
HAL Id: hal-00680452
https://hal.science/hal-00680452v1

Preprint submitted on 19 Mar 2012 (v1), last revised 3 Sep 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improved Bounds for Hybrid Flow Shop Scheduling with
Multiprocessor Tasks

Asma Lahimer, Pierre Lopez, Mohamed Haouari

To cite this version:
Asma Lahimer, Pierre Lopez, Mohamed Haouari. Improved Bounds for Hybrid Flow Shop Scheduling
with Multiprocessor Tasks. 2012. �hal-00680452v1�

https://hal.science/hal-00680452v1
https://hal.archives-ouvertes.fr

Improved Bounds for the Hybrid Flow Shop

Problem with Multiprocessor Tasks

Asma LAHIMER,1 Pierre LOPEZ2,3,∗ and Mohamed
HAOUARI4,5

1Department of Mathematics and Computer Science, INSAT, University of
Carthage, Tunisia

2CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
3Univ de Toulouse, LAAS, F-31400 Toulouse, France

4Department of Industrial Engineering, Ecole Nationale d’Ingénieurs de
Tunis, University of Tunis El Manar, Tunisia

5Department of Industrial Engineering, Ozyegin University, Istanbul,
Turkey

Abstract. We investigate the problem of minimizing makespan in a multi-
stage hybrid flow shop with multiprocessor tasks. To generate high-quality
approximate solutions to this challenging NP-hard problem, we propose a
new discrepancy search method that is based on adjacent discrepancies. Fur-
thermore, we describe a new lower bound that is based on the concept of
dual feasible functions. The proposed lower and upper bounds are assessed
through computational experiments on 300 benchmark instances with up
to 100 jobs and 8 stages. For these instances, the proposed lower and up-
per bounds consistently outperform the best existing ones. In particular,
the proposed heuristic successfully improved the best known solution of 75
benchmark instances.

Key words: Hybrid flow shop scheduling, Multiprocessor tasks, Discrep-
ancy search, Dual feasible functions.

1. Introduction

The Hybrid Flow Shop scheduling problem with multiprocessor tasks can
be formally described as follows: A set J = {1, 2, . . . , n} of n jobs, have
to be processed in a manufacturing system with m production stages (or,
centers). Each stage i ∈ M = {1, 2, . . . ,m} consists of mi identical parallel
processors. Each job j ∈ J has to be processed non-preemptively on stages
1, 2, . . . ,m in that order. That is, all jobs serially traverse stages follow-
ing the same production route (see Figure 1). For processing job j ∈ J in

∗email: pierre.lopez@laas.fr

1

Jobs

1

2

3

Stage 1 Stage 2 Stage m

M33

M32

M31M21M11

M12

streams

Figure 1: A hybrid flow shop with multiprocessor tasks

stage i ∈ M , sizeij processors are simultaneously required during pij units
of time. For example, we see in Figure 1 that Job 3 requires two machines
in Stage 1. Hence, unlike classical scheduling models where it is usually as-
sumed that a task (operation) requires for its processing only one processor
at a time, we consider that J includes multiprocessor tasks, each of which
may require a set of processors at a time, what is generally called “paral-
lel processor requirement” [11]. The objective is to minimize the makespan
(Cmax), that is, the completion time of all jobs in the last stage. Using the
classical 3-field notation in production scheduling, the problem is denoted by
FHm,

((
PM (k)

)m
k=1

)
|sizeij|Cmax. Applications of this scheduling problem

with multiprocessor tasks can be found in various manufacturing systems
(e.g., work-force assignment [7], transportation problems with recirculation
[4]), printed circuit boards and semiconductors [9], as well as in some com-
puter systems (e.g., real-time machine-vision [12]).

Clearly, the special case where exactly one machine is required for each
job in each stage (i.e., sizeij = 1, ∀i ∈M , j ∈ J) reduces to the much studied
hybrid flow shop problem (HFS). This latter scheduling problem has been
intensively investigated in the scheduling literature. For updated and com-
prehensive state-of-the-art reviews, we refer to [29] and [30]. By contrast,
and despite its practical importance, the multiprocessor task HFS variant
has been only investigated in a relatively few papers, where classical meta-
heuristic approaches have been tailored to solve this challenging scheduling
problem. These contributions include: (i) Genetic Algorithms ([24], [25]),
Serifoglu and Ulusoy [31], (ii) Tabu Search [26], (iii) Ant Colony Optimiza-
tion [34], and (iv) Memetic Algorithms [17]. Furthermore, lower bounds have
been proposed by Oğuz and Ercan [24].

In this paper, we make the following contributions:

2

1) We propose a new discrepancy-based search method called Climbing
Depth-bounded Adjacent Discrepancy Search (CDADS) to solve the hybrid
flow shop problem with multiprocessor tasks.

2) We propose a new lower bound that is based on the concept of dual
feasible functions (DFFs).

3) We present computational results using a large set of benchmark in-
stances that demonstrate the excellent performance of the proposed heuristic
and lower bound. Indeed, we found that CDADS outperforms the best exist-
ing method yielding new improved solutions for a significant portion of the
benchmark instances (25%). Moreover, we found evidence that the DFF-
based lower bound consistently dominates state-of-the-art lower bounds.

The remainder of this paper is organized as follows. In Section 2, we
introduce the principle and variants of discrepancy-based search methods.
Next, we provide, in Section 3, a detailed description of the proposed ap-
proach. In Section 4, we present lower bounds from the literature as well
as a new DFF-based lower bound. In Section 5, we report the results of
an extensive computational study and analyze the performance of the pro-
posed solution approach and lower bound. Finally, Section 6 provides some
concluding remarks and directions for future research.

2. Discrepancy Search Methods

Limited discrepancy search (LDS) was introduced in 1995 by Harvey and
Ginsberg [16]. This seminal method can be considered as an alternative to
branch-and-bound, backtracking, and iterative sampling. From an optimiza-
tion view-point this technique is similar to variable neighborhood search.
Discrepancy search has been further extended in the literature ([14], [20])
to become Local Branching applied to Mixed-Integer Programs (MIPs) and
Constraint Programming (CP). Parisini and Milano [27] recently introduced
an improving CP-based local branching via sliced neighborhood search. The
neighborhood in local branching is defined using the spirit of limited discrep-
ancy search. Indeed, it starts from an initial global instantiation suggested
by a given heuristic and successively explores branches with increasing dis-
crepancies from it, in order to obtain a solution (in a satisfaction context),
or a solution of better performance (in an optimization context). A discrep-
ancy is associated with any decision point in a search tree where the choice
goes against the heuristic. For convenience, in a tree-like representation the
heuristic choices are associated with left branches while right branches are
considered as discrepancies. Figure 2 illustrates the spirit of LDS. At the kth

iteration, solutions having discrepancies between 0 and k are visited. The

3

0th Iteration

1
0

1st Iteration

1
2

1
3

1
4

2nd Iteration

2
5

2
6

2
7

3th Iteration

3
8

Figure 2: Improved Limited Discrepancy Search

first line in the figure illustrates the ordering in which the branches are visited
while the second line shows the number of discrepancies associated with each
leaf node. Since the inception of LDS, several variants have been proposed
in the literature. In particular, we quote the following variants: Improved
Limited Discrepancy Search (ILDS) [21], Depth-bounded Discrepancy Search
[33], Discrepancy-Bounded Depth First Search [1] and Climbing Discrepancy
Search (CDS) [23].

For the sake of brevity, we shall restrict to a concise description of two
variants DDS and CDS that will subsequently serve as a basis for the devel-
opment in Section 3.1 of a new variant.
Depth-Bounded Discrepancy Search (DDS) developed in [33], is an im-
proved LDS that prioritizes discrepancies at the top of the tree to correct
early mistakes first. This assumption is ensured by means of an iteratively
increasing bound on the tree depth. Discrepancies below this bound are pro-
hibited. DDS starts from an initial solution. At the ith iteration, it explores
those solutions on which discrepancies occur at a depth not greater than i.
Climbing Discrepancy Search (CDS) is a local search method adapted to
combinatorial optimization problems proposed in [23]. CDS starts from an
initial solution that would be dynamically updated. Indeed, it visits branches
progressively until a better solution is reached. Then, the initial solution is
updated and the exploration process is restarted.

4

3. Climbing Depth-Bounded Adjacent Discrepancy Search

3.1 Main Features

To stick to the problem under consideration, we now consider an opti-
mization context. We propose CDADS (Climbing Depth-bounded Adjacent
Discrepancy Search) method, that is a combination of a depth-bounded dis-
crepancy search and a climbing discrepancy search. We also assume that, if
several discrepancies occur in the construction of a solution, these discrep-
ancies are necessarily adjacent in the list of successive decisions.

CDADS starts from an initial solution obtained by a given heuristic, and
explores its neighborhood progressively, according to the depth-bounded dis-
crepancy search strategy. Hence, a limit depth d is fixed. Discrepancies below
this bound are prohibited. At ith iteration, we allow i discrepancies above
the limit level d. Until this step, CDADS follows the same principle of Climb-
ing Depth-bounded Discrepancy Search proposed in [2], [3] when solving the
more classical hybrid flow shop scheduling problem. When considering so-
lutions with more than one discrepancy, we require these discrepancies are
achieved consecutively, that means a solution consists of discrepancies that
happen one after the other. This assumption of adjacency considerably limits
the search space. We also consider that the initial solution is generated by
a heuristic. Thus, only the immediate neighborhood of a discrepancy may
receive an additional discrepancy. Even if we are aware that other strategies
for limiting the search space could be envisaged (focusing for example on
given subsets of discrepancies), we bet that only performing adjacent dis-
crepancies is promising. We then obtain a truncated DDS based on adjacent
discrepancies, DADS (Depth-bounded Adjacent Discrepancy Search). This
approach is illustrated by an example on a binary tree of depth 3 (see Fig-
ure 3). At the starting point, DADS visits the initial leaf node recommended
by the heuristic. For convenience, we assume that left branches follow the
heuristic. At first iteration, DADS visits leaf nodes at the depth limit with
exactly one discrepancy. The first line shown under the branches reports the
visit order of considered leaf node, while the second line illustrates the num-
ber of discrepancies made in each solution. The second iteration allows to
exploring more leaves with two discrepancies with respect to the adjacency
assumption. In this representation, the maximum depth bound is taken to
be 3. If now, we limit the depth to two levels, several branches would not be
retained, namely the leaf nodes 4, 6, and 7 would not be visited by DADS.
Going back to the optimization issue, CDADS merges the DADS strategy
with a CDS exploration principle, that is the initial solution used by DADS
is dynamically updated when a best solution is found, and the exploration

5

process is restarted.

0th Iteration

1
0

1st Iteration

1
4

1
3

1
2

2nd Iteration

2
6

2
5

3th Iteration

3
7

Figure 3: Depth-bounded Ajacent Discrepancy Search

3.2 Additional features

3.2.1 Heuristics
CDADS is strongly based on the quality of the initial solution. Thus, we

carried out an experimental comparison between ten priority rules presented
in the literature ([25], [34]). We considered the most effective heuristics to
multiprocessor task hybrid flow shop scheduling. The four selected rules are:

Shortest Processing Time (SPT), which ranks jobs according to the as-
cending order of their processing times;

Shortest Processing Requirement (SPR), which ranks jobs according to
the ascending order of their processing requirement;

Energy rule (ER), considering first the jobs with the smallest energy (where
the energy of an operation j at a stage i is evaluated by pij × sizeij;

Normalized SPT applied at the last stage (NSPT LS). For this latest rule,
Ying and Lin [34] propose to schedule jobs according to their ranking

index (RIj) defined by: RIj =
max{pmk}−pmj+1

max{pmk}+1
.

To assess the relative performance of these rules, we performed some
preliminary experiments. The results are displayed in Table 1. This table re-
ports, for each rule, its performance, i.e., the ratio of best solutions obtained
by the method.

6

Table 1: Heuristic selection
Priority rule Performance (%)

NSPT LS 27
ER 25
SPT 17
SPR 14

3.2.2 Schedule Generation Scheme
Schedule generation schemes (SGSs) are widely used in solving preemptive

problems. We distinguish between serial SGS and parallel SGS. These two
heuristics ensure task scheduling based on a given priority rule. Hence, tasks
are selected one after the other and a start time is fixed for each one. Serial
SGSs are introduced in [19]. At each iteration, the first available task in ζ is
selected, where ζ is the priority list recommended by the priority rule. The
selected task is scheduled as soon as possible with respect to both resource
constraints and precedence constraints. Parallel SGSs developed in [5], sug-
gest a chronological procedure in scheduling tasks. At each time t, a set ζt
of tasks being scheduled is defined: this set contains unscheduled tasks that
can be processed at t without breaking neither precedence constraints nor
resource constraints. If we consider that t is the first time where ζt 6= ∅, the
first task in the priority list ζ belonging to ζt is performed at t. The same
process is applied until all tasks are scheduled. The two schemes depicted
above may appear similar. However, the schedules they generate are differ-
ent: a serial SGS provides an active schedule while a parallel SGS generates
a non-delay schedule. In the scheduling theory, Sprecher et al. [32] show
that the set of active schedules includes at least one optimal solution. On
the contrary, non-delay schedules may eliminate all optima. Concerning our
method CDADS, we do not enumerate all possible solutions, so even serial
SGSs may exclude all optimum solutions. Furthermore, in practice, parallel
SGSs are known for their operational efficiency. Hence, we opt for the im-
plementation of a parallel SGS which has been proved, moreover, to be more
efficient in our experimental studies.

3.2.3 Encoding/Decoding Solution
An encoding of a solution to the FHm,

((
PM (k)

)m
k=1

)
|sizeij|Cmax prob-

lem is to consider the sequence of jobs at each stage since different permuta-
tion of jobs may occur at different stages. In this representation, a solution
will have i lists, each being a permutation of (1, 2, ..., n), corresponding to
the job list at different stages. However, as explained by Oğuz and Ercan in
[24], one can easily notice that we can only search for different permutations

7

of jobs at the first stage, and iteratively find the others lists on the remaining
stages. Hence, we prefer to use only the sequence of jobs at the first stage in
the encoding of a solution and then to decode each solution to a full schedule
by applying a List Scheduling algorithm to process the jobs at other stages.
We detail further the principle of the list algorithm considered for solutions
decoding.

Example 1: Consider 7 jobs to be scheduled in a two-stage hybrid flow-
shop, with five processors in each stage. The processing times pij and the
processor requirements of the jobs sizeij are given in Table 2.

Table 2: Data for Example 1

j 1 2 3 4 5 6 7
p1j 1 4 2 1 1 2 2
size1j 1 4 3 1 2 2 4
p2j 2 2 1 2 2 2 3
size2j 2 2 3 2 1 3 4

Assume that the selected priority rule produced the permutation (4, 3, 6, 7, 1, 2, 5).
The list algorithm will decode this sequence into a schedule as depicted in
Figure 4. At Stage 1, the sequence is seq1 = (4, 3, 6, 7, 1, 2, 5) and we sched-
ule the jobs by iteratively assigning them to the processors according to this
order and to their processor requirements starting at time 0. After schedul-
ing jobs 4 and 3, the next job to be scheduled is job 6. Because of the
capacity constraint, job 6 cannot be scheduled earlier than time 1. At time
2, even though job 1 is available and there are enough processors, we can not
schedule it because this will violate the precedence relation between 7 and 1
coming from the order in seq1. As a result both jobs 1 and 7 start at the
same time. Similarly, after scheduling job 2 at time 5, since there are pro-
cessors available for it, we schedule job 5 at time 9 as well. In the next step,
we obtain the new sequence seq2 to be followed on jobs scheduling at Stage
2. The permutation seq2 is constructed by listing jobs in a non-decreasing
order of their completion time at the previous stage. Thus, the new list seq2
will be (4, 3, 6, 1, 7, 2, 5). This illustrates that we do not limit to permutation
schedules only (seq2 is different from seq1). We schedule jobs at Stage 2
according to seq2 and by considering the completion time of jobs at Stage 1;
that is, a job cannot start at Stage 2 before its completion time at Stage 1.

8

Implementing a parallel SGS works as follows: After scheduling jobs 4 and 3
satisfying their processor requirements at Stage 2, the next job to be sched-
uled is job 6 and since the number of available processors is enough for job 1,
we schedule it at time 4 (end of job 1 at Stage 1). Similarly, we schedule the
next job in list seq2, which is job 7, starting at time 6. We finally schedule
job 2 and job 5, starting at times 9 and 10, respectively.

Figure 4: Gantt chart of the solution corresponding to Example 1

9

4. Lower bounds

4.1 Lower bounds from the literature

We define for each job j ∈ J, and each stage i ∈ M a head rij and a tail
qij, that are computed by setting:

{
rij =

∑i−1
k=1 pkj if i > 1

rij = 0 if i = 1
, and

{
qij =

∑m
k=i+1 pij if i < m

qij = 0 if i = m
,

respectively. Also, we set:{
Ai = {j ∈ J : sizeij >

mi

2
}

Bi = {j ∈ J : sizeij = mi

2
} , for i ∈M.

Oğuz et al. [26] proposed the following simple lower bound:

LB1 = max
i∈M

{
min
j∈J

rij + αi + min
j∈J

qij

}
(1)

where

αi =

⌈
1
mi

∑
j∈J

sizeijpij

⌉
, for i ∈M.

Later, Oğuz and Ercan [24] introduced the following better lower bound:

LB2 = max
i∈M

{
min
j∈J

rij + max {αi, βi}+ min
j∈J

qij

}
(2)

where

βi =

⌈∑
j∈Ai

pij +
1

2

∑
j∈Bi

pij

⌉
, for i ∈M.

The validity of LB1 and LB2 stems from the fact that αi and βi are valid
lower bounds on the time span that is required for processing all the jobs in
stage i.

Actually, it is possible to improve LB2 by noting that γi = maxi∈J pij is
also a valid lower bound on the time span that is required for processing all
the jobs in stage i. Finally, a valid lower bound, that dominates all the other
ones, is given by:

LB′2 = max
i∈M

{
min
j∈J

rij + max {αi, βi, γi}+ min
j∈J

qij

}
(3)

Remark: All the bounds LB1, LB2, and LB′2 can be computed in O(n)-time.

10

4.2 A new lower bound based on Dual Feasible Functions

Firstly, we recall that a function f is said to be discrete dual feasible if
for any discrete finite set S of nonnegative integers, we have:∑

x∈S

x ≤ B ⇒
∑
x∈S

f(x) ≤ f(B),

where B is a nonnegative integer.
The concept of Dual Feasible Functions (DFFs) has been introduced by

Lueker [22] in the context of bin-packing. During the last decade, DFFs have
been successfully used for deriving tight lower bounds for one-dimensional bin
packing problems ([13], [15]) and two-dimensional bin packing problems as
well [6]. We refer to [8] for an in-depth survey of DFFs.

In this section, we show how to use DFFs to derive enhanced lower bounds
for the hybrid flow shop scheduling problem with multiprocessor tasks. To
that aim, let I be an instance of the Hybrid Flow Shop scheduling problem
with multiprocessor tasks with a corresponding optimal makespan Cmax(I).
Given m DFFs f1, f2,, fm, we associate to I a transformed instance Ĩ (with
a corresponding optimal makespan Cmax(Ĩ)) that is obtained by substituting
parameters sizeij by fi(sizeij) (for i ∈ M , j ∈ J), and mi by fi(mi) (for
i ∈M).

Proposition 1: We have Cmax(Ĩ) ≤ Cmax(I).

Proof: It suffices to observe that if we consider any feasible schedule of in-
stance I then we can derive a similar feasible schedule for instance Ĩ (with
the same makespan). This result follows from the fact the fi(.)’s are DFFs
and therefore the capacity constraints remain enforced after applying the
transformation. 2

An immediate consequence of this proposition is the following result.

Corollary 1: If L(Ĩ) is a valid lower bound on Cmax(Ĩ) then it is a valid
lower bound on Cmax(I).

We performed preliminary computational experiments and found evi-
dence that a good performance is obtained through the combination of the
two following DFFs. The first one, f s1 (1 ≤ s ≤ mi/2), was proposed in [6].
It is defined as follows:

11

f s1 : [0,mi]→ [0,M(mi, Ji)]

x 7→


M(mi, Ji)−M(mi − x, Ji) if mi > B/2

x if s ≤ x ≤ mi/2

0 otherwise

where M(κ, Ji) is the solution of the knapsack problem defined by items of
the set Ji = {j ∈ [1, n] : s ≤ sizeij ≤ κ/2} (s = 1, . . . , κ/2), capacity κ, and
where the objective is to maximize the number of selected items.

The second DFF that we used f ε2(ε ∈ [0,
1

2
]) has been proposed in Fekete

and Schepers (1998) and is defined as follows:

f ε2 : [0,mi] 7−→ [0, 1]

x 7−→


1 for x

mi
> 1− ε

x for ε ≤ x
mi
≤ 1− ε

0 for x
mi
< ε

(4)

In so doing, and by varying parameters s (s ∈ [1, mi

2
]) and ε (ε ∈ [0, 1

2
],)

we generate a set Σ of DFFs. In our implementation, for each instance I, we
derive a set of 50 transformed instances that are obtained by selecting for
each stage i a DFF fi that is randomly drawn from Σ. For each transformed
instance, we compute LB3. Eventually, we keep as a final lower bound, the
bound value that is computed over the 50 transformed instances. In the
sequel, we shall refer to this DFF-based lower bound by LBDFF .

5. Computational Study

5.1 Test Beds

To assess the performance of CDADS as well as the new proposed lower
bound, we consider a set of 300 benchmark instances that is available on
Ceyda Oğuz’s home page (http://home.ku.edu.tr/coguz/public_html/).
This benchmark is widely used in the literature ([17], [26], [31]). The num-
ber of, jobs n is taken equal to 5, 10, 20, 50, 100 and the number of stages
m is taken from the set {2, 5, 8}. The set of instances includes two types of
problems. Each type being characterized by a specific machine distribution
pattern. More specifically, for the instances of Type-1, the number of pro-
cessors mi available at each stage i is randomly drawn from the set {1, ..., 5},
while for the instances of Type-2, mi is set to 5 processors for every stage

12

i. For each combination of n and m, and for each type, 10 instances are
randomly generated. The processing time of each job j in stage i (pij) and
its processing requirement (sizeij) are integers and are randomly drawn from
{1, ..., 100} and {1, ...,mi}, respectively.

All the procedures were coded in C++ and run on an Intel Core 2 Duo 2
GHz PC. The time limit for CDADS was set equal to 60 seconds.

5.2 CDADS Evaluation

5.2.1 Restart Policy
A restart strategy has been implemented to take advantage of the fact that

four priority rules are used to generate the initial solutions (see Section 3.2.1).
For initialization, we use the most effective rule, viz. NSPT LS. However,
if no improvement is obtained during the CDADS search, we restart the
process with a new solution that is obtained by using the “Energy” rule and
so on. The restart strategy is restricted by the size of the heuristics pool:
restarts are then achieved at most four times, since we have selected four
rules. The strategy parametrization follows the one given by Walsh in [33]:
At the kth restart (starting from k = 0), the number of maximum nodes that
can be visited is set to nbrNodes× fk, where f is empirically set to 1.3 and
nbrNodes = 100× n. Hence, the search space is expanded at each restart.

5.2.2 Results
We tested two strategies for applying discrepancy: Top First and Bottom

First. In the Top First exploration, discrepancies at the top of the tree
are privileged while the Bottom First strategy favors discrepancies at the
bottom. Computational study shows that CDADS is more effective with
a Top First strategy (thus, contradicting – for the problem at hand – the
statement of relative indifference of discrepancy claimed in [28]). Thus, the
results shown below refer to this latter strategy. Table 3 gives for each
configuration (n: number of jobs, and m: number of stages) and each type,
the average percentage deviation (%dev) and the average CPU time. The
average percentage deviation is measured in two ways:

1. For small problems, solutions are compared with the optimal solutions
(C∗max denotes the optimum makespan):

%dev = 100× Cmax − C∗max

C∗max

2. For larger problems, solutions found by the CDADS are compared with

13

the best computed lower bound (LB):

%dev = 100× Cmax − LB
LB

Since the FHm,
(
(PM (k))mk=1

)
|sizeij|Cmax problem and the inverse

problem (that is, the problem that is obtained by starting the processing
route from the last stage and finishing it to the the first stage) have the same
optimal makespan [34], then we consider a two-directional planning (forward
schedule and backward schedule). We observe from Table 3, that the aver-
age percentage deviation is smaller for Type-1 instances (1.22 % for Type-1
problems vs 3.28 % for ‘Type-2’ problems).

Table 3: Performance of CDADS
‘Type-1’ Problems ‘Type-2’ Problems

n m %dev CPU(s) %dev CPU(s)

5 2 0.00 < 0.1 0.00 < 0.1
5 0.21 < 0.1 0.46 < 0.1
8 1.31 < 0.1 0.50 < 0.1

10 2 0.00 < 0.1 0.84 < 0.1
5 0.66 0.4 3.97 < 0.1
8 5.51 < 0.1 7.32 0.2

20 2 0.41 0.1 0.30 3.1
5 1.01 1.1 5.90 1.3
8 3.67 0.2 10.37 1.3

50 2 0.20 2.3 0.26 4.2
5 0.47 5.0 3.92 13.5
8 1.47 6.8 4.99 33.4

100 2 0.07 11.1 2.67 22.8
5 1.46 13.6 1.86 40.9
8 1.85 11.0 5.85 47.3

Global average 1.22 3.44 3.28 10.53

Interestingly, we see that for a given n, the average percentage deviation
increases as m increases. m. By contrast, for a given number of stages m,

14

increasing n has no significant effect on the average percentage deviation. Re-
garding CDADS efficiency, it can be observed that this procedures converges
quickly. Indeed, the average CPU time varies from less than 0.1 seconds to
a maximum of 47.3 seconds for the large 100-job and 8-stage instances.

5.2.3 Comparison of CDADS Solutions with State-of-the-Art Heuris-
tics

We compared the performance of CDADS with the following approaches
the genetic algorithm (GA) of [17], the constraint programming algorithm
(CP) and the memetic algorithm (MA) of [17] (note that the results pre-
sented in [18] are not mentioned since they are less good than those presented
in [17]). These three approaches are the most effective published so far. The
results are displayed in Table 4. In this table, each entry (except for the last
row) represents an average percentage deviation. Furthermore, the average
CPU times are displayed in the last row of the table.

We computed the average percentage deviations with respect to the best
derived lower bounds. In this regard, it is worth mentioning that we found
evidence that the results published by Ercan et al. [24] include several in-
consistencies due miscalculations.

15

Table 4: Comparing average percentage deviation (and CPU time)

‘Type-1’ Problems ‘Type-2’ Problems
n m CDADS GA CP MA CDADS GA CP MA

5 2 0.00 0.29 0.00 0.00 0.00 1.23 0.00 0.00
5 0.21 1.35 0.00 0.00 0.46 1.44 0.00 0.00
8 1.31 4.15 0.00 0.00 0.50 2.38 0.00 0.00

10 2 0.00 0.00 0.00 0.00 0.84 2.83 1.72 1.75
5 0.66 1.64 0.00 0.00 3.97 7.80 6.10 5.67
8 5.51 9.38 10.32 8.02 7.32 10.87 8.37 8.80

20 2 0.41 0.44 2.59 0.66 0.30 3.70 6.72 3.43
5 1.01 3.49 10.85 2.78 5.90 9.57 22.86 9.57
8 3.67 5.69 17.98 5.32 10.37 17.26 28.52 16.02

50 2 0.20 0.63 2.79 0.49 0.62 2.76 6.54 2.21
5 0.47 0.59 5.30 0.51 3.92 10.95 20.01 10.32
8 1.47 2.17 14.42 1.71 4.99 15.89 30.06 17.25

100 2 0.07 0.15 1.96 0.07 2.67 3.05 5.68 2.70
5 1.46 2.50 5.19 2.33 1.86 14.95 19.13 14.37
8 1.85 1.99 9.47 2.15 5.85 20.06 23.15 17.83

Global average 1.22 2.27 5.39 1.60 3.28 7.28 11.92 8.32

Mean CPU(s) 3.44 879.93 320.3 326.01 10.53 879.08 423.09 511.27

From Table 4, we can make the following observations:

• CDADS consistently outperforms all the other approaches. Indeed, for
all problem sizes (except, for the tiny 5-job instances) CDADS exhibits
the smallest deviations on both problems types.

• MA and GA are the second best approaches for Type-1 and Type-2
instances, respectively.

• CDADS is the fastest approach. This observation is confirmed by con-
sidering Dongarra’s normalized coefficients [10] that reveal that our
machine is approximately only 3.5 times faster than the machine used
by Jouglet et al. while methods proposed in [17] are much slower.

16

To further assess the effectiveness of CDADS, we provide in Table 5 the
number of improved best known solutions. It can be seen from this table,
that CDADS remarkably delivered 75 new best known solutions among the
300 test problems.

Table 5: Number of improved solutions
n 5 10 20 50 100 Total

‘Type-1’ Problems 0 1 5 8 8 22

‘Type-2’ Problems 0 0 10 20 23 53

5.3 Lower Bound Evaluation

We tested the effectiveness of LBDFF on the same set of benchmark
instances.

In Table 6, we report the results of the percentage deviations that are
exhibited by LB′2 and LBDFF (defined in Section 4). Note that the per-
centage deviation of a lower bound LB is given by 100 × C∗

max−LB
C∗

max
if the

optimum makespan is known, otherwise 100× UB−LB
UB

, where UB is the value
of the best known upper bound. Thus, the column %gap LBDFF reports
the percentage deviation we obtained for each configuration when LBDFF is
used as lower bound. Similarly, the column %gap LB′2 shows the percentage
deviation when LB′2 is the considered lower bound.

17

Table 6: Lower bound performance

‘Type-1’ Problems ‘Type-2’ Problems

n m %gap LBDFF %gap LB′2 %gap LBDFF %gap LB′2

5 2 3.31 6.35 3.66 18.25
5 5.55 13.63 3.68 18.56
8 3.80 11.18 2.30 10.23

10 2 0.31 0.56 2.62 5.92
5 3.18 5.44 7.98 10.06
8 6.80 12.26 9.3 14.41

20 2 0.29 0.37 0.23 2.96
5 0.94 2.39 5.41 7.13
8 3.22 4.03 8.58 12.19

50 2 0.16 0.44 0.23 1.92
5 0.33 0.61 3.58 7.88
8 1.12 1.26 4.70 10.73

100 2 0.06 0.06 1.70 2.40
5 1.35 1.38 1.77 9.65
8 1.20 1.27 5.49 12.38

Global %gap 2.10 4.10 4.08 9.64

Table 6 demonstrates the good performance of the proposed lower bound.
The Global %gap on Type-1 problems, that is the average of all %gaps, is
2.1 for LBDFF while it reaches 4.1 for LB′2. Indeed, despite its simplicity,
LBDFF outperforms LB′2 while being fast (actually the required CPU time
is about 1 ms for large instances). Furthermore, we see that instances of
Type-2 often exhibit larger deviations which is a clear indication that these
instances are harder to solve. Also, we observe that for both problem sizes,
the deviations are generally increasing with the number of stages and de-
creasing with the number of jobs.

Pushing our analysis a step further, we performed a pairwise comparison
of LBDFF and LB′2. The results are displayed in Table 7. In this table, the

18

column Equal reports the number of instances for which LBDFF is able to
give the same performance as LB′2. Equal is being to take a value in the
set {0, ..., 10} since for each configuration ({m stage, n jobs}) and in each
type of problems (Type-1 or Type-2), we are testing 10 instances. Thus, e.g.,
Equal = 7 means that among the 10 used instances, LBDFF is performing
with the same performance as LB′2 over 7 instances. Under the LBDFF

column, we show the number of instances on which LBDFF outperforms
LB′2. Conversely, LB′2 column reports the number of times LB′2 surpasses
LBDFF .

We see from the results of the table that LBDFF strictly outperforms
LB′2 on 12 instances (out of 150) of Type-1, and 93 instances (out of 150) of
Type-2. On the other hand, LB′2 never improves the results. Therefore our
proposition LBDFF dominates LB′2. These results provide further evidence
of the good performance of the DFF-based lower bound.

Table 7: LB comparison
‘Type-1’ Problems ‘Type-2’ Problems

Best bound Best bound

n m Equal LBDFF LB′2 Equal LBDFF LB′2

5 2 7 3 0 1 9 0
5 8 2 0 6 4 0
8 9 1 0 7 3 0

10 2 10 0 0 5 5 0
5 9 1 0 9 1 0
8 8 2 0 1 9 0

20 2 10 0 0 6 4 0
5 10 0 0 4 6 0
8 10 0 0 2 8 0

50 2 8 2 0 5 5 0
5 10 0 0 0 10 0
8 10 0 0 2 8 0

100 2 10 0 0 7 3 0
5 10 0 0 0 10 0
8 9 1 0 2 8 0

Global 138 12 0 57 93 0

19

Finally, we report in Table 8 the results of an experiment that aims at
assessing the overall contribution of this paper. In this table, each entry
in the column entitled “New proposed bounds” represents the average per-
centage deviation 100 × UBnew−LBnew

LBnew where UBnew represents the value of
the CDADS approach and LBnew = LBDFF . On the other hand, each entry
in the column entitled “Bounds from the literature” represents the average
percentage deviation 100× UBlit−LBlit

LBlit where UBlit represents the value of the
best so far published solution and LBlit = LB′2.

Table 8: Comparison of average deviations

New proposed bounds Bounds from the literature
Type-1 Problems 1.22 1.60
Type-2 Problems 3.28 8.32

The results displayed in Table 8 provide strong evidence that the proposed
lower and upper bounding procedures are very effective for both problem
types, and outperform state-of-the-art bounding procedures.

6. Conclusion

In this paper, we investigated the hybrid flow shop problem with multipro-
cessor tasks. We proposed a new discrepancy search method (CDADS) that
is based on adjacent discrepancies. Also, we proposed a lower bound that
is based on the concept of dual feasible functions. Our computational ex-
periments provide strong empirical evidence that CDADS consistently out-
performs the best heuristic approaches from the literature. In particular,
CDADS successfully improved the best known solution of 75 benchmark in-
stances. Furthermore, our computational study demonstrates that the dual
feasible-based lower bound is often tighter that the best lower bound from
the literature.

As a topic for future research, we recommend the derivation of a (first)
exact procedure for solving the FHm,

(
(PM (k))mk=1

)
|sizeij|Cmax. We ex-

pect that the new derived upper and lower bounds would prove useful to
achieve this challenging goal but this would require further investigation.
Furthermore, it would be worth including specific resource constraint prop-
agation techniques, especially energetic reasoning, which has already proved
its performance on parallel machine systems.

20

References

[1] J. C. Beck and L. Perron. Discrepancy-bounded depth first search. In
Proc. of the Second International Workshop on Integration of AI and OR
techniques in Constraint Programming for Combinatorial Optimization
Problems (CP-AI-OR’00), pages 8–10, Paderborn, Germany, 2000.

[2] A. Ben Hmida, M. Haouari, M.-J. Huguet, and P. Lopez. Solving
two-stage hybrid flow shop using climbing depth-bounded discrepancy
search. Computers and Industrial Engineering, 60(2):320–327, 2010.

[3] A. Ben Hmida, M.-J. Huguet, P. Lopez, and M. Haouari. Climbing
depth-bounded discrepancy search for solving hybrid flow shop schedul-
ing problems. European Journal of Industrial Engineering, 1(2):223–243,
2007.

[4] S. Bertel and J.-C. Billaut. A genetic algorithm for an industrial mul-
tiprocessor flow shop scheduling problem with recirculation. European
Journal of Operational Research, 159(3):651–662, 2004.

[5] G. Brooks and C. White. An algorithm for finding optimal or near
optimal solutions to the production scheduling problem. Journal of
Industrial Engineering, 16(1):34–40, 1965.

[6] J. Carlier, F. Clautiaux, and A. Moukrim. New reduction procedures
and lower bounds for the two-dimensional bin packing problem with
fixed orientation. Computers & Operation Research, 34(8):2223–2250,
2007.

[7] J. Chen and C.-Y. Lee. General multiprocessor task scheduling. Naval
Research Logistics, 46(1):57–74, 1999.

[8] F. Clautiaux, C. Alves, and J. Valério de Carvalho. A survey of dual-
feasible functions and superadditive functions. Annals of Operations
Research, 179(1):317–342, 2010.

[9] M. Dal Cin and E. Dilger. On the diagnostability of self-testing
multimicroprocessor systems. Microprocessing and Microprogramming,
7(3):177–184, 1981.

[10] J. Dongarra. Performance of various computers using standard linear
equations software. Technical Report CS-89-85, University of Tennessee,
2011.

21

[11] M. Drozdowski. Scheduling parallel tasks – Algorithms and complex-
ity. In Leung J. Y-T., editor, Handbook of Scheduling. Chapman &
Hall/CRC, 2004.

[12] M. F. Ercan and Y.-F. Fung. Real-time image interpretation on a multi-
layer architecture. In Proceedings of IEEE TENCON’99, pages 1303–
1306, 1999.

[13] S. P. Fekete and J. Schepers. New classes of lower bounds for bin packing
problems. In IPCO, pages 257–270, 1998.

[14] M. Fischetti and A. Lodi. Local branching. Mathematical Programming,
98(1–3):23–47, 2003.

[15] M. Haouari and A. Gharbi. Fast lifting procedures for the bin packing
problem. Discrete Optimization, 2(3):201–218, 2005.

[16] W. D. Harvey and M. L. Ginsberg. Limited discrepancy search. In Pro-
ceedings of the 14th International Joint Conference on Artificial Intelli-
gence (IJCAI-95), volume 1, pages 607–615, Montréal, Québec, Canada,
August 1995.

[17] A. Jouglet, C. Oğuz, and M. Sevaux. Hybrid flow-shop: A memetic
algorithm using constraint-based scheduling for efficient search. Journal
of Mathematical Modelling and Algorithms, 8(2):271–292, 2009.

[18] C. Kahraman, O. Engin, İ. Kaya, and R. E. Öztürk. Multiprocessor task
scheduling in multistage hybrid flow-shops: A parallel greedy algorithm
approach. Applied Soft Computing, 10(4):1293–1300, 2010.

[19] J. E. Jr. Kelley. The critical-path method: Resources planning and
scheduling. In Thompson G. L. and Muth J. F., editors, Industrial
Scheduling, pages 347–365. Prentice-Hall, Englewood Cliffs, 1963.

[20] Z. Kiziltan, A. Lodi, M. Milano, and F. Parisini. CP-based local branch-
ing. In Bessière C., editor, LNCS, volume 4741, pages 847–855. Springer,
2007.

[21] R. E. Korf. Improved limited discrepancy search. In Proceedings of
the 13th National Conference on Artificial Intelligence (AAAI-96), vol-
ume 1, pages 286–291, Portland, OR, August 1996.

22

[22] G. S. Lueker. Bin packing with items uniformly distributed over intervals
[a,b]. In 24th Annual Symposium on Foundations of Computer Science
(FOCS’83), pages 289–297. IEEE Computer Society, 1983.

[23] M. Milano and A. Roli. On the relation between complete and incom-
plete search: An informal discussion. In Proc. of the Fourth International
Workshop on Integration of AI and OR techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems (CP-AI-OR’02),
pages 237–250, Le Croisic, France, 2002.

[24] C. Oğuz and M. F. Ercan. A genetic algorithm for hybrid flow-shop
scheduling with multiprocessor tasks. Journal of Scheduling, 8(4):323–
351, 2005.

[25] C. Oğuz, Y.-F. Fung, M. F. Ercan, and X.-T. Qi. Parallel genetic al-
gorithm for a flow shop problem with multiprocessor tasks. In Inter-
national Conference on Computational Science, pages 548–559, Berlin,
Heidelberg, 2003. Springer-Verlag.

[26] C. Oğuz, Y. Zinder, V. Ha Do, A. Janiak, and M. Lichtenstein. Hy-
brid flow shop scheduling problems with multiprocessor task systems.
European Journal of Operational Research, 152(1):115–133, 2004.

[27] F. Parisini and M. Milano. Improving cp-based local branching via
sliced neighborhood search. In Symposium On Applied Computing -
ACM SAC, Taiwan, 2011.

[28] P. Prosser and C. Unsworth. LDS: Testing the hypothesis. Technical
Report DCS TR-2008-273, Dept. of Computing Science, University of
Glasgow, 2008.

[29] I. Ribas, R. Leisten, and J. M. Framiñan. Review and classification
of hybrid flow shop scheduling problems from a production system and
a solutions procedure perspective. Computers & OR, 37(8):1439–1454,
2010.

[30] R. Ruiz and J. A. Vázquez Rodŕıguez. The hybrid flow shop scheduling
problem. European Journal of Operational Research, 205(1):1–18, 2010.

[31] F. S. Şerifoğlu and G. Ulusoy. Multiprocessor task scheduling in multi-
stage hybrid flow-shops: A genetic algorithm approach. Journal of the
Operational Research Society, 55(5):504–512, 2004.

23

[32] A. Sprecher, R. Kolisch, and A. Drexl. Semi-active, active, and non-
delay schedules for the ressource-constrained project scheduling prob-
lem. European Journal of Operational Research, 80(1):94–102, 1995.

[33] T. Walsh. Depth-bounded discrepancy search. In Proceedings of the
15th International Joint Conference on Artificial Intelligence (IJCAI-
97), volume 2, pages 1388–1395, Nagoya, Japan, August 1997.

[34] K-C. Ying and S-W. Lin. Multiprocessor task scheduling in multistage
hybrid flow-shops: An ant colony system approach. International Jour-
nal of Production Research, 44(16):3161–3177, 2006.

24

