u) D 2 .
When the denominator (sx 2 + x(tu)e) 2 vanishes, we notice that the numerator may not vanish. Indeed, suppose that both have a zero at a point α. So, we have D(α) = 0 = (sα + t)(-sα + u); now, if -sα + u = 0, we can derive sα + t = 0 = uα + e, hence ut = es, a contradiction because e u = t s ; and similarly, if uα + e = 0, we can derive the same. And since s = 0, the zeroes of -sD + (sα + t)(-sα + u) do exist. Thus, the zeroes of -sD + (sx + t)(-sx + u) are not zeroes of D and consequently, f ′ + f 2 admits zeroes, which ends the proof.

Remarks: Of course, if 1 f is an affine function, f ′ + f 2 has no zeroes, except if it is identically zero. And if it is not identically zero, the residue at the pole is not 1 in the general case.

On a p-adic field, the Hayman Conjecture was solved for m ≥ 5. Particularly it was shown that f ′ + f m admits zeroes that are not zeroes of f for any integer m ≥ 5 and for m = 1. Moreover, it was shown that for m = 4, f ′ + f 4 admits at least one zero that is not a zero of f [START_REF] Ojeda | s conjecture in a p-adic field[END_REF]. Here we can see that f ′ + f 2 admits at least one zero provided 1 f is neither a constant nor an affine function and f has no pole of order 1 with a residue equal to 1. Thus, if f ∈ M(K) has no pole of order 1 with a residue equal to 1 and if 1 f is not an affine function, we can say that f ′ + f m admits at least one zero for every m ∈ IN * except maybe m = 3.

In the field l C the classical example of f (x) = tan(x) shows that a meromorphic function f may be so that f ′ + f 2 admits no zeroes. Precisely, each pole is of order 1 and the residue at each pole is 1. Consequently, in the field K we can ask whether there exist meromorphic functions that only have poles of order 1, with residue 1 at each pole, such that f ′ + f 2 have no zero.

  Now, suppose h, l belong to A(K). Since h ′′ is of the form φh with φ ∈ A(K), we have |h ′′ |(r) = |φ|(r)|h|(r). But by Theorem B, we know that |h ′′ |(r) ≤ 1 r 2 |h|(r), a contradiction when r tends to +∞. Consequently, c = 0. But then h ′ lhl ′ = 0 implies that the derivative of h l is identically zero, hence h l is constant.

2 and

 2 |P l|(r) < |c| |l|(r) 2 , hence clearly |P ′ l -P l ′ |(r) < |c| |l|(r) 2 and hence |P ′ l -P l ′cl 2 |(r) = |c| |l|(r) 2 . Consequently, by Theorem A we have Z(r, P ′ l -P l ′cl 2 ) = Z(r, l 2 ) + O(1) = 2Z(r, l) + O(1).