Asma Lahimer

Pierre Lopez
email: pierre.lopez@laas.fr

Mohamed Haouari

Improved Bounds for Hybrid Flow Shop Scheduling with Multiprocessor Tasks

Keywords: Hybrid flow-shop scheduling, Multiprocessor tasks, Discrepancy search, Dual feasible functions

In this paper, we investigate the problem of minimizing makespan in a multistage hybrid flow-shop scheduling with multiprocessor tasks. To generate high-quality approximate solutions to this challenging NP-hard problem, we propose a discrepancy search heuristic that is based on the new concept of adjacent discrepancies. Moreover, we describe a new lower bound based on the concept of dual feasible functions. The proposed lower and upper bounds are assessed through computational experiments conducted on 300 benchmark instances with up to 100 jobs and 8 stages. For these instances, we provide evidence that the proposed bounds consistently outperform the best existing ones. In particular, the proposed heuristic successfully improved the best known solution of 75 benchmark instances.

Introduction

The hybrid flow-shop scheduling with multiprocessor tasks (HFSMT) problem can be formally described as follows: A set J = {1, 2, . . . , n} of n jobs, have to be processed in a manufacturing system with m production stages (or centers). Each stage i ∈ M = {1, 2, . . . , m} consists of m i identical parallel processors. Each job j ∈ J has to be processed non-preemptively on stages 1, 2, . . . , m in that order. That is, all jobs serially traverse stages following the same production route (see Figure 1). For processing job j ∈ J in stage i ∈ M , size ij processors are simultaneously required during p ij units For example, we see in Figure 1 that Job 3 requires two machines in Stage 1. Hence, unlike classical scheduling models where it is usually assumed that a task (operation) requires for its processing only one processor at a time, we consider that J includes multiprocessor tasks, each of which may require a set of processors at a time, what is generally called "parallel processor requirement" [START_REF] Drozdowski | Scheduling parallel tasks -Algorithms and complexity[END_REF]. The objective is to minimize the makespan (C max), that is, the completion time of all jobs in the last stage. Using the classical 3-field notation in production scheduling, the problem is denoted by F Hm, P M (k) m k=1 |size ij | C max . This problem is NP-hard in the strong sense [START_REF] Hoogeven | Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard[END_REF]. Applications of this scheduling problem with multiprocessor tasks can be found in various manufacturing systems (e.g., work-force assignment [START_REF] Chen | General multiprocessor task scheduling[END_REF], transportation problems with recirculation [START_REF] Bertel | A genetic algorithm for an industrial multiprocessor flow shop scheduling problem with recirculation[END_REF]), printed circuit boards and semiconductors [START_REF] Dal Cin | On the diagnostability of self-testing multimicroprocessor systems[END_REF], as well as in some computer systems (e.g., realtime machine-vision [START_REF] Ercan | Real-time image interpretation on a multilayer architecture[END_REF]).

Clearly, the special case where exactly one machine is required for each job in each stage (i.e., size ij = 1, ∀i ∈ M , j ∈ J) reduces to the much studied hybrid flow-shop scheduling (HFS) problem. The HFS problem has been intensively investigated in the scheduling literature. For updated and comprehensive state-of-the-art reviews, we refer to [START_REF] Ribas | Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective[END_REF] and [START_REF] Ruiz | The hybrid flow shop scheduling problem[END_REF]. By contrast, and despite its practical importance, the HFSMT problem has been only investigated in a relatively few papers, where classical metaheuristic approaches have been tailored to solve this challenging scheduling problem. These contributions include: Genetic Algorithms [START_REF] Engin | An efficient genetic algorithm for hybrid flow shop scheduling with multiprocessor task problems[END_REF][START_REF] Oguz | A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks[END_REF][START_REF] Oguz | Parallel genetic algorithm for a flow shop problem with multiprocessor tasks[END_REF][START_REF] Ulusoy | Multiprocessor task scheduling in multistage hybrid flow-shops: A genetic algorithm approach[END_REF], Tabu Search [START_REF] Oguz | Hybrid flow shop scheduling problems with multiprocessor task systems[END_REF], Simulated Annealing [START_REF] Wang | A simulated annealing for hybrid flow shop scheduling with multiprocessor tasks to minimize makespan[END_REF], Ant Colony Optimization [START_REF] Ying | Multiprocessor task scheduling in multistage hybrid flow-shops: An ant colony system approach[END_REF], Particle Swarm Optimization [START_REF] Chou | Particle swarm optimization with cocktail decoding method for hybrid flow shop scheduling problems with multiprocessor tasks[END_REF][START_REF] Tseng | A particle swarm optimization algorithm for hybrid flow-shop scheduling with multiprocessor tasks[END_REF], and Memetic Algorithms [START_REF] Jouglet | Hybrid flow-shop: A memetic algorithm using constraint-based scheduling for efficient search[END_REF]. Furthermore, lower bounds have been proposed by Oguz and Ercan [START_REF] Oguz | A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks[END_REF], and more recently by Chou [START_REF] Chou | Particle swarm optimization with cocktail decoding method for hybrid flow shop scheduling problems with multiprocessor tasks[END_REF].

In this paper, we make the following contributions:

1) We propose a new discrepancy-based search method called Climbing Depth-bounded Adjacent Discrepancy Search (CDADS) to solve the HFSMT problem.

2) We propose a new lower bound that is based on the concept of dual feasible functions (DFFs).

3) We present computational results using a large set of benchmark instances that demonstrate the excellent performance of the proposed heuristic and lower bound. Indeed, we found that CDADS outperforms the best existing method yielding new improved solutions for a significant portion of the benchmark instances (25%). Furthermore, we provide empirical evidence that the newly proposed DFF-based lower bound consistently dominates state-of-the-art lower bounds.

The remainder of this paper is organized as follows. In Section 2, we introduce the principle and variants of discrepancy-based search methods. Next, we provide, in Section 3, a detailed description of the proposed approach. In Section 4, we present lower bounds from the literature, as well as a new DFF-based lower bound. In Section 5, we report the results of an extensive computational study and analyze the performance of the proposed solution approach and lower bound. Finally, Section 6 provides some concluding remarks and directions for future research.

Discrepancy Search Methods

Limited discrepancy search (LDS) was introduced in 1995 by Harvey and Ginsberg [18]. This seminal method can be considered as an alternative to branch-and-bound, backtracking, and iterative sampling. From an optimization view-point this technique is similar to variable neighborhood search. Discrepancy search has been further extended in the literature [START_REF] Fischetti | Local branching[END_REF][START_REF] Kiziltan | CP-based local branching[END_REF] to become Local Branching applied to Mixed-Integer Programs (MIPs) and Constraint Programming (CP). Parisini and Milano [START_REF] Parisini | Improving CP-based local branching via sliced neighborhood search[END_REF] recently introduced an improving CP-based local branching via sliced neighborhood search. The neighborhood in local branching is defined using the spirit of limited discrepancy search. Indeed, it starts from an initial global instantiation suggested by a given heuristic and successively explores branches with increasing discrepancies from it, in order to obtain a solution (in a satisfaction context), or a solution of better performance (in an optimization context). A discrepancy is associated with any decision point in a search tree where the choice goes against the heuristic. For convenience, in a tree-like representation the heuristic choices are associated with left branches while right branches 0th Iteration

1 0 1st Iteration 1 2 1 3 1 4
2nd Iteration

2 5 2 6 2 7
3th Iteration

3 8
Figure 2: Improved Limited Discrepancy Search are considered as discrepancies. Figure 2 illustrates the spirit of LDS. At the k th iteration, solutions having discrepancies between 0 and k are visited. The first line of numbers below each drawing illustrates the ordering in which the branches are visited while the second line shows the number of discrepancies associated with each leaf node. Since the inception of LDS, several variants have been proposed in the literature. In particular, we quote the following methods: Improved Limited Discrepancy Search (ILDS) [START_REF] Korf | Improved limited discrepancy search[END_REF], Depth-bounded Discrepancy Search [START_REF] Walsh | Depth-bounded discrepancy search[END_REF], Discrepancy-Bounded Depth First Search [START_REF] Beck | Discrepancy-bounded depth first search[END_REF] and Climbing Discrepancy Search (CDS) [START_REF] Milano | On the relation between complete and incomplete search: An informal discussion[END_REF].

For the sake of brevity, we shall restrict to a concise description of two variants DDS and CDS that will subsequently serve as a basis for the development in Section 3.1 of a new variant. Depth-Bounded Discrepancy Search (DDS) developed in [START_REF] Walsh | Depth-bounded discrepancy search[END_REF], is an improved LDS that prioritizes discrepancies at the top of the tree to correct early mistakes first. This assumption is ensured by means of an iteratively increasing bound on the tree depth. Discrepancies below this bound are prohibited. DDS starts from an initial solution. At the i th iteration, it explores those solutions on which discrepancies occur at a depth not greater than i. Climbing Discrepancy Search (CDS) is a local search method adapted to combinatorial optimization problems proposed in [START_REF] Milano | On the relation between complete and incomplete search: An informal discussion[END_REF]. CDS starts from an initial solution that would be dynamically updated. Indeed, it visits branches progressively until a better solution is reached. Then, the initial solution is updated and the exploration process is restarted.

Climbing Depth-Bounded Adjacent Discrepancy Search

Main Features

To stick to the problem under consideration, we now consider an optimization context. We propose CDADS (Climbing Depth-bounded Adjacent Discrepancy Search) method, that is a combination of a depth-bounded discrepancy search and a climbing discrepancy search. We also assume that, if several discrepancies occur in the construction of a solution, these discrepancies are necessarily adjacent in the list of successive decisions.

CDADS starts from an initial solution obtained by a given heuristic, and explores its neighborhood progressively, according to the depth-bounded discrepancy search strategy. Hence, a limit depth d is fixed. Discrepancies below this bound are prohibited. At i th iteration, we allow i discrepancies above the limit level d. Until this step, CDADS follows the same principle of Climbing Depth-bounded Discrepancy Search proposed in [START_REF] Ben Hmida | Solving two-stage hybrid flow shop using climbing depth-bounded discrepancy search[END_REF][START_REF] Ben Hmida | Climbing depth-bounded discrepancy search for solving hybrid flow shop scheduling problems[END_REF] when solving the more classical HFS problem. When considering solutions with more than one discrepancy, we require these discrepancies are achieved consecutively, that means a solution consists of discrepancies that happen one after the other (see Figure 3). This assumption of adjacency considerably limits the search space. We also consider that the initial solution is generated by a heuristic. Thus, only the immediate neighborhood of a discrepancy may receive an additional discrepancy. Even if we are aware that other strategies for limiting the search space could be considered (focusing for example on given subsets of discrepancies), we bet that only performing adjacent discrepancies is promising. We then obtain a truncated DDS based on adjacent discrepancies, DADS (Depthbounded Adjacent Discrepancy Search). This approach is illustrated by an example on a binary tree of depth 3 (see Figure 4). 1st Iteration

1 4 1 3 1 2 2nd Iteration 2 6 2 5
3th Iteration At the starting point, DADS visits the initial leaf node recommended by the heuristic. For convenience, we assume that left branches follow the heuristic. At first iteration, DADS visits leaf nodes at the depth limit with exactly one discrepancy. The first line shown under the branches reports the visit order of considered leaf node, while the second line illustrates the number of discrepancies made in each solution. The second iteration allows to exploring more leaves with two discrepancies with respect to the adjacency assumption.

In this representation, the maximum depth bound is taken to be 3. If now, we limit the depth to two levels, several branches would not be retained, namely the leaf nodes 4, 6, and 7 would not be visited by DADS. Going back to the optimization issue, CDADS merges the DADS strategy with a CDS exploration principle, that is, the initial solution used by DADS is dynamically updated when a best solution is found, and the exploration process is restarted.

Additional features

Heuristics

The efficiency of CDADS is strongly based on the quality of the initial solution. Our objective is to select a restricted number (let say 4, arbitrarily) of simple and efficient heuristics to quickly form a pool of methods giving good approximate solutions. Thus, we carried out an experimental comparison between ten priority rules presented in the literature [START_REF] Oguz | Heuristic algorithms for multiprocessor task scheduling in a two stage hybrid flow shop[END_REF][START_REF] Ying | Multiprocessor task scheduling in multistage hybrid flow-shops: An ant colony system approach[END_REF] and we retained the four most effective heuristics to HFSMT. The four selected rules are:

Shortest Processing Time (SPT), which ranks jobs according to the ascending order of their processing times;

Shortest Processor Requirement (SPR), which ranks jobs according to the ascending order of their processor requirement;

Energy rule (ER), considering first the jobs with the smallest energy (where the energy of an operation j at a stage i is evaluated by p ij × size ij ;

Normalized SPT applied at the last stage (NSPT LS). For this latest rule, Ying and Lin [START_REF] Ying | Multiprocessor task scheduling in multistage hybrid flow-shops: An ant colony system approach[END_REF] propose to schedule jobs according to their ranking index (RI j) defined by:

RI j = max{p mk }-p mj +1 max{p mk }+1 .
Table 1 displays the relative performance of these four rules. This table reports, for each rule, its performance, i.e., the ratio of best solutions obtained by the method. Hence, we see that for 27% of the instances, the best makespan was obtained by NSPT LS, and for 25% (some of them possibly identical) it was delivered by ER.

All the four selected rules will be used in a restart policy, as presented in Section 5.2.1.

Solution Encoding/Decoding

In HFSMT, permutation schedules are not dominant. Therefore different permutations of jobs may occur at different stages. An encoding of a solution to the F Hm, P M (k) m k=1 |size ij | C max problem is to consider the sequence of jobs at each stage. In this representation, a solution will have i lists, each being a permutation of (1, 2, ..., n), corresponding to the job list at different stages. However, as explained by Oguz and Ercan in [START_REF] Oguz | A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks[END_REF], one can easily notice that we can only search for different permutations of jobs at the first stage, and iteratively find the others processing orders at subsequent stages. Hence, we prefer to use only the sequence of jobs at the first stage in the encoding of a solution and then to decode each solution to a full schedule by employing a list scheduling algorithm to process the jobs at other stages. A list algorithm is a simple constructive method which follows a priority rule, for example "first come, first served", as in [START_REF] Oguz | A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks[END_REF]. A simple illustrative example for decoding a solution on different stages is given below.

Example 1: Consider 7 jobs to be scheduled in a two-stage hybrid flowshop, with five processors in each stage. The processing times p ij and the processor requirements of the jobs size ij are given in Table 2. Assume that the selected priority rule produced the permutation (4, 3, 6, 7, 1, 2, 5). The list algorithm will decode this sequence into a schedule, as depicted in Figure 5. At Stage 1, the sequence is seq1 = (4, 3, 6, 7, 1, 2, 5) and we schedule the jobs by iteratively assigning them to the processors according to this order and to their processor requirements starting at time 0. After scheduling jobs 4 and 3, the next job to be scheduled is job 6. Because of the capacity constraint, job 6 cannot be scheduled earlier than time 1. At time 2, even though job 1 is available and there are enough processors, we can not schedule it because this will violate the precedence relation between 7 and 1 coming from the order in seq1. As a result, both jobs 1 and 7 start at the same time. Similarly, after scheduling job 2 at time 5, since there are processors available for it, we schedule job 5 at time 9 as well. In the next step, we obtain the new sequence seq2 to be followed on jobs scheduling at Stage 2. Permutation seq2 is constructed by listing jobs in a non-decreasing order of their completion time at the previous stage. It yields: seq2 = (4, 3, 6, 1, 7, 2, 5). This illustrates that we do not limit to permutation schedules only (seq2 is different from seq1). We schedule jobs at Stage 2 according to seq2 and by considering the completion time of jobs at Stage 1; that is, a job cannot start at Stage 2 before its completion time at Stage 1.

Figure 5: Gantt chart of the solution corresponding to Example 1 (solution decoded at first stage using a list scheduling algorithm; at second stage using a parallel schedule generation scheme) A simple way to produce the schedule at Stage 2 is to implement a socalled parallel schedule generation scheme [START_REF] Brooks | An algorithm for finding optimal or near optimal solutions to the production scheduling problem[END_REF]. This scheme generates a nondelay schedule by considering one by one the jobs that can be processed at each time, without violating neither precedence constraints nor resource constraints. It is well known that non-delay schedules may eliminate all optima. However, since CDADS does not enumerate all possible solutions, we gave priority to the implementation of a parallel schedule generation scheme (against a serial one) for its operational efficiency [START_REF] Sprecher | Semi-active, active, and nondelay schedules for the ressource-constrained project scheduling problem[END_REF].

In our example, a parallel schedule generation scheme works as follows: After scheduling jobs 4 and 3 satisfying their processor requirements at Stage 2, the next job to be scheduled is job 6 and since the number of available processors is enough for job 1, we schedule it at time 4 (end of job 1 at Stage 1). Similarly, we schedule the next job in list seq2, which is job 7, starting at time 6. We finally schedule job 2 and job 5, starting at times 9 and 10, respectively.

Note that a very recent dedicated study was devoted to a comparative evaluation of various decoding methods for HSFMT [START_REF] Wang | A novel decoding method for the hybrid flow-shop scheduling problem with multiprocessor tasks[END_REF]. In particular, the authors proposed a novel method called forward scheduling.

Lower bounds

The objective of computing lower bounds is twofold. First, some instances are not solved to optimality; the performance of the proposed method is then assessed by measuring the distance between the obtained solution value and the value of the lower bound. Second, lower bounds serve in the solving procedure as a cutting technique allowing us to accelerate the convergence.

Lower bounds from the literature

We define for each job j ∈ J, and each stage i ∈ M a head r ij and a tail q ij , that are computed by setting:

r ij = i-1 k=1 p kj if i > 1 r ij = 0 if i = 1
, and

q ij = m k=i+1 p ij if i < m q ij = 0 if i = m ,
respectively. Also, we set:

A i = {j ∈ J : size ij > m i 2 } B i = {j ∈ J : size ij = m i 2 }
, for i ∈ M.

Oguz et al. [START_REF] Oguz | Hybrid flow shop scheduling problems with multiprocessor task systems[END_REF] proposed the following simple stage-based lower bound:

LB S 1 = max i∈M min j∈J r ij + α i + min j∈J q ij (1)
where

α i = 1 m i j∈J size ij p ij , for i ∈ M.
A trivial job-based lower bound is given by:

LB J = max j∈J m i=1 p ik .
Later, Oguz and Ercan [START_REF] Oguz | A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks[END_REF] introduced the following better stage-based lower bound:

LB S 2 = max i∈M min j∈J r ij + max {α i , β i } + min j∈J q ij (2)
where

β i = j∈A i p ij + 1 2 j∈B i p ij , for i ∈ M.
The validity of LB S 1 and LB S 2 stems from the fact that α i and β i are valid lower bounds on the time span that is required for processing all the jobs in stage i.

Actually, it is possible to improve LB S 2 by noting that γ i = max i∈J p ij is also a valid lower bound on the time span that is required for processing all the jobs in stage i [START_REF] Lahimer | Climbing depth-bounded adjacent discrepancy search for solving hybrid flow shop scheduling problems with multiprocessor tasks[END_REF]. Finally, a valid lower bound, that dominates all the other stage-based ones, is given by:

LB S 3 = max i∈M min j∈J r ij + max {α i , β i , γ i } + min j∈J q ij (3)
Remark: All the bounds LB J , LB S 1 , LB S 2 , and LB S 3 can be computed in O(n)-time.

Finally, combining job-based and stage-based lower bounds, it yields the lower bound LB Lit :

LB Lit = max LB J , LB S

A new lower bound based on Dual Feasible Functions

Firstly, we recall that a function f is said to be discrete dual feasible if for any discrete finite set S of nonnegative integers, we have:

x∈S x ≤ B ⇒ x∈S f (x) ≤ f (B),
where B is a nonnegative integer. The concept of Dual Feasible Functions (DFFs) has been introduced by Lueker [START_REF] Lueker | Bin packing with items uniformly distributed over intervals[END_REF] in the context of bin-packing. During the last decade, DFFs have been successfully used for deriving tight lower bounds for one-dimensional [START_REF] Fekete | New classes of lower bounds for bin packing problems[END_REF][START_REF] Haouari | Fast lifting procedures for the bin packing problem[END_REF] as well as two-dimensional [START_REF] Carlier | New reduction procedures and lower bounds for the two-dimensional bin packing problem with fixed orientation[END_REF] bin packing problems. We refer to [START_REF] Clautiaux | A survey of dualfeasible functions and superadditive functions[END_REF] for an in-depth survey of DFFs.

In this section, we show how to use DFFs to derive enhanced lower bounds for HFSMT. To that aim, let I be an instance of the HFSMT problem with a corresponding optimal makespan C max (I). Given m DFFs f 1 , f 2 ,, f m , we associate to I a transformed instance Ĩ (with a corresponding optimal makespan C max (Ĩ)) that is obtained by substituting parameters size ij by f i (size ij) (for i ∈ M , j ∈ J), and m i by f i (m i) (for i ∈ M). Proof: It suffices to observe that if we consider any feasible schedule of instance I then we can derive a similar feasible schedule for instance Ĩ (with the same makespan). This result follows from the fact the f i (.)'s are DFFs and therefore the capacity constraints remain enforced after applying the transformation.

2

An immediate consequence of this proposition is the following result.

Corollary 1: If L(Ĩ) is a valid lower bound on C max (Ĩ), then it is a valid lower bound on C max (I).

We performed preliminary computational experiments and found evidence that a good performance is obtained through the combination of the two following DFFs. The first one, f s 1 (1 ≤ s ≤ m i /2), was proposed in [START_REF] Carlier | New reduction procedures and lower bounds for the two-dimensional bin packing problem with fixed orientation[END_REF]. It is defined as follows:

f s 1 : [0, m i] → [0, M (m i , J i)] x →      M (m i , J i) -M (m i -x, J i) if m i > B/2 x if s ≤ x ≤ m i /2 0 otherwise
where M (κ, J i) is the solution of the knapsack problem defined by items of the set

J i = {j ∈ [1, n] : s ≤ size ij ≤ κ/2} (s = 1, . . . , κ/2
), capacity κ, and where the objective is to maximize the number of selected items.

The second DFF that we used

f 2 (∈ [0, 1 2
]) has been proposed in Fekete and Schepers (1998) and is defined as follows:

f 2 : [0, m i] -→ [0, 1] x -→    1 for x m i > 1 - x for ≤ x m i ≤ 1 - 0 for x m i < (4)
In so doing, and by varying parameters s (s ∈ [1, m i 2]) and (∈ [0, 1 2],) we generate a set Σ of DFFs. In our implementation, for each instance I, we derive a set of 50 transformed instances that are obtained by selecting for each stage i a DFF f i that is randomly drawn from Σ. For each transformed instance, we compute LB S 3 . Eventually, we keep as a final lower bound, the bound value that is computed over the 50 transformed instances. In the sequel, we shall refer to this DFF-based lower bound by LB S DF F . Finally, our lower bound is calculated as:

LB DF F = max LB J , LB S DF F

Computational Study

Test Beds

To assess the performance of CDADS as well as the new proposed lower bound, we consider a set of 300 benchmark instances that is available on Ceyda Oguz's home page (http://home.ku.edu.tr/coguz/public_html/). This benchmark is widely used in the literature [START_REF] Jouglet | Hybrid flow-shop: A memetic algorithm using constraint-based scheduling for efficient search[END_REF][START_REF] Oguz | Hybrid flow shop scheduling problems with multiprocessor task systems[END_REF][START_REF] Ulusoy | Multiprocessor task scheduling in multistage hybrid flow-shops: A genetic algorithm approach[END_REF]. The number of jobs n is taken equal to 5, 10, 20, 50, 100 and the number of stages m is taken from the set {2, 5, 8}. The set of instances includes two types of problems. Each type being characterized by a specific machine distribution pattern. More specifically, for the instances of Type-1, the number of processors m i available at each stage i is randomly drawn from the set {1, ..., 5}, while for the instances of Type-2, m i is set to exactly 5 processors for every stage i. For each combination of n and m, and for each type, 10 instances are randomly generated. The processing time of each job j in stage i (p ij) and its processor requirement (size ij) are integers and are randomly drawn from {1, ..., 100} and {1, ..., m i }, respectively.

All the procedures were coded in C++ and run on an Intel Core 2 Duo 2 GHz PC. The time limit for CDADS was set equal to 60 seconds.

CDADS Evaluation

Restart Policy

A restart strategy has been implemented to take advantage of the fact that four priority rules are used to generate the initial solutions (see Section 3.2.1). For initialization, we use the most effective rule, viz. NSPT LS. However, if no improvement is obtained during the CDADS search, we restart the process with a new solution that is obtained by using ER, and so on (see Table 1). The restart strategy is restricted by the size of the heuristics pool: restarts are then achieved at most four times, since we have selected four rules. The strategy parametrization follows the one given by Walsh in [START_REF] Walsh | Depth-bounded discrepancy search[END_REF]: At the k th restart (starting from k = 0), the number of maximum nodes that can be visited is set to nbrN odes × f k , where f is empirically set to 1.3 and nbrN odes = 100 × n. Hence, the search space is expanded at each restart.

Results

We tested two strategies for applying discrepancy: Top First and Bottom First. In the Top First exploration, discrepancies at the top of the tree are favored while the Bottom First strategy favors discrepancies at the bottom. Computational study shows that CDADS is more effective with a Top First strategy (thus, contradicting -for the problem at hand -the statement of relative indifference of discrepancy claimed in [START_REF] Prosser | LDS: Testing the hypothesis[END_REF]). Thus, the results shown below refer to this latter strategy. Table 3 gives for each configuration ({m stages, n jobs}) and each type (Type-1 or Type-2)), the average percentage deviation (%dev) and the average CPU time. The average percentage deviation is measured in two ways:

1. For small problems, solutions are compared with the optimal solutions (C * max denotes the optimum makespan):

%dev = 100 × C max -C * max C * max 2.
For larger problems, solutions found by the CDADS are compared with the best computed lower bound (LB):

%dev = 100 × C max -LB LB
Since the F Hm, (P M (k)) m k=1 |size ij | C max problem and the inverse problem (that is, the problem obtained by starting the processing route from the last stage and finishing it at the first stage) have the same optimal makespan [START_REF] Ying | Multiprocessor task scheduling in multistage hybrid flow-shops: An ant colony system approach[END_REF], then we consider a two-directional planning (forward schedule and backward schedule). We observe from Table 3 that the average percentage deviation is smaller for Type-1 instances (1.22 % for Type-1 problems vs 3.28 % for Type-2 problems). Interestingly, we see that for a given n, the average percentage deviation increases as m increases. By contrast, for a given number of stages m, increasing n has no significant effect on the average percentage deviation. Regarding CDADS efficiency, it can be observed that this procedures converges quickly. Indeed, the average CPU time varies from less than 0.1 seconds to a maximum of 47.3 seconds for the large 100-job and 8-stage instances.

Comparison of CDADS with State-of-the-Art Heuristics

We compared the performance of CDADS with the following approaches: genetic algorithm (GA) of [START_REF] Jouglet | Hybrid flow-shop: A memetic algorithm using constraint-based scheduling for efficient search[END_REF]; constraint programming algorithm (CP) and memetic algorithm (MA) of [START_REF] Jouglet | Hybrid flow-shop: A memetic algorithm using constraint-based scheduling for efficient search[END_REF] (note that the results presented in [START_REF] Kahraman | Multiprocessor task scheduling in multistage hybrid flow-shops: A parallel greedy algorithm approach[END_REF] are not mentioned since they are less good than those presented in [START_REF] Jouglet | Hybrid flow-shop: A memetic algorithm using constraint-based scheduling for efficient search[END_REF]). These three approaches are the most effective published so far. The results are displayed in Table 4. In this table, each entry (except for the last row) represents an average percentage deviation. Furthermore, the average CPU times are displayed in the last row of the table. The best values (%dev and CPU) are presented in bold.

We computed the average percentage deviations with respect to the best derived lower bounds. In this regard, it is worth mentioning that we found evidence that the results published by Ercan et al. [START_REF] Oguz | A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks[END_REF] include several inconsistencies due to miscalculations. From Table 4, we can make the following observations:

• CDADS consistently outperforms all the other approaches. Indeed, for all problem sizes (except, for the tiny 5-job instances) CDADS exhibits the smallest deviations on both problems types.

• MA and GA are the second best approaches for Type-1 and Type-2 instances, respectively.

• CDADS is the fastest approach. This observation is confirmed by considering Dongarra's normalized coefficients [START_REF] Dongarra | Performance of various computers using standard linear equations software[END_REF] that reveal that our machine is approximately only 3.5 times faster than the machine used by Jouglet et al.. Note that the values of CPU time in Table 4 integrate this normalization. Therefore, the methods proposed in [START_REF] Jouglet | Hybrid flow-shop: A memetic algorithm using constraint-based scheduling for efficient search[END_REF] are much slower than our proposal.

To further assess the effectiveness of CDADS, we provide in Table 5 the number of improved best known solutions. It can be seen from this table, that CDADS remarkably delivered 75 new best known solutions among the 300 test problems. 7 demonstrates the good performance of the proposed lower bound. The Global %gap on Type-1 problems, that is the average of all %gaps, is 2.1 for LB DF F while it reaches 4.1 for LB Lit . Indeed, despite its simplicity, LB DF F outperforms LB Lit while being fast (actually the required CPU time is about 1 ms for large instances). Furthermore, we see that instances of Type-2 often exhibit larger deviations which is a clear indication that these instances are harder to solve. Also, we observe that for both problem sizes, the deviations are generally increasing with the number of stages and decreasing with the number of jobs.

Pushing our analysis a step further, we performed a pairwise comparison of LB DF F and LB Lit . The results are displayed in Table 8. In this table, the column Equal reports the number of instances for which LB DF F is able to give the same performance as LB Lit . Equal is being to take a value in the set {0, ..., 10} since for each configuration ({m stages, n jobs}) and in each type of problems (Type-1 or Type-2), we are testing 10 instances. Thus, e.g., Equal = 7 means that among the 10 used instances, LB DF F is performing with the same performance as LB Lit over 7 instances. Under the LB DF F column, we show the number of instances on which LB DF F outperforms LB Lit . Conversely, LB Lit column reports the number of times LB Lit surpasses LB DF F . We see from the results of the table that LB DF F strictly outperforms LB Lit on 12 instances (out of 150) of Type-1, and 93 instances (out of 150) of Type-2. On the other hand, LB Lit never improves the results. Therefore our proposition LB DF F dominates LB Lit . These results provide further evidence of the good performance of the DFF-based lower bound.

Finally, we report in Table 9 the results of an experiment that aims at assessing the overall contribution of this paper. In this table, each entry in the column entitled "New proposed bounds" represents the average percentage deviation 100 × U Bnew-LBnew LBnew where U B new represents the value of the CDADS approach and LB new = LB DF F . On the other hand, each entry in the column entitled "Bounds from the literature" represents the average percentage deviation 100 × U B Lit -LB Lit LB Lit where U B Lit represents the value of the best so far published solution. The results displayed in Table 9 provide strong evidence that the proposed lower and upper bounding procedures are very effective for both problem types, and outperform state-of-the-art bounding procedures.

Conclusion

In this paper, we investigated the hybrid flow-shop scheduling problem with multiprocessor tasks. We proposed a new discrepancy search method (CDADS) involving the concept of adjacent discrepancies. Also, we proposed a lower bound based on the concept of dual feasible functions. Our computational experiments provide strong empirical evidence that CDADS consistently outperforms the best heuristic approaches from the literature. In particular, CDADS successfully improved the best known solution of 75 benchmark instances. Furthermore, our computational study demonstrates that the dual feasible-based lower bound is often tighter that the best lower bound from the literature.

As a topic for future research, we recommend the derivation of a (first) exact procedure for solving the F Hm, (P M (k)) m k=1 |size ij | C max . We expect that the new derived upper and lower bounds would prove useful to achieve this challenging goal but this would require further investigation. Furthermore, it would be worth including specific resource constraint propagation techniques, especially energetic reasoning, which has already proved its performance on parallel machine systems [START_REF] Tercinet | Energetic reasoning and binpacking problem, for bounding a parallel machine scheduling problem[END_REF].

12 streamsFigure 1 :

 121 Figure 1: A hybrid flow-shop with multiprocessor tasks

Figure 3 :

 3 Figure 3: Adjacency Property (Left: 2 non-adjacent discrepancies; Right: 2 adjacent discrepancies)

3 7 Figure 4 :

 374 Figure 4: Depth-bounded Adjacent Discrepancy Search

Proposition 1 :

 1 We have C max (Ĩ) ≤ C max (I).

Table 1 :

 1 Heuristic selection

	Priority rule Performance (%)
	NSPT LS	27
	ER	25
	SPT	17
	SPR	14

Table 2 :

 2 Data for Example 1

	j	1	2	3	4	5	6	7
	p 1j	1	4	2	1	1	2	2
	size 1j	1	4	3	1	2	2	4
	p 2j	2	2	1	2	2	2	3
	size 2j	2	2	3	2	1	3	4

Table 3 :

 3 Performance of CDADS

			Type-1 Problems	Type-2 Problems
	n	m	%dev CPU(s)	%dev CPU(s)
	5	2	0.00	< 0.1	0.00	< 0.1
		5	0.21	< 0.1	0.46	< 0.1
		8	1.31	< 0.1	0.50	< 0.1
	10	2	0.00	< 0.1	0.84	< 0.1
		5	0.66	0.4	3.97	< 0.1
		8	5.51	< 0.1	7.32	0.2
	20	2	0.41	0.1	0.30	3.1
		5	1.01	1.1	5.90	1.3
		8	3.67	0.2	10.37	1.3
	50	2	0.20	2.3	0.26	4.2
		5	0.47	5.0	3.92	13.5
		8	1.47	6.8	4.99	33.4
	100	2	0.07	11.1	2.67	22.8
		5	1.46	13.6	1.86	40.9
		8	1.85	11.0	5.85	47.3
	Global average 1.22	3.44	3.28	10.53

Table 4 :

 4 Comparing average percentage deviation (and CPU time)

				Type-1 Problems			Type-2 Problems	
	n	m	CDADS	GA	CP	MA	CDADS	GA	CP	MA
	5	2	0.00	0.29	0.00	0.00	0.00	1.23	0.00	0.00
		5	0.21	1.35	0.00	0.00	0.46	1.44	0.00	0.00
		8	1.31	4.15	0.00	0.00	0.50	2.38	0.00	0.00
	10	2	0.00	0.00	0.00	0.00	0.84	2.83	1.72	1.75
		5	0.66	1.64	0.00	0.00	3.97	7.80	6.10	5.67
		8	5.51	9.38	10.32	8.02	7.32	10.87	8.37	8.80
	20	2	0.41	0.44	2.59	0.66	0.30	3.70	6.72	3.43
		5	1.01	3.49	10.85	2.78	5.90	9.57	22.86	9.57
		8	3.67	5.69	17.98	5.32	10.37	17.26	28.52	16.02
	50	2	0.20	0.63	2.79	0.49	0.62	2.76	6.54	2.21
		5	0.47	0.59	5.30	0.51	3.92	10.95	20.01	10.32
		8	1.47	2.17	14.42	1.71	4.99	15.89	30.06	17.25
	100	2	0.07	0.15	1.96	0.07	2.67	3.05	5.68	2.70
		5	1.46	2.50	5.19	2.33	1.86	14.95	19.13	14.37
		8	1.85	1.99	9.47	2.15	5.85	20.06	23.15	17.83
	Global average	1.22	2.27	5.39	1.60	3.28	7.28	11.92	8.32
	Mean CPU(s)	3.44	879.93 320.3 326.01	10.53	879.08 423.09 511.27

Table 5 :

 5 Number of improved solutions Additional comparison with Particle Swarm OptimizationOur proposed method CDADS is now compared with a very recent work of Chou on a particle swarm optimization (PSO) algorithm to solve HFSMT[START_REF] Chou | Particle swarm optimization with cocktail decoding method for hybrid flow shop scheduling problems with multiprocessor tasks[END_REF]. This comparison is presented apart from the previous one (CDADS vs. GA, CP, and MA) since Chou conducted comparative experiments on Oguz & Ercan 's instances only from n = 20 to n = 100. The results are displayed in Table6.

	n	5 10 20 50 100 T otal
	Type-1 Problems 0 1 5 8	8	22
	Type-2 Problems 0 0 10 20 23	53
	5.2.4		

Table 6 :

 6 Comparing average percentage deviation (and CPU time)

			Type-1 Problems	Type-2 Problems
	n	m	CDADS	PSO	CDADS	PSO
	20	2	0.41	0.25	0.30	3.23
		5	1.01	2.16	5.90	6.64
		8	3.67	4.24	10.37	11.92
	50	2	0.20	0.07	0.62	1.77
		5	0.47	0.34	3.92	4.17
		8	1.47	0.61	4.99	8.10
	100 2	0.07	0.01	2.67	0.44
		5	1.46	0.08	1.86	3.61
		8	1.85	0.43	5.85	6.95
	Average	1.18	0.91	4.05	5.20

Table 7 :

 7 Lower bound performance

			Type-1 Problems	Type-2 Problems
	n	m	%gap LB DF F %gap LB Lit	%gap LB DF F %gap LB Lit
	5	2	3.31	6.35	3.66	18.25
		5	5.55	13.63	3.68	18.56
		8	3.80	11.18	2.30	10.23
	10	2	0.31	0.56	2.62	5.92
		5	3.18	5.44	7.98	10.06
		8	6.80	12.26	9.3	14.41
	20	2	0.29	0.37	0.23	2.96
		5	0.94	2.39	5.41	7.13
		8	3.22	4.03	8.58	12.19
	50	2	0.16	0.44	0.23	1.92
		5	0.33	0.61	3.58	7.88
		8	1.12	1.26	4.70	10.73
	100	2	0.06	0.06	1.70	2.40
		5	1.35	1.38	1.77	9.65
		8	1.20	1.27	5.49	12.38
	Global %gap	2.10	4.10	4.08	9.64
	Table				

Table 8 :

 8 LB comparison

	Type-1 Problems	Type-2 Problems
	Best bound		Best bound	
	n m Equal LB DF F	LB Lit	Equal LB DF F	LB Lit

Table 9 :

 9 Comparison of average deviations

		New proposed bounds Bounds from the literature
	Type-1 Problems	1.22	1.60
	Type-2 Problems	3.28	8.32

The results show that PSO is slightly better than CDADS on Type-1 problems (improvement of a factor 1.3). By contrast, for Type-2 problems, the average percentage deviation from the best-known solution is of 4.05% for CDADS vs. 5.20% for PSO.

Note that even though the CPU times of both approaches cannot be accurately compared, we can reasonably argue that both approaches exhibit quite similar efficiency.

Lower Bound Evaluation

We tested the effectiveness of the proposed bound LB S DF F on the same set of benchmark instances.

In Table 7, we report the results of the percentage deviations that are exhibited by LB Lit and LB DF F (both defined in Section 4). Note that the percentage deviation of a lower bound LB is given by 100

, where U B is the value of the best-known upper bound. Thus, the column %gap LB DF F reports the percentage deviation we obtained for each configuration when LB DF F is used as lower bound. Similarly, the column %gap LB Lit shows the percentage deviation when LB Lit is the considered lower bound.