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ABSTRACT

Motivation: Ancestral genomes provide a better way to understand
the structural evolution of genomes than the simple comparison of
extant genomes. Most ancestral genome reconstruction methods
rely on universal markers, that is, homologous families of DNA
segments present in exactly one exemplar in every considered
species. Complex histories of genes or other markers, undergoing
duplications and losses, are rarely taken into account. It follows that
some ancestors are inaccessible by these methods, such as the
proto–monocotyledon whose evolution involved massive gene loss
following a whole genome duplication.
Results: We propose a mapping approach based on the
combinatorial notion of ‘sandwich consecutive ones matrix’, which
explicitly takes gene losses into account. We introduce combinatorial
optimization problems related to this concept, and propose a
heuristic solver and a lower bound on the optimal solution.
We use these results to propose a configuration for the proto-
chromosomes of the monocot ancestor, and study the accuracy
of this configuration. We also use our method to reconstruct
the ancestral boreoeutherian genomes, which illustrates that the
framework we propose is not specific to plant paleogenomics but is
adapted to reconstruct any ancestral genome from extant genomes
with heterogeneous marker content.
Availability: Upon request to the authors.
Contact: haris.gavranovic@gmail.com; eric.tannier@inria.fr

1 INTRODUCTION
Mapping ancestral genomes consists in ordering ancestral markers
into chromosomes, according to the organization of the descendants
of these markers in sequenced extant genomes. In the absence of
a good model for genome structural evolution, mapping techniques
for ancestral genomes, introduced by Bergeron et al. (2004), have
given the most reliable ancestral configurations on animals (Chauve
and Tannier, 2008; Ma et al., 2006; Ouangraoua et al., 2009), yeast
(Bertrand et al., 2010; Chauve et al., 2010a; Tannier, 2009), or plant
genomes (Murat et al., 2010), and even on a wide eukaryote dataset
(Muffato, 2010; Muffato et al., 2010). These works also raised new
methodological issues and stimulated a recent stream of algorithmic
studies related to genome mapping (Adam et al., 2007; Chauve
et al., 2010b, 2009; Dom, 2009; Dom et al., 2010; Manuch and
Patterson, 2010; Stoye and Wittler, 2009; Wittler and Stoye, 2010),
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which had taken the back seat with the development of massive
genome sequencing.

The general principle of ancestral genome mapping is:

(i) Define ancestral genome markers, constructed either from
homologous gene families or from aligned chromosome
segments;

(ii) Infer, from the structure of extant genomes, a collection of
relations between ancestral markers which are believed to be
ancestral; and

(iii) Assemble this collection into an ancestral genome.

The relations between ancestral markers can take several forms,
such as adjacency or distance between pairs of markers, or
contiguity/synteny of a subset of markers for example. The
combinatorial nature of these relations defines the abstract
representation of the ancestral genome, from totally ordered
proto–chromosomal segments (Ma et al., 2006; Muffato et al.,
2010) to contiguous ancestral regions (Chauve and Tannier, 2008;
Ouangraoua et al., 2009) and ancestral linkage groups (Chauve et al.,
2010b).

Up to now, most published methods require unique and universal
ancestral markers, that is, each ancestral marker has exactly one
descendant in every considered extant genome. This constraint,
common to many genome–mapping methods (Bergeron et al., 2004;
Chauve et al., 2010a; Chauve and Tannier, 2008; Ma et al., 2006;
Ouangraoua et al., 2009; Tannier, 2009) and genome rearrangement
studies (Alekseyev and Pevzner, 2009; Zhao and Bourque, 2009),
results, in general, in more tractable algorithmic problems for the
assembly phase. Recently, several works tried to account for the
possibly complex history of markers, by integrating whole genome
duplication and gene loss either at the level of ancestral markers
definition (Chauve et al., 2010a; Murat et al., 2010; Tannier, 2009),
or in the whole mapping process, allowing duplicated markers
arising from a whole genome duplication (Ma et al., 2008), or genes
with duplications and losses (Bertrand et al., 2010; Muffato, 2010;
Muffato et al., 2010). In these works, either a backbone of universal
makers is used, or only adjacencies between genes were considered.
It means that gene loss is neglected, and is expected to produce a
reasonable amount of noise in the assembly phase.

The above assumptions are not appropriate anymore if there
is a highly heterogeneous marker content within the extant
descendants considered to reconstruct an ancestral genome. For
example, in the early monocotyledon evolution, a whole genome
duplication is believed to have occurred (Abrouk et al., 2010;
Salse et al., 2009), followed by numerous gene losses, representing
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a fundamental evolutionary mechanism for these genomes. Gene
order in this ancestor is accessible only by the extant relations
between paralogous genes that have been kept in two copies, either
in the same species or in two different ones. But at this evolutionary
distance, only 10% of the genes are of this kind. Universal markers
are almost absent, preventing the use of all existing methods except
the ones of Muffato (2010) and Bertrand et al. (2010). However,
adjacencies that can be inferred between ancestral markers are also
very sparse, preventing the use of the method of Bertrand et al.
(2010). Finally, a method using distances and a reduction toward a
Traveling Salesman Problem (TSP) is described in the PhD thesis
of Muffato (2010), and is close to one of the heuristic principle we
describe here. Among our contributions, here is the formalization
of this problem and the explicit integration of gene losses in the
process.

We propose a solution in the form of a variant of the consecutive
ones problem, which was also used in physical mapping of
chromosomes and adapted to ancestral mapping (Chauve et al.,
2010a; Chauve and Tannier, 2008; Ma et al., 2006; Ouangraoua
et al., 2009; Tannier, 2009). We generalize the consecutive ones
framework, which itself extends the methods based on adjacencies
(Bertrand et al., 2010; Ma et al., 2006; Muffato et al., 2010). The
consecutive ones problem is classically used in the following way
(see Chauve and Tannier, 2008 for a detailed description). A binary
matrix is built, whose columns are the ancestral markers and rows
represent groups of markers that are believed to be contiguous in the
ancestral genome. It is a binary matrix: there is a 1 in an entry if the
marker belongs to the group, and 0 otherwise. Then the assembly
phase infers an order of the columns (i.e. markers) such that on all
rows the entry ones are consecutive. If such an order, which satisfies
the consecutive ones property, does not exist, then a combinatorial
optimization approach is used, such as extracting a maximum subset
of rows or flipping a minimum number of entries. Groups of markers
defining the rows of the matrix are obtained from the comparison
of all pairs of extant genomes whose evolutionary path contains the
ancestor of interest.

The framework described above can be extended to handle the
fact that a marker can be missing when comparing a pair of extant
genomes, because of gene loss for example. It simply calls for a third
type of entry: if a marker is missing, then it is not possible to say if it
belongs or not to a given group of markers, so we may mark it with
an entry X in the matrix row associated to this group of markers. In
the assembly phase, it can play the role of a 1 or of a 0. The assembly
problem is now to find an order of the columns such that on all rows,
there is no entry 0 between two entries 1, or, if such an order does
not exist, to approximate this property while optimizing a given
combinatorial criterion. Note that in the absence of X entries, the
problem is equivalent to the consecutive ones described above. This
problem was introduced by Golumbic and Wassermann (1998) and
Golumbic (1998), under the names ‘sandwich interval hypergraph’
or ‘sandwich consecutive ones matrix’. It was proved that deciding
if the columns of a matrix with entries 0, 1 or X (a ternary matrix)
can be ordered such that no 0 is between two 1s is NP-complete and
the possibility to use this concept in physical mapping to account for
missing or uncertain data was already mentioned in these articles.

In Section 2, we describe several computational results for the
problem of ordering the columns of a ternary matrix. We define
combinatorial criteria associated to matrices that do not have
the sandwich consecutive ones property, a heuristic based on the

technique of partition refinement, a reduction to the TSP, a local
search principle and a lower bound that is used to assess the quality
of the solutions computed with these methods. Next we apply
these algorithmic results to the to reconstruct the gene order of the
protochromosomes of the monocotyledon angiosperms before they
underwent a whole genome duplication in Section 3.1 We discuss
the robustness of the results and the multiplicity of solutions in
Section 3.3. The framework we present is not restricted to plant
genomes. It generalizes several of the previous methods, accounting
for gene loss as an additional feature. It can be used for any ancestral
genome reconstruction. We demonstrate that former results, like the
boreoeutherian ancestor, can be retrieved with this new framework
with a good accuracy and an increased coverage (Section 4).

2 THE CONSECUTIVE ONE MATRIX SANDWICH
PROBLEM

2.1 Problem definition
A ternary matrix M is a matrix with n columns and m rows, each
entry being equal to 0, 1 or X. A binary matrix is a ternary matrix
without X entries. In a ternary matrix M, an entry Mij =0 is called a
bad zero if there exist a< j and b> j such that Mia =1 and Mib =1.
A row j is called a bad row if it has a bad zero. Two matrices are
equivalent if one can be obtained from the other by a permutation of
its columns. A ternary matrix M has the sandwich consecutive ones
property (SC1P) if it is equivalent to a matrix with no bad zero. If M
is binary and SC1P, then it has the consecutive ones property (C1P).

Typically, we use a ternary matrix M to represent a set of features
of an ancestral genome of interest: columns represent ancestral
markers (such as ancestral genes for example), and each row
represents a group of markers that are believed to be contiguous in
this ancestral genome, with all columns with an entry 1 belonging
to this group and possibly some columns with an entry X. The
goal of the assembly phase in inferring an ancestral genome map
is to order the columns of M to represent a possible order of
the markers along the proto-chromosome of the ancestral genome.
Ideally one would like to find a column order such that M has
the SC1P. In practice, it happens, due to convergent evolution,
errors in gene annotation or in homology assignment, that a matrix
does not have the SC1P, that is, there is no permutation of the
columns such that in each row, no zero entry is between two ones
(Fig. 1).

The case when a binary matrix does not have the consecutive
ones property was the subject of several theoretical and experimental
studies (e.g. Chauve et al., 2010b; Dom et al., 2010; Garriga et al.,
2008). Different problems arise such as: and computing the largest
C1P sub-matrix; and computing the permutation of columns (and
rows) that produce the matrix closest to a C1P matrix; computing
the minimal number of elements which can be flipped to obtain
a C1P matrix. These define optimization problems, most of them
NP-hard. Here we use their counterparts in the sandwich problem.
A first natural function is defined as the number of bad rows in

1A preliminary version of these results is integrated to a large paleogenomics
study of cereals (Murat et al., 2010). It was obtained by the partition
refinement heuristic, which was not described in Murat et al. (2010). All
other methodological developments (lower bound, proof of optimality of
the solutions, local search, reduction to TSP, robustness study), and the
generalization to mammalian genomes, are new.
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Matrix Sandwich

a b c d
7 10 11 12

13 1 1 0 1
17 1 1 0 0
42 X 1 1 0

a b c d e f
1 6 7 8 12 13

4 1 1 1 0 X 0
12 0 1 1 1 X 1
13 X X 1 1 0 1
16 0 1 1 1 X 0
43 X X 0 1 1 0

Fig. 1. Two sub-matrices of the matrix displayed in Figure 6. (Left) Sub-
matrix defined by rows (13, 17 and 42) and columns (7, 10, 11 and 12). This
matrix has the SC1P, with columns order dabc. (Right) Sub-matrix defined
by rows (14, 12, 13, 16 and 43) and columns (1, 6, 7, 8, 12 and 13). This
matrix does not have the SC1P (Fig. 3). The existence of this sub-matrix
proves the optimality of the solution in the Figure 6, because there is only
one bad row in the solution.

any equivalent matrix. The problem is then to delete the minimum
number of rows so that the remaining matrix has the SC1P. We
denote the value of this function for a permutation π on a matrix
M by λCOS−R(πM). The problem generalizes the ‘path covering
problem’, used by Ma et al. (2006), which is itself a generalization of
the Hamiltonian cycle problem. We can also define several objective
functions in terms of bad zeros: minimum number of bad zeros
among equivalent matrices, [µtot(πM)], maximal number of bad
zeros in a row, number of rows having at least k bad zeros for
example.

We consider here linear combinations of these functions while
creating optimization priority order among them. We ran the local
search of Section 2.4 with a function CλCOS−R(πM)+µtot(πM)
where C is a big constant. It means that we first aim at minimizing
the number of bad rows, and secondarily to integrate bad rows with
a minimum number of bad zeros.

We are not aware of any software or even described algorithm
attempting the resolution of a consecutive ones sandwich matrix
problem. We present below several techniques, a lower bound and
a software to solve it and assess the qualities of the solutions. Our
solver is based on

• Aheuristic based on a partition refinement algorithm to decide if
a binary matrix has the consecutive ones property (McConnell,
2004) (Section 2.2).

• A reduction to the TSP (Section 2.3).

• A local search to find a local optimum close to the results found
by the two above methods (Section 2.4).

We also describe a lower bound on the number of bad rows in a
matrix that does not have the sandwich consecutive ones property,
based on the certificate described in McConnell (2004) (Section 2.5).
It is used to assess the quality and, in some cases, to prove optimality
of the solutions obtained.

2.2 A heuristic based on partition refinement
The heuristic we describe now is based on the C1P matrix
recognition algorithm described in McConnell (2004), and relies
on the very general algorithmic tool of partition refinement. It is a
generalization of this algorithm, in the sense that if the instance is a
binary matrix with the C1P, it performs the partition refinement just
as described in McConnell (2004).

First, rows of the matrix are partitioned into connected
components of the overlap graph as follows: vertices are rows and

two rows define an edge if they overlap, i.e. if they have some
common columns with an entry 1, but none is contained in the other.

Then, for each component, rows are ordered according to a
breadth first search, and processed according to this order. The goal
is to partition the columns spanned by the component into a totally
ordered set {X1, ... ,Xk}. Every set Xi (a set of columns) is unordered
but the partition itself is. Components are processed independently.

During the processing of a component, a given column can be
assigned to several X ′

i s, which is the main difference with the
classical partition refinement algorithm used to decide the C1P. So
the structure which is maintained is an ordered family {X1, ... ,Xi}
plus a set X0 of unassigned columns, and a function from the columns
to a sub-family of X0, ... ,Xi. The image of a column is called its
possible assignments (in the algorithm of McConnell (2004), there
is only one possible assignment, and several assignments are used
only if X entries are encountered in the matrix). Below, we still use
the terminology partition for the intermediate X ′

i s even if, formally,
they do form a partition of the columns only at the end of the process.

Initialization: at first, all columns spanned by the component are
assigned to X0. The first row r1 is treated the ones in r1 are assigned
to X1, the zeros to X0 and the X entries to both X0 and X1.

Induction: then, for a row rj , processed after rows r1, ... ,rj−1,
assume the current columns partition is {X1, ... ,Xi}. Let {Xa, ... ,Xb}
be the largest interval of the partition such that (1) for every column
with a 1 in rj , one of its possible assignments is in either X0 or
Xa, ... ,Xb, and (2) for every column with a 0 in rj , some of its
possible assignments are outside {Xa+1, ... ,Xb−1}.

If such interval does not exist, skip row rj and process the
following row. Else add two sets: Xa′ before Xa and Xb′ after Xb. For
each column c, (1) if it has a 0 in rj and a possible assignment in Xa
(respectively Xb), replace the assignment of c to Xa (respectively Xb)
by an assignment to Xa′ (respectively Xb′ ), (2) if it has a X in rj and
a possible assignment in Xa (respectively Xb), add Xa′ (respectively
Xb′ ) to the possible assignments of c, and (3) if it has a 1 in rj and
some possible assignments in {Xa, ... ,Xb}, then remove all its other
possible assignments. Finally, remove empty sets.

If there is a column with a 1 in rj and without a possible
assignment within {Xa, ... ,Xb}, then this column is currently
assigned to X0. In this case, either a=1 or b= i, as the rows
are processed accorded to a breadth first search of the current
component. If a=1 (respectively b= i), then Xa′ (respectively Xb′ ) is
empty (in the opposite case skip row rj and process to the following
row). Let Xa′ (respectively Xb′ ) is the set containing all columns
with a 1 in rj but without an assignment within the sets {X1,...,Xi}.
Insert it before Xa (respectively after Xb). If a column has a X in rj
and a possible assignment to X0, then we add Xa′ (respectively Xb′ )
as a possible assignment for this column.

The result of this algorithm is then a partition of the columns into
a totally ordered set {X1, ... ,Xk}. From a theoretical point of view,
this heuristic has the important property that, if M does not contain
any entry X, this partition is the one computed by the algorithm
of McConnell (2004) to decide the C1P. If M does not satisfy the
C1PX, then the columns order defined by this partition induces bad
rows or bad zeros.

2.3 Reduction to the TSP
It is well known that some variations of C1P can naturally be
reduced to the TSP. We describe here such an approach, bearing
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some similarity with the method of Muffato (2010) applied to teleost
fishes: (i) construct a complete graph G= (V ,E) where the set of
vertices corresponds to the columns of the matrix and (ii) assign to
every edges an appropriate cost/weight [Hamming distance, Jaccard
coefficient, see Garriga et al. (2008) for example]. A Hamiltonian
path in this graph represents a permutation of the columns, i.e.
an order of the markers along ancestral chromosomes, and the
shortest Hamiltonian path represents a solution tending to optimize
the objective function defined by the cost model.

Here, we define a modified Hamming distance δH and modified
Multiply Transpose distance δMT for two columns a and b of a
ternary matrix M, parametrized by a real number α, as follows:

δH(a,b)=

∑
rows of M

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 00

0 11

α 0X

0 1X

1 10

δMT(a,b)=

10000−
∑

rows of M

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 00

1000 11

0 0X

α ·10 1X

α2/10 XX

0 10

To solve the obtained TSP instances, we use the publicly available
TSP solver Concorde, with Ilog CPLEX 11.0. Results of calculation
are reported in Table 2. We tried both distances with several
parameters, and chose the best solution. Except for huge matrices,
the solution is not very sensitive to the parameter variation.

2.4 Local search
To improve the solutions obtained by one of the heuristics described
above, we devised a simple local search that modifies the order of
the matrix columns. The five basic moves we considered here are:

• move one column from a position to another one,

• move a set of consecutive columns to another position,

• swap the position of two columns,

• reverse the order of a set of consecutive columns, and

• move and Reverse, i.e. move a set of consecutive columns to
another position and in reverse order.

We implemented the local search with an objective function first
tending to minimize the number of bad rows and secondarily trying
to minimize the number of bad zeros in bad rows.

2.5 Lower bound
To measure the quality of the solutions given by the combination
of a constructive heuristic followed by a local search, we define a
lower bound for the objective function that counts the number of
bad rows in a solution, i.e. a lower bound on the minimal number
of rows to remove from the matrix so that, for the remaining rows,
there is an order of the columns with no bad row. Our approach is
based on the notions of forbidden substructure characterization and
incompatibility graph developed by McConnell (2004).

2.5.1 The incompatibility graph and forbidden configurations
We first recall the construction of the incompatibility graph.
Let a and b be two columns of matrix M and denote by

Fig. 2. The incompatibility graph associated to the sub-matrix in Figure 1
(Left). Red edges are associated with row 13, blue edges are associated with
row 17 and green edges come from row 42. This graph is bipartite and the
bipartition for SC1P is (A={ab,ac,da,bc,db,dc},A) which also defines the
order dabc.

(a,b) the fact that a appears before b in the order of columns.
Let G be an undirected graph whose vertices are the elements
of {(a,b)|a,b are columns and a �=b}. Edges of G indicate the
incompatibility between column orders with respect to the SC1P.

• In any given order, (a,b) and (b,a) cannot appear
simultaneously. Thus, a first set of edges connects every pair
(a,b),(b,a).

• Suppose now that a,b,c are three columns and there exists a
row r such that Mra =Mrc =1 and Mrb =0. In an order with
the SC1P, (a,b) and (b,c) cannot hold both. We, therefore,
say that (a,b) and (b,c) are incompatible and define an edge
between these two vertices. We associate the row r to this edge;
therefore, the graph G can have multi-edges between two pairs
of vertices but these edges are distinguished by the associated
rows. Note, however, that if any of these value is X, then we
can not say anything about incompatibility.

McConnell (2004) proved that the incompatibility graph of a
binary matrix is bipartite if and only if the matrix itself has the
C1P, which provides a key ingredient for a certificate for the C1P.
A similar, although weaker property, also holds for the SC1P.

Property: if the incompatibility graph of a ternary matrix M
contains an odd-length cycle, then M does not satisfy the SC1P.

Note that the vertices and edges of an odd-length cycle Co define
a set of columns and rows and, therefore, define a sub-matrix of
M, that we call a forbidden configuration and that we denote MCo

,
which does not have the SC1P by the property above. Examples of
such sub-matrices are given in Figure 1. They are sub-matrices of the
matrix obtained from the monocot proto-chromosome A11 shown
on Figure 6. The incompatibility graphs for those two sub-matrices
are drawn on Figures 2 and 3.

2.5.2 Disjoint forbidden configurations Two odd cycles are
called strongly disjoint in the incompatibility graph if they are
disjoint in the graph, and if they do not share any row in the matrix.
If there exists a set of k odd cycles that are pairwise strongly disjoint
odd cycles, this clearly implies that there is at least k bad rows, as
each sub-matrix associated with a cycle contains at least one bad
row. We then introduce the problem of computing the maximum
number of odd cycles that are, pairwise, strongly disjoint, and we
describe below an efficient heuristic for this problem.

First, we compute a set of odd cycles as follows. One odd cycle
is found by searching the graph, and, in the associated sub-matrix,
we flip the zero entries to X. In this way, this odd cycle vanishes
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Fig. 3. The incompatibility graph associated with the sub-matrix from
Figure 1 (Right). Every edge is labeled with the corresponding row except
the edge (ab,ba) which represents an edge of first type. Note that for the cycle
we need all rows and all columns from the sub-matrix from the Table 1. This
odd-length cycle gives a certificate that the sub-matrix does not have the
SC1P.

and we start again the search for another odd cycle, until the graph
is bipartite. The set of odd cycles so obtained are still not strongly
disjoint. So we find the maximum subset of strongly disjoint ones
by solving an independent set problem on the graph which vertices
are the odd cycles and two vertices are joint by an edge if they
are not strongly disjoint. We solve this problem using an integer
programming formulation and solver.

For the matrix M with m columns, the number of vertices in the
incompatibility graph is m×(m−1) but all previous calculations
remain valid if we choose the suitable subset of columns, for
example the set columns comprising one or several bad zeros and
repeat the procedure to cover whole matrix. This is how, if needed,
we can reduce the size of the graphs we deal with. The number of
odd cycles can be very large, and this leads to rather big integer
programs to solve. But all these programs were easily solved for
small and medium instances (monocot ones) as it is reported here.

3 RECONSTRUCTING THE ANCESTRAL
MONOCOTYLEDON GENOME

Monocotyledons are a branch of angiosperms whose genome has
undergone a global duplication at an early stage of its evolution
(Salse et al., 2009). We describe here how to define ancestral markers
for this genomes, then how to compute ternary matrices representing
putative features of the ancestral monocotyledon genome, and finally
the result of the computational methods described in Section 2 on
these matrices.

3.1 Ancestral markers and ternary matrices
Two paralogous chromosomes or genes arising from a whole
genome duplication are called ohnologous. Ohnologous
chromosomes and chromosome segments were identified in
Murat et al. (2010), and we use the gene homologies computed
in the same study. For example, Rice chromosomes 1 and 5 are
ohnologous, as well as Sorghum chromosomes 3 and 9. As all four
arise from the whole genome duplication (Rice 1 is orthologous to
Sorghum 3 and Rice 5 to Sorghum 9, due to a speciation posterior
to the whole genome duplication), Rice 1 and Sorghum 9 are
ohnologous, as well as Rice 5 and Sorghum 3. This gives four
ohnologous relations on these four chromosomes summarized in
Figure 4, where ohnology relationships between genes are drawn
with gene positions in chromosomes. In the present work, we define
a relation between genes as follows: an ohnologous pair of genes
is a pair of paralogous genes that are located on two ohnologous
segments. All ohnologous pairs on Rice chromosomes 1 and 5

Fig. 4. Four ohnologous chromosomes (bold lines) and the ohnolog pairs of
genes (thin lines).

and Sorghum chromosomes 3 and 9 are drawn in Figure 4. Genes
are grouped into families defined by the transitive closure of the
relation, and each family defines an ancestral marker.

We then define a matrix M, whose columns are the ancestral
markers and rows are defined in terms of adjacencies and common
intervals. Then for each pair of ohnologous segments A and B, we
computed common intervals (Chauve and Tannier, 2008) on the set
of ancestral markers which have descendants in both segments. For
each common interval I , a row of M is constructed as follows:

• there is a 1 in column i if the ancestral marker i is in I ,

• there is a 0 in column i if the ancestral marker i has descendants
in A and B but is not in I , and

• there is an X in column i if the ancestral marker i has no
descendant in either A, or B, or both.

This defines the monocot ternary matrix. A toy example is given
in Figure 5, based on two segmental ohnologous relations.

Common intervals are sets of ancestral genes which descendants
are seen contiguous in two branches arising from the whole genome
duplication, so they are believed to define a set of contiguous
markers in the ancestor. In the example of Figure 5, moving column
A into the first position results in a matrix where no entry 0 is
located between two entries 1, which means it satisfies the sandwich
consecutive ones property.

We applied the technique described above to define five ternary
matrices defining 5–7 proto-chromosomes of the monocotyledon
ancestral genome (Murat et al., 2010) (proto-chromosomes A4, A5,
A7, A8 and A11). See Table 1.

3.2 Proto-chromosomes of the monocot ancestor
Figures 6 and 7 give examples of the shape of the instances and of
the solutions. The shown ternary matrices represent the input used
to compute proto–chromosomes A11 and A5 (Murat et al., 2010).
Entries 1 are red, 0 are blue and X are green.All rows are represented,
even the bad ones. Red segments represent common intervals. For
A11, only 35 ancestral genes were considered, whereas 120 genes
were considered in A5.

A11 has only one bad row and as shown in the previous section the
matrix does not have the SC1P. So this solution is optimal in terms
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Fig. 5. (Top) Three segments sharing two ohnologous relations, together
with 8 ohnologous pairs of genes. (Bottom) The ternary matrix obtained by
computing all common intervals. The three first rows encode the common
intervals between the two upper segments, and the last three rows encode
the common intervals between the two right segments.

Table 1. Characteristics of the five considered instances: name, number of
rows, number of columns, ratio of 1s and Xs in the matrix

Instances

Name No. of rows No. of columns %1 %X

A4 748 139 5.79 59.02
A5 548 120 7.43 42.67
A7 144 164 2.00 55.43
A8 548 48 18.40 30.63
A11 50 35 14.06 34.55

of the number of bad rows, and in the bad row there is a solution
with only one bad zero, then optimality is guaranteed also for the
number of bad zeros. For A5, the lower bound gives at least 27 bad
rows, whereas we find a solution with 34 ones (over a total of 548
rows). Statistics for the other chromosomes2 are given in Table 2.

To assess what we gained by modeling the result of gene loss
instead of not taking it into account and consider it as a possible
source of errors in the data, we also computed the solutions by
replacing X entries by 0. We used the method of Chauve and Tannier
(2008) to solve the problem of the minimum number of rows to
discard, in order for the remaining matrix to have the C1P. In the
A11 matrix, 11 rows have to be discarded (C1P) instead of only 1
(SC1P). For A5, 351 rows are bad instead of 59. So the noise due to
some errors in the data is considerably reduced by paying attention
to gene loss.

2A4, A7, A8 as named in Murat et al. (2010), even if two of them are split into
at two segments in our reconstruction, leading to 5, 6 or 7 proto-chromosomes
according to the branch in which the two probable rearrangements occurred.

Fig. 6. A possible gene order of proto-chromosome A11 of monocots. There
is only one bad row and one bad zero.

Fig. 7. A possible gene order of proto-chromosome A5 of monocots.

Table 2. Results obtained for two objective functions: number of bad rows
and number of bad zeros

Bad rows Bad zeros

Name Mc TSP +LS LB Mc TSP +LS LB

A4 27 100 11 8 299 1045 57 –
A5 59 170 34 27 749 1859 432 –
A7 3 14 3 3 3 50 3 –
A8 99 161 93 55 514 250 133 –
A11 1 3 1 1 2 15 1 –

Column Mc describes the results of the heuristic of Section 2.2. It reaches the optimal
value for instances A7 and A11 and consistently provides solutions of quality for other
instances. TSP reduction is numerically less competitive but still gives meaningful
results. The local search often reaches the reported values even if it starts from a random
order of columns but its efficiency is enhanced with good starting solutions from the
previous two procedures. Finally, in the LB column we report the obtained lower bounds
for the number of bad rows. Bold values point at optimal solutions obtained by heuristics.
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Fig. 8. Representation of 950 good solutions for the A11 proto-chromosome.

Fig. 9. Representation of 950 good solutions for the A5 proto-chromosome.

3.3 Validation and robustness
Figures 8 and 9 represent a sample of locally optimal solutions
obtained by repeatedly applying the program with a randomization
(the local search is easily randomized for example, as well as
the order in which rows are processed in the partition refinement
heuristic). In these figures, the order of the columns we represent is
the one of a best found solution, and a gray square at coordinates
i,j represents the proportion of solutions in which column i is in
position j: the darker the square is, the larger the proportion is.

The ‘X’ shape of the figures is explained by the symmetrical
property of the problem: one order of the columns and its reverse
have the same score according to all objective functions. Few
columns have a compulsory position. But the distribution of the
positions of most columns is far from uniform: there is a clear
tendency to stay close to the position in the chosen best solution.
In Figure 9, we can see an inversion for which it is impossible
to decide whether the ancestral state carries it or not (the small
‘X’ shapes surrounded by a black ellipse). This is not surprising
from the examination of Figure 4, where we can see that Rice
chromosome 1 and Sorghum chromosome 3 carry one order on
this part, while Rice 5 and Sorghum 9 exhibit the reverse order.

So there has been an inversion along one evolutionary branch (the
one leading to Rice1/Sorghum3, the other to Rice5/Sorghum9) after
the duplication, but there is no way to decide on which one, so we
cannot know the ancestral configuration.

4 RECONSTRUCTING THE MAMMALIAN
ANCESTOR

The SC1P of ternary matrices generalizes the C1P for binary
matrices. So the framework we present is not only a way to
reconstruct ancestral genomes with massive gene losses as the
monocot one, but also all problems solved by C1P techniques can
be a fortiori solved in this case, with possibly more accuracy in the
presence of unequal gene/marker content in extant species. Indeed,
as discussed in Pham and Pevzner (2010) for example, when large
datasets of extant genomes are considered, the number of universal
markers naturally decreases, due, for example, to lineage–specific
rearrangements that split the occurrence of a marker into several
smaller genome segment. As a consequence usual methods to infer
synteny blocks, either from genes or DNA alignments, are not
adapted anymore.

Here we show that the SC1P can be used to handle such problems,
and we illustrate this feature by reconstructing the boreoeutherian
ancestor, which has been the subject of a large literature (including
Chauve and Tannier, 2008; Ma et al., 2006; Muffato et al., 2010)
and whose general architecture is mostly agreed upon by both
computational and cytogenetics studies.

4.1 Ancestral markers
We used the Pecan alignments from Ensembl Compara (version 58,
Paten et al., 2008), which is a set of non-universal homologous
markers within 15 amniote genomes, including 12 placental
mammals (Homo sapiens, Pan troglodytes, Gorilla gorilla, Pongo
pygmaeus, Callithrix jacchus, Macaca mulatta, Mus musculus,
Rattus norvegicus, Equus caballus, Canis familiaris, Bos taurus,
Sus scrofa, Monodelphis domestica, Gallus gallus and Taeniopygia
guttata). Alignments that were colinear in all genomes in which
they are present were first grouped, and then alignments of length
<100 kb in at least one species were discarded.

Then an ancestral marker is defined by each alignment which has
at least an occurence in two extant species whose evolutionary path
goes through the boreoeutherian node. This gives 1724 ancestral
markers covering 35% of the human genome, whereas there was
990 universal markers (i.e. present in all 15 species) covering 24%
of the human genome. So allowing non-universal markers results
in a significant improvement of the coverage of extant genomes by
ancestral markers.

4.2 Reconstructing proto-chromosomes
A ternary matrix for the boreoeutherian ancestral genome was
constructed by performing pairwise comparisons of extant genomes.
For each pair of species whose evolutionary path goes though the
boreoeutherian ancestor, we computed conserved adjacencies and
maximal common intervals on the set of ancestral markers which
have a descendant in both genomes. The ternary matrix was then
constructed in the same way than for the monocot ancestor, with
entries X used to represent markers that were missing (lost) in at
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Table 3. Boreoeutherian proto-chromosomal segments, compared to human
genome

With bad rows Without bad rows

Id Length Assoc. Id Length Assoc.

1 111780676 1 19 16 1 111780676 1 19 16
2 95479039 6 2 95479039 6
3 77595574 3 21 3 77595574 3 21
4 74910913 4 8 4 74910913 4 8
5 64738531 15 14 5 64738531 15 14
6 63586057 5 6 63586057 5
7 56922221 7 7 56922221 7
8 55923673 12 22 10 8a 11341365 12 22

8b 44582308 10
9 55529695 8 9 55529695 8
10 55036330 2 10 55036330 2
11 45149221 12 22 11 45149221 12 22
12 44208695 9 12 44208695 9
13 40880160 X 13 40880160 X
14 40509571 19 11 14a 38723712 11

14b 1785859 19
15 37823275 13 15 37823275 13
16 35906505 2 16 35906505 2
17 32491882 18 17 32491882 18
18 25119674 20 18 25119674 20
19 18273205 17 19 18273205 17
20 16763121 10 20 16763121 10
21 5083976 7 21 5083976 7
22 2005762 16 22 2005762 16
23 980679 22 23 980679 22
24 771170 2 24 771170 2

Length is the cumulated length of the markers, taken on the human genome, composing
the segments. Assoc. represents the chromosomal associations, again for the human
genome, i.e. the human chromosomes containing the markers present on each proto-
chromosomal segment.

least one of the two considered genomes. This matrix contains 1724
columns and 89 023 rows.

After application of the SC1P solver, the resulting columns order
implied 316 (0.3%) bad rows and 2753 bad zeros. Keeping the
bad rows in the matrix defines 24 proto-chromosomal segments,
while discarding the 316 bad rows split some of these segments
into several sub-segments and resulted in 26 proto-chromosomal
segments. Characteristics of these proto-chromosomal segments are
given in Table 3.

It appears that the number of proto-chromosomes obtained when
keeping the bad rows is comparable to what is usually expected
for this ancestral genome (Froenicke et al., 2006). Moreover, the
chromosomal associations that are observed are globally consistent
with previous studies, but for ancestral segments 1 and 14. Segment
14 is clearly chimeric and joins two proto-chromosomes (one
corresponding to human chromosome 11 and one corresponding
to segments of human chromosome 19). It is interesting to see it
is split into two segments when discarding the bad rows. Similar
observation does not hold for segment 1, also probably chimeric.
Understanding the signal that results in these CAR will be key to
refine the SC1P approach. Finally, we can see that segment 8 seems
to capture an association between human chromosomes 12, 22 and
10 (although lost when discarding bad rows) that has been described

in cytogenetics studies (Froenicke et al., 2006) but never recovered
in computational studies based on sequenced genomes until now.

In conclusion, we recover an ancestral genome which fully
meets the standards of usual reconstructions, with some additional
interesting features and a higher coverage than if only universal
markers were used.

5 CONCLUSION
We introduce a general framework for ancestral genome
reconstruction by genome mapping, which contains the principles of
most former methods and adds the possibility to handle heterogenous
genome content and, in particular, gene losses. We apply it to the
reconstruction of the pre-duplication monocot ancestor, which is
inaccessible to other methods requiring universal genes or conserved
adjacencies. We also show that it can be applied to other taxonomic
groups as illustrated with the boreoeutherian ancestor, by providing
a solution with a higher coverage than if markers were restricted to
universal markers.

The solution we describe is based on a classical combinatorial
problem, the sandwich consecutive ones matrix. We propose a
software based on several algorithmic techniques to solve related
optimization problems. We also assess the quality of our solutions
by computing a lower bound of the optimal solution, and by
representing a large set of locally optimum solutions.

The results we obtain suggest that the framework is well adapted
to handle a heterogeneous gene/marker content in paleogenomics
studies. This should motivate further investigations on related
methodological and algorithmic problems. In order to process large
datasets, algorithms will have to be able to handle very large
instances, with dozens of thousands of columns and possibly several
hundreds of thousand of rows. Currently, we are limited to one order
of magnitude below. Moreover, to decrease the number of entries
X in the ternary matrices, and then the number of bad rows, better
models of ancestral markers and common intervals with unequal
gene/marker content should be investigated. It is also possible to
generalise this framework by explicitly modeling gene duplications,
adding the possibility of multiplicities as in Wittler and Stoye (2010).
This addition will be the topic of a future work.
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