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Abstract

A common assumption in intermittently-connected (or opyaistic) mobile networks is that any contact has enouglaciégpto
transfer the required amount of data. Although such an gssomis reasonable for analytical purposes and when ctahtee
small, it does not hold anymore when users produce conteatsate larger than the capacity of a contact. In such a cases u
must slice data and send fragments separately, which abettsr use of short contacts and progressive disseminatitarge
contents data pieces. The main question here is to desidretiiestrategy for deciding which piece(s) to transmit wirenaodes
meet. In addition, although small pieces imply a better usshort contacts, they generate more overhead due to theefsead
required at each piece. In this paper, we investigate theséssues: piece size selection and piece selection syrakegst, we
theoretically define the global goodput of the system théihde the tradef® between the size of the shortest contact that can be
considered as useful and piece overhead. Results fromvaréd-traces show that, for reasonable header size, the giee can
be selected out of a large range of values without signifigémipacting the results. Second, we present the design\aidation

of PACS (Prevalence-Aware Content Spreading), a compléistributed algorithm that selects pieces to transfeetam their
popularity. We evaluate the performance of PACS using bygtithetic and real traces from intermittently-connectetivoeks.
When compared with sequential and randomized solutionshew that PACS significantly outperforms these approacbtsib
terms of latency to achieve full dissemination and ratioftéaive contacts. Moreover, PACS achieves performancéslévat are
extremely close to a centralized oracle-based solution.

Key words: Intermittently-connected mobile networks, multimediatemt dissemination, peer-to-peer.

1. Introduction ters becomes impractical, as two main limitations rise stfir
nodes that experience short contacts frequently mightrreve

Important advances in the area of opportunistic networkgejye the data. Second, transfer opportunities are waste! |
have been achieved including the conception of application ing to poor overall performance. To optimize data dissemina

enable content sharing among users on the move [1, 2, 3]rIn O i sych scenarios, it is fundamental to adapt the amount

daily lives, users generate, consume, and share conte®éh ¢ (ansmitted data to the contact capacity. Hence, nodes mu
becoming increasingly larger. We address the followingsgue gjice the data and send fragments separately. The main chal-

tion: how to giciently disseminate such large contents in 0p-jenge when disseminating fragmented data is to decide which
portunistic networks when contacts have limited capachia piece(s) should be sent when two nodes nieet.
is a realistic situation, as portable devices such as stmangs Before addressing the piece selection problem, the first es-

a_nd compact cameras are now aple to generate high-definitiqy g point to investigate isow to determine the fragment
videos that are resource-consuming. As an idea, average stgiee) size One solution is to specifically adapt the piece size
dard videos on YouTube are 10MB long [4]; in HD quality, this 1 each contact capacity. In other terms, nodes must take int
vglue goes up to 40MB. If we consider quetooth as the underyqcoynt the capacity of each contact when sending any donten
lying transport technology (as suggested in several paphS ¢ the content is small enough to be transmitted during the co
tra_nsferring such amounts of data opportunistically waeld tact, the content is fully sent. Otherwise, the contentvideid
quire contacts of 80 to 320 seconds, at best. into several pieces so that at least one piece can be traedmit
A few experimental initiatives have shown that most ContaC'during the contact. This solution is not straightforwandcsi
durations in human-driven opportunistic networks fall entthe the contact capacity characterization needs to be veryraiecu

. " . . .
minute [5. 6, 7] For example, Gaito et al. show in their ex- Therefore, it highly depends on the underlying technoldgy
periment that more than 50% of the contacts last for lessthan other solution is to have a standard piece size; when nodes ge

minute (they found a median contact time of 48 seconds). Tryg e |arge contents, they automatically divide the cdatieo
ing to transfer large contents during these short-livecbane

2This paper is a significant extension of our previous papAC®. Chop-
10ther fundamental papers could not show such a behavioegséhed on ping and shling large contents for faster opportunistic dissemindtipub-
beaconing periods of 120 seconds or more [8, 9]. lished atiFIP WONS2011 [10].
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pieces of equal size. In this paper, we consider this seaulnd s  the problem of content dissemination in opportunistic reks

tion to determine the standard piece size. In Section 4, we foand present our network model in Section 3. We formalize the
mally bring out the trade®to deal with between turning small problem of piece sizing in Section 4 and describe the basizEpi
contacts into useful and increasing the payload. We haw uselissemination strategies, namely sequential and randwaie st
movement traces obtained from RollerNet to study the impaagies, in Section 5. We present PACS in Section 6 and evaluate
of piece size selection on a real world dissemination séenar its features in Sections 7, 8, and 9. Finally, in Section 16, w
RollerNet trace was collected from an intermittently-ceated  conclude the paper and raise future research directions.
mobile network formed between 62 people during a rollerblad

ing to_ur in the streets of Paris, which lasts for 3 hours [B | 5 Related work

terestingly, results show that as header remains reasmribbl

piece size can be selected from a large range of values withou Data broadcasting in opportunistic and ad hoc networks has
significantly impacting the results. been the subject of several works. The proposed approaghes c

To address the problem afhich piece(s) should be sent be classified in four main categories: simple flooding, phiba
when two nodes meaine possibility is to rely on a naive ap- ity based, area based, and neighbor knowledge [13]. In addi-
proach and transfer pieces in a sequential order, i.e.,gxide tion, a new data dissemination category based on network cod
seminate the pieces with the lowest identifiers first (see Sedng emerged recently [14, 15]. The main objective of all thes
tion 5). As we will show later, the main problem with this ap- solutions is to achieve anfficient dissemination while mini-
proach is that it ignores the current dissemination pragoés mizing the number of transmissions in the network. This is
the pieces in the network and leads to poor dissemination ralone by selecting the best relay nodes among all the neighbor
tio. Another possibility is to disseminate pieces in a umifty-  an infected node has. Nevertheless, all these approaches as
distributed random way, but it does not capture contacepat sume that any contact is long enough to transfer the datarunde
either. In this paper, we show that: (i) the order of piece dis consideration. This problem is somehow complementaryedo th
semination matters, (ii) bad piece selection can lead tiédne  one addressed in our paper. Indeed, these solutions arswer t
tive contacts, and (iii) uniform random selection is notas  the question of how to select relay nodes while we address the
enough. To our knowledge, no previous work has addresseguestion of how to select the piece to transfer once the relay
this problem. node is already selected.

In order to counterpart the abovementioned issues, we pro- Pitkanen et al. studied the impact of data fragmentation in
pose PACS (Prevalence-Aware Content Spreading), a pdfyular one-to-one opportunistic network communications [16].eyh
based strategy to select pieces to be exchanged betwedn neigonsidered two fragmentation strategies: reactive fragaie
bors solely based on node-local information. Through th&ir  tion and proactive fragmentation. In reactive fragmenotati
cessive contacts, nodes keep track of the disseminatiehdév the sender starts transmitting the data until it is inteledy
the pieces throughout the network and use this information tthe link failure caused by the end of the contact. In proactiv
transfer less prevalent pieces first. To this end, nodesagxggh  fragmentation, the source node divides the data into pietes
a small boolean vector when in contact. By combining suctstandard size (based on the expected average contacttgapaci
vectors over time, nodes are able to build a popularity map oThey concluded that the reactive fragmentation with preeeffi
pieces in the network. We show that such a simple local stratragment boundaries allows significant improvements in-one
egy significantly increases the system performance. We evalo-one communications. In this paper, we show that even sim-
uate PACS using both synthetic and real-world mobilityésac ple proactive fragmentation can improve one-to-all comimun
from intermittently-connected networks. Synthetic usewe  cations (data dissemination in our case). We found thatge lar
ments are generated using the random trip model [11] and thenge of piece sizes allows reducing the overall disseminat
community-based mobility model proposed in [12]. Addition delay (for more details, please refer to Section 9.2).
ally, we have also used the RollerNet trace described above. As discussed in Section 6, PACS, our piece selection pro-

In summary, the key contributions of PACS are: posal, is inspired by BitTorrent. Several solutions haverbe
proposed to adapt BitTorrent to opportunistic and ad hoe net

e Higher heterogeneity of pieces in the network.PACS : .
prevents nodes from getting the same pieces first, whicworks [17, 18, 19]. Most of these adaptations, however, dim a

P . : constructing and maintaining an overlay network that ezsbl
leads to quick increase in the number of infected nodes. . :
multi-hop message routing. In other terms, nodes do not need

e More useful contacts.PACS leads to much higher con- to be direct neighbors to become peers. Our solution, in turn
tact dfectiveness, i.e., it reduces the number of contactsises the network layer and the immediate communication ca-
that cannot be used because nodes have the same piecpabilities of the nodes to disseminate data.

Nadan et al. proposed SPAWN, a cooperative strategy for
content downloading in vehicular networks [20]. The pieee s
lection scheme used in SPAWN is based on a proximity-driven
strategy called rarest-closest. Such a strategy selextaitbst
pieces and then ranks them based on the distance to thetcloses

The remainder of the paper is structured as follows. In Secpeer that has that piece. This solution shares with PACS the
tion 2, we give an overview of related work. We briefly deserib same motivations, i.e., they prioritize rarer pieces antsicter

2

e Reduced dissemination delayBy turning more contacts
into effective opportunities, PACS significantly reduces
the delay for the contents to be fully disseminated to all
nodes.
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(a) Sequential. (b) Random.

Figure 1: A motivating example. Selecting the pieces todfemnis fundamental tofeécient dissemination of fragmented contents.

peer location. SPAWN and PACSfi#ir however on a funda- the content (composed of four pieces). tAt t;, n; meetsn,.
mental aspect. SPAWN, as the abovementioned solutions, coifihis latter has no pieces yet. The contact allowing the fesins
structs an application-layer overlay that does not limé pleer  of two piecesn; sends then pieces 1 and 2. tAt tp, n; meets
selection to the one-hop neighborhood. Hence, it needs-an ung (which does not have any pieces either). As for the previous
derlay routing protocol that maintains multi-hop routesdeen  case,n; transfers the first two pieces. At= t3, noden; has
peers. left the network. Whem, andn, meet, the contact opportu-
Some other solutions implemented file swarming by onlynity cannot be used because both nodes have the same pieces.
considering one-hop communications [21, 22]. Both sohgio In Section 8, we show that such a situation happens quite fre-
use uniformly-distributed random piece selection. Nenert quently in practice.
less, they use network coding in order to mitigate the coupon The ideal case would have been the one in Fig. 1(b). Node
collection problem by increasing piece heterogeneityal®yn  ng, instead of disseminating the same pieces each time it meets
some papers presentedtdient architectures to enable mobile a node, applies some randomized strategy to avoid theisituat
peer-to-peer distribution of large contents [23, 24]. Inhbo described above. Here, Bt t3, hodesn, andng are able to
architectures, contents are exchanged opportunistiedlign  exchange pieces turning the encounter into a useful contact
nodes are within communication range. However, the piece In a real network composed of dozens or even hundreds of
selection strategy ffers. Jung and al. used the random se-nodes, contact patterns are expected to be much more complex
lection strategy [23] whereas Helgason et al. presentethan i than the example above. As we will show later in this paper,
plementation of the sequential strategy using a pull-based PACS is a generalization to the solution shown in Fig. 1(b).
chitecture [24]. We show in this paper that a more sophigtita

piece selection strategy can enhance such architectures. 3.2. Network model and assumptions
Let N = {ng,nq,...,ny} be the set oN nodes in the net-
3. Content spreading in opportunistic networks work. Nodes are mobile, but we do not assume any a priori

knowledge of mobility patterns. For the sake of simplicityg
In this section, we provide all the necessary background beassume that all nodes in the network are interested in tlgiani

fore introducing the piece sizing problem and the dissetiina contentC that is initially only available at a single node. With-
algorithms. In our problem, a relatively largententmust be  out loss of generality, we call this node the data source &nd d
disseminated to a population of mobile nodes that commtmica note it asng. The generalization to any number of data sources
in an opportunistic fashion. To reduce the disseminatidayde and contents is straightforward.
the contentis sliced into a numbemqmécesof equal size, which The data source chops the content iktieces of equal
allows benefiting from shorter contacts than the one nepgessasize. The number of pieces is deduced after selecting pieee s
to transfer the entire content. In this context, we address t (See Section 4, for more information about how to accurately
problems. First, having a clue on the contact capacitie®;to  determine the piece size). Pieces are sequentially ickuhtfs
gfficiently select the piece sizeSecond, given the pieces and C = {cy,C1,...,Ck-1}. Nodes use their contact opportunities
a contact opportunitywhich subset of these pieces should beto get pieces, i.e., we assume that there is no infrastrittur
transferred if the contact is not gicient to transmit them &l help the dissemination process. Nodes can get pieces frem th

data source and from any other node in the network having it.
3.1. Piece selection: a motivating example Each node; stores locally aravailability bitmap vectol, =

We now illustrate why the proper selection of pieces to send@o, - - -» &-1}, whereac = 1 if the node has piea, andax = 0
is important. The straightforward approach for a node te disotherwise. The necessary contact time to transfer one [Bece
seminate content in an opportunistic network is to trarsferes notedr. We call this a contact slot. Thus, a contact duration
based on an increasing order of identifiers. We will call thiscan be used to transfgf | pieces.
strategysequentialn the remainder of this paper. All the variables are summarized in Table 1.

We show in Fig. 1(a) the sequential approach at three con-
secutive time instants. In the very beginning, only nagéas



Table 1: Summary of the variables. F(p)! 7
Variable | Definition "
N Set of nodes in the network ;f
N Number of nodes ilN g F(p) o
No Data source o
C Content to be disseminated @
K Number of pieces that compo€e
G it piece ofC FGp) o 3 -
T Contact slot (time to transfer one piece) p 2p 3p M
an, Availability bitmap of noden; Capacity

Figure 3: Example of contact capacity CCDF. Sizing problemametersp is
the piece sizep = h+d.

of sizep = h + d that fit into the contact (i.e., that can be trans-
mitted).

If all the contacts had the same capagys would be equal
Figure 2: Chopping a large content into several pieces. to mx F(p) (m being the total number of contacts). However,
a contact of more thanfwould be able to transmit 2 pieces.
This represent§(2p) of contacts. A contact of more tharp3

4. Selection of the piece size capacity could transmit 3 pieceS(@p) of contacts), and so on.
The selection of the piece size is the first problem to addres'é'ence:

when disseminating large contents in opportunistic neiaior S= mx[LF(p) - F(2p)) + 2(F(2p) - F(3p))

In addition to the data block, each piece includes a header (s +3(F(3p) -~ F(4p) + ...+ | % |F(| % |p)],

Fig. 2). The header includes the source ID, the content ID\’NhereM is the maximum contact capacity (see Fig. S)can

the piece ID, and any other useful information to line up the

. . . I . be written as:
pieces into their correct positions when rebuilding cotgdem

our work, headers have direct impact on the performancesof th | 4]
system as they introduce communication overhead. S =mx Z F(i x p), )
Thus, there is a trad@oto deal with when selecting the =

piece size. On the one hand, the smaller the piece, the better _ .
the use of contact opportunities: small pieces could bestran When we replacé in Eq. 1, we obtain:
mitted over more contacts. On the other hand, the larger the

piece, the more negligible the overhead, as the ratio betwee Lpia ] )

the size of the data and the size of the piece is bigger. G=dxmx X Z F(i(h +d)). (3)
As illustrated in Fig. 2,C is chopped intoK pieces{co, =1

C1.....Ck-1}. Each piece contains a data block of sizand T andm being fixed, we must find the maximum value of

a header of fixed size, which gives a piece of size=h+d.  the following functiong to maximize the global goodpgt
The distribution of contact capacity is represented by tira-c

plementary cumulative distribution function (CCDF)shown Lae ]
in Fig. 3. The proportion of useful contacts, that are able to g(x) = xx Z F(i(h+ x)). 4)
transmit a piece of sizpis F(p). The tradef can be expressed i=1

as follows. As the piece size tends to the minimum contact ca-

pacity, moving from the right to the left on theaxis, more 5 Basic content dissemination strategies

contacts turn into usefuH(p) increases) but more overhead is

introduced (ﬁ—d decreases). As the piece size tends to the max- We now detail the operation of the basic piece selection

imum contact capacity, moving from the left to the right oa th strategies. A piece selection strategy specifies the pidcarts-

x-axis, fewer contacts remain usef#(p) decreases), but less fer during a contact slot. We call “basic” strategies theusaqg

overhead is introduce% increases). tial one illustrated in Section 3.1 and a randomized one &her
To obtain an upper bound on the global goodput, we assumgieces to be transferred are selected following a unifomm la

that there are always pieces to be exchanged when contacts oc

cur. The global goodp can thus be expressed as follows:  5.1. Sequential content dissemination

d In the sequential strategy, nodes transfer pieces to neighb

xS . . : ) - o .

T (1) inanincreasing order of identifiers. This implies that ifade
has piecec;, it necessarily has pieceg, ¥0 < k < j. We
whereT is the total contact time anfl is the number of pieces note ¢, as the largest identifier of pieces owned by naogle

4
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Algorithm 1 n; sequential strategy Algorithm 2 n; Uniform random strategy

1: while contactwith(n;) do 1: while contactwith(n;) do

2. receivefrom(n;, &(n;)); 2. receivefrom(n;, a;);

3 if (&(n;) < &(m)) and (initiate_.connexionwith(n;)) then 3 if (& A (—a) # 0) and (initiate_connexionwith(n;)) then
4: Cs,; < Comy)+1; 4: Cs.j < radom.selectionfrom(a; A (-a;));

5: sendto(n;, Cs_,); 5: sendto(n;, cs_,;);

6: else 6: endif

7: if (€(n;) > €(m)) and (connexioninitiated_by(n;)) then 7. if (aj A (&) # 0) and (connexioninitiated_by(n;)) then

8: receive from(n;, Csi ); 8: receive from(n;, Csi );

9: if (csjai = Cgm)+1) then 9: ijoi e fig,. .. ik-1); k=0, YK < K (k # sj-i) andiqui =1
10: e(n) « e(m) + 1; 10: & «— & Viji,
11 else 11:  endif
12 ignore(Cs,_,; ); 12: end while
13: end if
14: end if
15:  endif a, an, ay, a,
1o end while [lafafo]  [ifoofu]ae an[af1]rfa]  []ot[1]en

=) =)

(a) State 1: selecting pieces.  (b) State 2: updating local vectors.

Figure 5: Piece selection using the uniform random stratégigially, n; has
‘ l ! [ ! [(1 [ Ol l 1[ ! [ ! [ 0 l pieces{co, C1, C2} andn; has piece$co, C3}.

(a) State 1: selecting pieces. (b) State 2: updating local variables.
distributed random way. After one round of exchanges, nodes
Figure 4: Piece selection using the sequential strateggially n; has pieces ~ Update their availability vectors as:
{Co,C1} (€ =1). nj has piecescy, ¢1, C2} ((‘:ni =2). _
an, « an Vi,
an <« an Vi (5)
j j Cisj+

e, G, = jifa =1Vk < janda = 0,Yk > j. Initially,
all nodes in the network are looking for the first piece (icg), =~ Whereic_; andic,_, are vectors oK elements with all positions
except the data soureg that already has all pieces. Formally, equal to 0 except the position relative to the piece justivede
&, = -1, ¥Yn e N\ng and¢,, = K - 1. which is set to 1Y stands for the “or” operator).

When two nodes; andn; meet, they exchange their cor-  We illustrate the algorithm in Fig. 5. Nod® (resp. n;)
respondinge” Consider first the case wheeg > &, which  has piecesco, €1, Cz} (resp. {Co, Cs}) as shown in the availabil-
means that; has at least one piece thgtdoes not have. As ity vectors (Fig. 5(a)). After exchanging their vectors tinly
long as the contact duration allows, nodetransfers pieces piecen; could send tay is c; whenn; could randomly select
following the SequeNce, +1,Ce, +2; - - > Ct,, - If &, < &, the one of the piecefcs, ¢} to send it ton;. Assume that the con-
same is done but from; to n;. At each transfer, the receiv- tact lasts for two slots. Hence, two pieces can be exchanged.
ing node increments its correspondmgNote that if;, = &,, ~ Suppose than; sendscs to n; during the first slot and that
the contact becomes useless as the nodes have exactly the s&@nds piec&; during the second slot. After piece transfers,
contents. For a contact of duratigrthe maximum number of ~€ach node updates its vector. The availability vectors ipeco
pieces transferred is mid; — &jl; [t/7]}. an = {1,1,1,1} anda,, = {1,0,1,1}. The strategy is fully de-

This strategy is illustrated in Fig. 4. The content is com-tailed in Algorithm 2.
posed of four piece¥( = 4). In this example, the only possible
exchange is transferring the piegefrom n; to n;. Algorithm 1

. 6. PACS: Prevalence-Aware Content Spreading
details the strategy.

The goals of PACS are to achieve fast content dissemina-

5.2. Uniform random content dissemination tion while keeping the overhead low and making better use of

The idea behind the uniform content spreading strategy isontact opportunities. The challenges of conceiving susysa
to select, among the pieces a neighbor has not receivedget, ttem are mainly twofold. First, nodes must have a clue on the
ones to be transferred in a uniformly-distributed randony.wa dissemination progress of each piece, so that they can -appro
When nodesy andn; meet, they exchange their availability priately prioritize their transmissions. Second, the elisia-
vectorsa, anday, (as defined in Section 3.2). Nodg(resp.n;)  tion information must remain local to reduce the overheatl an
computesan, A (—an,) (resp.an; A (—ay)), which gives the can-  achieve a scalable solution.
didate pieces to be transferred ¢tands for the “and” operator In PACS, in addition to the availability vector, nodgalso
and-is “not”). During the contact, one or more of these candi-keeps a prevalence vectpf, = {po, p1, ..., Pk-1}. As it will
date pieces are chosen to be transferred based on a uniformlyecome clearer later, the goal @f is to give a local view of

5



Algorithm 3 n; PACS strategy

1: while contactwith(n;) do
2: receivefrom(n, a,);

3. Py < Py

4 if (ay A (=an;) # 0) and (initiate_connexioowith(n;)) then
5: Cs_,; < prevalenceselectionfrom((ay A (=an))), Pn);
6: sendto(n;, Csé;)?

7. endif

8: if (an A(-a,)# 0) and (connexioninitiated_by(n;)) then
9: receivefrom(n;, CSH);

10: iCj—»i —{ig,...,ik1}; Ik =0,Yk< K (k# Sj_>i), iSj—»i =1
11 8 Ay Vi

12:  endif

13: end while

an, [1]1]1]0]

OO

Aannn

MLo[ol =[Ok [ifolie

=)

[7]2]4]1]Pn Puf6]1]3]2] [slals]t]Pm

(a) State 1: select pieces. (b) State 2: update local vectors.

Figure 6: Piece selection using PACS. Initialy,has piece$co, c1, 2} andn;
has piecesco, C3}.

the prevalent pieces in the network. Initially, all nodeséa

an empty prevalence vector. When nodeandn; meet, they
exchange their availability vectors, exactly in the samg am

try to exchange the pieces with the lowest prevalence fitss T
corresponds somehow to the rarest-first algorithm usedtin Bi
Torrent. Nevertheless, the notion of rarest piece is efsdignt
different in the two cases. In BitTorrent, each peer maintains
a list of the number of copies in its peer set. This list corre-
sponds to the prevalence vector described in PACS but cantai
exactly the number of copies in the peer set (neighborhood).
In PACS, instead, nodes update their prevalence vector each
time they initiate a connection with another node. Even thbo
strategies give the node an egocentric view of the raresepje
PACS adapts the algorithm to counterbalance the instaloiit

a node’s neighborhood due to the dynamics of the environment
Indeed, the nodes that are the most represented in the preva-
lence vector are those encountered ofteryanduring longer
time intervals.

7. Evaluation framework

In this section, we summarize the simulation and model pa-
rameters. We use the ONE [28] simulator with both mobility
models and real movement trace based simulations.

7.1. Simulation parameters

We study the impact of the following main parameters:
Area size We consider two scenarios with the following area
sizes: 300m 300m and 1,000x1,000m. The first area is of
the size of a train station when the second area is large as a
downtown area.

the uniform content dissemination strategy. They also tgpda Number of nodes The number of nodes varies between 100

their prevalence vectors respectively as:

P < Pntén;

6
pni — pnj + ani' ( )

and 2,500. By default, the number of nodes is set to 250. This
parameter, associated to the area size, determines batlketthe
work density and the network diameter.

Number of data sources By default, we consider a unique
content originally available at a single data source. Wleatys

Among the candidate pieces to be transferred, nodes selegly the impact of the number of initial copies, we vary the aum
the one with the lowest prevalence. In case of tie, a piece iger of data sources between 1 and 250 nodes.

chosen in a uniformly distributed random way. logt be the
piece sent by to nj andcs_, be the piece sent by; to n;.
Once this step done, nodes update their availability veasr
indicated in Equation 5.

Number of piece sourcesThe content pieces are generated at
a single data source by default. When we evaluate the impact o
the initial piece dispersion on the dissemination delayyary

the source of the élierent pieces from all the pieces generated

In the very beginning, the prevalence vector has a limitedgt 5 single source (number of piece source set to 1) to each pie

influence on the selection algorithm but gains importance agenerated at a flierent source (number of piece sources set to
nodes move and exchange pieces. We show an example jRe number of pieces).

Fig. 6. After exchanging their availability vectors, nodgs
date their prevalence vectors as indicated in Equatiqp), 6
{6,1,3,2} andpnj = {8,3,5,1}). Similarly to the previous ex-
amples, we assume that contact lasts for 2 slots. Trherans-

Content size The content size is set to either 12MB or 48MB.
We consider these values to fit a realistic scenario of video d
semination. As observed in [4], videos in YouTube have a mean
duration of 4.15 minutes for an average size of 10MB. In our

fers ton; the piececs that is the only piece it is able to select, simulations, a 12MB-file represents a standard definitide®;

while n; chooses the less prevalent piece frimm c,} to send

while a 48MB-file is a high-definition video.

to n;. According top,,, piecec; is less prevalent than piece pijgce size We investigate the impact of the piece size on the
C2. Noden; sendsc; to nj. Once the exchanges are done, thegfrectiveness of the algorithms. The piece size is incremented

respective availability vectors are setdag = {1,1,1,1} and
an, = {1,1,0,1}. The strategy is described in Algorithm 3.

exponentially from 3kB to 3MB. By default, the piece size is
set to 384kB. The piece size together with the content size de

Note that PACS has some similarities with peer-to-peer systermines the number of pieces.

tems, notably BitTorrent [25, 26, 27]. Indeed, PACS uses ajeader size When we evaluate the impact of the piece size,

several pieces. When two nodes are in range of each othgr, thge consider that pieces have no header.
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. . about three hours. This trace is publicly available to the-co
Table 2: Simulation parameters. . .
Area size 300mMx300m munity through the Crawdad repositcty.
1.000mx1 OdOm The number of nodes is set to the number of participants
’ ' in the experiment (i.e., 62). The transmission throughgut o

Factors Number of nodes | 100, 250, 500, 1,000, qes is set to 125kBps that correspond to the nominal Blue-

2,500 tooth throughput. At each simulation run, we pick &elient
Number of data 1, 2, 5, 10, 25, 50, 100, node to play the role of the data source. The trace configurati
sources 150, 200, 250 is also summarized in Table 2.
Number of piece| 1,2,4,8, 16, 32
sources 7.4. Benchmarking
Data size 12MB, 48MB We compare PACS with both the sequential and the uni-
Piece size 3kB, 6kB, 12kB, 48kB, formrandom strategies as described in Section 5. Besides th

96kB, 192kB, 384kB, strategies, we also consider a centralized strategy whese-a
768kB, 1.5MB, 3MB tral entity maintains a global prevalence vector. The dgloba
Header size 0B, 56B, 2568 prevalence vector is used to select the piece to be traadferr
by nodes in the same way as in PACS. Nevertheless, it is only

Parameters Range 10m updated when a node receives a piece. The global prevalence

of the Moving speed [0.5,1.5] nys vector reflects exactly the current dissemination stateache

models Throughput 125 kBps piece in the network. We call this strategy tBeacle Obvi-
Number ofnodes | 62 ously, deploymg §uch a centralized strategy is |m.prabte:m

RollerNet . areal opportunistic network. We use it for comparison pegso

configura- | Trace duration 3 hours only.

tion Throughput 125 kBps

8. Synthetic mobility evaluation

These parameters are summarized in Table 2, where bold

We use two mobility models to generate synthetic traces.
values stand for the default ones. y 9 y

First, we study the simple case of mobility induced by the ran
dom trip model. Second, we consider the community-based
mobility model, a more elaborated model founded on social ne

We used two mobility models for the simulations. First, work theory. Plots represent average results upon @8rent
nodes follow the random trip model. We only consider theryns. Parameters are detailed in Section 7.2.

steady state of the random waypoint by applying the formulas
described in [11]. The second model is the community-based.1. Impact of network density and diameter

model formulated by Musolesi et al. [12]. We vary both the area size and the number of nodes to study

For both models, nodes move at walking spegd (betwee{he dissemination delay of a 12MB file (Fig. 7). We define the
0'.5n.15 and 1'5”.5)' .TWO nodes are able to commumcate Whendissemination delay as the required duration for the carten
within communication range of 10m Data is transferred a,q o cajyeq by all the nodes in the network. It is the elapsed
a 'Fhroughput of 125kBps. In a(_jdltlon, each model has SP€ime between the transmission of the first piece to the firdeno
cific parameters. For rgndo_m tnp, nodes. may pause betweea{hd the reception of the last piece by the last node. We also
two trips. Node pause time is uniformly picked in the intérva measure the contacffectiveness (Fig. 8). The contadtex-
[0,120]s. In the comm.unlty-bqsed model, ”0‘,’63, are grOUpeﬁ\/eness is the ratio of the time used for transfers over dhe t
fto_g_ether based on Soc'a_l relationship among individualse T tal contact durations (in the period comprised between the fi
initial number of groups is set to 50. Groups are mapped ont d the very last piece transfers). It indirectly measunes t
a topographical space corresponding to cells. The number ailability of new pieces when nodes meet. Afeetiveness

cells in the area is set toc3. Table 2 summarizes the parame- ;| ,ser 15 zero means that nodes meet but seldom have pieces
ters of the models. to transfer, while fectiveness closer to one reflects frequent

) . exchanges. As expected, for the four strategies, the linger
7.3. Real-world trace configuration number of nodes (denser network), the smaller the dissemina

We use the RollerNet trace to evaluate the performance afon delay and contacifiectiveness. This is due to the increase

the spreading strategies in real-world environment [5].e Th of the number of contact opportunities in denser networke T
trace has been generated through contact logs between Int@dquential strategy leads to the worst performance. Eviee if
iMote nodes (equipped with a Bluetooth interface). EachtMo difference between the strategies is accentuated in sparse zone

performs regular scans and registers the MAC addresses of tl(rwith fewer nodes in the network), we can observe the same
responding devices around. The RollerNet trace has been col

lected during a rollerblading tour in Paris. iMotes were-dis

tributed to 62 participants and the total duration of the twas 131http=/ /crawdad. cs. dartmouth. edu/meta.php?name=upmc/
rollernet

7.2. Parameters of the mobility models
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Figure 7: Dissemination delay according to the number oesodissemina-  Figure 8: Contact féectiveness according to the number of nodes. Dissemina-
tion of a 12MB file divided into 32 pieces of 384KB. Random f#®T) versus  tion of a 12MB file divided into 32 pieces of 384kB. Random {{i) versus
community-based model (CB). PACS reduces by about a halfénage the =~ community-based model (CB). For all strategies, the dethgenetwork, the
dissemination delays when compared to the sequential @htidom strate-  smaller the contactfiectiveness. PACS, however, ensures a bettectve-
gies. ness.

C e dmE®
tendency in dense networks (Fig. 7(a) and Fig. 7(b)). Regard TTET S
less of the number of nodes and the area size, PACS performs
better than the sequential and the random strategies, inegduc

by about a half in average the dissemination delays. Further

. Oracle —+
more, the results of PACS tend to the ones obtained using the 02+ .* Random . dom-—+—
Oracle strategy. 0’ q L q

Fraction of the dissemination
delay

0 02 04 06 08 1 0 02 04 06 08 1

. . . . Percentage of disseminated piec&ercentage of disseminated pieces
8.2. Impact of the strategy on the evolution of piece dissami (a) Random trip model.  (b) Community-based model.

tion

In order to understand the reason of such fiedeénce in  Figure 9: Piece dissemination evolution. 250 nodes. Digs&ion of a 48MB

the dissemination delay between the strategies, we first conff!® divided into 128 pieces of 384kB. Areal0Om>x 1, 00am. With the random
. . . . . . . and sequential strategies, nodes start by getting the saoesp Conversely,

pare the strategies regarding the piece disseminationtEwol they get diferent ones with PACS and Oracle.
Fig. 9 shows the proportion of time required, out of the total
time, to fully disseminate a given percentage of pieces.tdhe
tal time corresponds to the dissemination delay. The pieze d On the other hand, this first node is only infected at 80% of the
semination is faster with the random and sequential stieteg total time with the random and sequential strategies. Mo
Indeed, all the nodes get the first piece after 17% of the totalvhen the simulation achieves 90% of the total time, only 1.6%
time for the random and only after 7% of the total time for the(resp. 29%) of nodes are infected with the sequential glyate
sequential strategy. This reflects the fact that all nodas sy  (resp. random strategy), whereas 96% of nodes are already in
getting the same pieces with those strategies. Conversigy, fected with PACS and Oracle. This result indicates that PACS
PACS and Oracle, nodes start by gettinfijetient pieces and no could be more robust to a premature departure of the source
pieces are fully disseminated before 82% of the total tinre fonode from the network since other nodes are able to play the
Oracle and 71% of the total time for PACS. role of seeds earlier in the dissemination process.

But what matters is the global behavior of the dissemina-
tion evolution. Fig. 10 shows the proportion of time reqdire 8.3. Impact of the strategy on the neighborhood redundancy

among the total time, to infect a definite percentage of nodes  we define the neighbor redundancy as the average fraction
Anode is infected when it gets all the pieces. Regardledseof t of useless contacts. A contact is considered useless ifvbe t
mobility model, we observe two fierent behaviors. Clearly, nodes involved in it have no pieces to exchange. We consider
with PACS and Oracle, nodes are infected very quickly comthe dissemination of a 48MB file divided in 128 pieces. Fig 11
pared to the random and sequential strategies. With PACS anrghows the neighborhood redundancy according to the number
Oracle, the first node is infected around half of the totaktim of nodes in the network. For all strategies, the nodes fage mo
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when the number of data sources increases.

Figure 11: Neighborhood redundancy. Dissemination of a B§lé divided

into 128 pieces of 384kB. Area @00m x 1,000m. PACS limits neighborhood o
redundancy as compared to sequential and random strategies sources from 50 to 100, the delay decreases by less than 15%

for all the strategies. Hence, the benefits of introducing ne
data sources decreases as the number of data sourceseéscreas
useless connections when the network is denser. Indeed, witn addition, we observe that the improvement is less importa
the random trip model for example (Fig. 11(a)), only 1% osles for PACS and Oracle. Indeed, the delay only decreases by 20%
of the contacts are useless when we have 100 nodes in the ngfhen changing from 1 to 25 sources, while it reaches more than
work. This proportionis 10 times larger for 250 nodes. The im 409 for the random and sequential strategies. It is impottan
pact of network density can be explained by the augmentatiofote that the results of the random and the sequential gieate
of simultaneous co-located contacts. In the same neigbbdth  hecome very close to the one obtained by PACS and Oracle
nodes can get pieces from more neighbors when the network {§hen the number of data sources increases.
denser. In particular, two co-located nodes can get the same
pieces at the same time but fronffdrent neighbors. As a con- 8.5. Impact of fragment dispersion
sequence, a future contact between these two nodes becomes\ye want to figure out if the piece dispersion can impact the
useless. We observe, however, that the sequential stl@@dy  optained results. Fig. 13 shows the dissemination delayzwhe
to higher neighborhood redundancy. This result comfors thhe numper of piece sources varies from 1 to 32. When the
intuition behind the motivating example given in Fig. 1 (Sec nymper of piece sources is equal to 1, all the pieces arallyiti
tion 3.1). Moreover, PACS limits neighborhood redundargy a gyajlable at one node. This configuration is equivalent & th
compared to sequential and random strategies. For examplgngle data source scenario. In contrast, when the number of
with 500 nodes, the number of useless contacts with PACS iéiece sources is equal to 32, each piece is initially aviglab
divided by two comparing to the random strategy. This high-a giferent node in the network. In this study, we do not con-
lights the fact that co-located nodes get more heterogeneodiqger the sequential strategy since the strategy principts

pieces with PACS. not hold anymore if more than one piece source exists. Indeed
the initial state represents nodes that did not get the pigce
8.4. Impact of the number of data sources an increasing order of identifiers. We only evaluate theetfiss

We study the impact of the number of data sources on th&ation delay for the random strategy, PACS, and OraclenEve
dissemination delay of the fiierent strategies (Fig. 12). Re- if the dissemination delay decreases with the increaseeafpi
call that a data source is a node that initially has all thegse sources for all strategies, the improvementachieved igsigr
As expected, for all the strategies, the disseminationyd#d¢a  nificant with the random strategy. Indeed, the delay is impdo
creases with the increase of the number of data sources in thy more than 30% in this case, while it only reaches 12% with
network. Nevertheless, the input of additional sourcesam®  PACS and Oracle. This result can be explained by the fact that
give the same proportion of improvement to the overall disse distributing diferent pieces to élierent nodes enables an initial
ination delay. For example, when we double the number of datpiece shiiling. In addition to node mobility, this can be enough

9



) )
j j
o o
S 1300 . . . B - . . . . - 1800 - . . - 3600 - '
3 i PACS —=— PACS —=— g PACS —= PACS —=—
= 1200° Oracle -+ - - Oracle -+ < 1760- Oracle - $3300- Oracle -
& 1100- } Random -+ {; Random -+ & 20 Random —— 1 3000 RENdOM -+
S o 8 1720-  Seq--e-- © Seq e
g 1000 L } 5 1680- _ 2700 -
£ 800 ””#Lé\{'*:’é T 5 £ 1640 %,,% =8 - 2400§= i
g £ — R
g 700 - . . . . J . . B S| @ 1600 - ; : ) B 2100 ?’ ) ) ) -
o 12 4 8 16 32 1 2 4 8 16 32 a 96kB 192kB 384kB 768kB 1.5MB 96kB 192kB 384kB 768kB 1.5MB
Number of fragment source nodedlumber of fragment source nodes Piece size Piece size
& (@ RT.Area 30t x300m.  (b) CB. Area 30@nx 300m. (a) 12MB Data. (b) 48MB Data.
©
c
o
© 7200 " 'paCS—=— - ' 'pPACS = ° Figure 14: Dissemination delay according to the piece sitmader size set to
8 5 9 y 9 p
> 6600% . Oracle - - Oracle - 0. Nodes move based on RollerNet trace. (Please note thawthgraphs do
k) Random -+ Random -+ : ot
° { not use the same scale, for the sake of visualization). Rkt the strategy,
S 6000 - . L . . . .
c +\ the dissemination delay increases with the piece size.
.% 5400~ - {H 7 _ * .
£ \?ff i SR,
£ 4800 - —f - ~ ,,;:,{,,,,,{7 ; -
2 4200 F % o '
(2] - ! ! ! ! 2 ! ! ! P —9
a 1 2 4 8 16 32 1 2 4 8 16 32 100 n=2en

h=568
h=140B
h=280B
h=560B
h=1400B
Figure 13: Dissemination delay according to the number@¢gisources. Dis- 20 — h=2800B
semination of a 12MB file divided into 32 pieces of 384kB. Ramdtrip (RT) 0
versus community-based model (CB). Distributingfetient pieces to ierent

nodes can be enough to get a good heterogeneity of pieces metivork with

the random strategy.

Number of fragment source nodedlumber of fragment source nodes
(c) RT. Area 1000m x 1,000m(d) CB. Area 1000mx 1,000m.

Goodput (kB/s)
[=23
(=}

T T T 1
100 1000 10000 100000
Piece size ratio

—
—
o

Figure 15: Global goodput according to the piece size rateader size varies
] ] ) _ from 28B to 2800B. Piece size varies as a multiple of the heside. RollerNet
to get a good heterogeneity of pieces in the network even witkrace. Regardless of the header size, the maximum globalpgods obtained

a random piece selection strategy. However, such an idigal ~ With a piece size ratio around 90.
persion of piece is not obvious in real content sharing siena

global goodput obtained from the RollerNet trace according
9. Real-world trace evaluation the piece size. We consider a large scale of header size é@m
sonable values (28B, 56B) to some very large values (1,400B,
In this section, we evaluate the performance of the spready 8ooB). Although a header of 2,800B is impractical in a real
ing strategies using the real-world mobility traces of BdWet.  deployment, we intentionally consider such large headmsssi
We vary the scenario by setting each node in the network as dafp understand the tendency of the resulting goodput. We vary
source. Plots represent average results. Section 7.3 suresia the piece size according to the header size. When piece size

the experimentation details. ratio equals 1, the piece contains only the header. In this,ca
_ _ the goodput is equal to 0 since no useful data is sent. On the
9.1. Impact of the piece size other hand, when the piece size ratio is very large, the heade

When the piece header is set to 0, the dissemination delagpresents a small fraction of the piece size. However, here
increases with the piece size and those regardless thegstrat again, the goodput tends to 0 since the number of usable con-
(Fig. 14). One reason is that the larger the piece size, 8w letact decreases as the piece becomes too large. Between these
the number of contact opportunities able to transmit theepie extreme values, the shape of the goodput curve depends on the
Moreover, when the piece is too voluminous, the dissenunati value of the header size. The larger the header size, thpeshar
fails in many cases. This is what happens when trying to senthe goodput curve. This means that the selection of the piece
pieces larger than 1.5MB (resp. 3MB) for 48MB data (resp.size is crucial when the header is significant. Indeed, when t
12MB data). Nevertheless, comparing théatient strategies, header is large, the goodput considerably changes degeowlin
the increase of the dissemination delay is less significatht w the piece size. In all cases, the maximum global goodput-s ob
PACS than with the sequential and random strategies. Thitiined with a piece size ratio around 90. What is intereting
difference is more noticeable when disseminating larger databserve here is that the smaller the header, the largeratespi
(Fig. 14(b)). Indeed, when the number of contact opporiemit of piece size ratios that optimize the goodput.

able to transmit the piece is smaller, the impact of the esgyat Plots in Fig. 16 concur with the results obtained with the

grows. theoretical computation of the global goodput. Fig. 16 show
the dissemination delay according to the piece size when the

9.2. Impact of the overhead header equals 56B and 512B. For the four strategies, when the

We now study the impact of the overhead introduced b)piece isin r_ange[-GkB, 768kB], we obtain similar d_isser’d'mat
the piece header on the previous results. Fig. 15 shows ifelays. This confirms that when the header remains reasgnabl
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Figure 16: Dissemination delay according to the piece sizennoverhead is  Figure 18: Piece dissemination delay. Dissemination of dBl&lata divided
considered. Dissemination of a 12MB data. Nodes move basdrbterNet into 32 pieces of 1.5MB. Nodes move based on RollerNet tratenks to a
trace. Experimental results concur with the ones obtainiéll thve theoretical better piece diversity in the network, PACS achieves afasterall dissemina-

computation of the global goodput. tion.
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S8 06 gt o7 | ) the figures represents afirent data source. We clearly distin-

§° 0.4 - DACS = 06 | bAcs = guish two diterent behaviors. On the one hand, the random and

racle * ) i racle * . . . . . .

§ o2 Random -+ 0.5 - Random =+ - the sequential strategies (Fig. 18(c), Fig. 18(d)) achilegelis-

8 RO, VS BT o RS semination of the first pieces very quickly. Neverthelelssyt

. o 0z 04 06 08 1 0 02 04 06 08 1 spend much more time to disseminate the last pieces. This can
Percentage of disseminated pieces Percentage of infected nodes be explained by the lack of piece diversity in the network tha

a) Piece dissemination evoluti Node infection evolution. L.
(@) o) causes useless contact opportunities. On the other haad, Or

Figure 17: Dissemination evolution. Dissemination of a 48file divided into cle and PACS (Fig. 18(b)’ Fig. 18(a)) start by spreading)zwi

128 pieces of 384kB. Nodes move based on RollerNet trace oiAs1bbility pieces. This explains the slowness for the first piece to lye fu
models results, PACS achieves slower piece disseminatidragaster node  disseminated. But, because nodes g&edent pieces, the over-

infection. all dissemination is faster.

we can select the piece size among a large range of values witA-4. Impact of the data source

out significant consequences on the results. Fig. 19 shows the dissemination delay according to the node
. . that plays the role of the data source. We assume the disaemin
9.3. Impact of the piece selection strategy tion of a 12MB data divided into 2 pieces of 6MB each. When

This section investigates the importance of the piece seledhe strategy fails to disseminate the content before theoénd
tion strategy in a real environment. We analyze the impact ofhe trace, the dissemination delay is set to -1. The stredegi
the strategy in the evolution of both piece disseminatiod an dissemination success depends on the data source. Indeed, f
node infection. Figs. 17(a) and 17(b) confirm the obsermatio some data sources (for example, nodes 26 and 50), the dissemi
made with the mobility models. Indeed, compared to the senation fails regardless the strategy. Moreover, we obssowee
guential and random strategies, PACS achieves slower pieckata sources that achieve the dissemination for somegitate
dissemination and a faster node infection. Clearly, thegretr  and fail for the others (for example, nodes 44 and 47). Tltis la
age of nodes having all pieces and playing the role of a sourder observation highlights the fact that the piece selacticat-
node increases faster with PACS. This observation reflects @gy remains important even when the number of pieces is small
higher heterogeneity of the disseminated pieces with PA@s t (here, there are only 2 pieces). Furthermore, we notice that
explains the better dissemination delay. PACS has the same delivery ratio as Oracle and outperforms

To see in detail how the dissemination evolves in time, wethe random and sequential strategies by more than 13%.
estimate the piece dissemination delay (Fig. 18). We defieet  We further investigate the dissemination failures. Fig. 20
piece dissemination delay as the time required for a pdaticu shows the node infection delay according to data sourcefs-id
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remains important even when the content is divided into @rgyeces.
P L Time (seconds) Time (seconds)

(c) Source 44. (d) Source 47.

tifier. We consider three particular data sources: 26, 4d 4an _ o , -

. Figure 20: Node infection delay according to data sourcediSsemination of
Whe_n n(_)de 26_ is the data source, no strafcegy_completes the d?lZMB data divided into 2 pieces of 6MB. Nodes move based dieRtzt
semination (this represents 8% of the points in Fig 19). I8 th trace. The selection of the data source can significanthyagnthe obtained
case, the infection of the first node in the network comes veryesults.
late comparing to the common case represented by the source

node 7 (Fig 20(a)). Nevertheless, even if the disseminasion pjjity models and real-world trace simulations. Thanks t

_not achieved for_aII strategies, the node infectio_n delziaéa_er higher heterogeneity when distributing pieces, PACS aesie
in PACS comparing to the random and sequential strategies. | petier dissemination delays and faster node infection than
deed, with PACS, 95% of nodes are infected at the time 7'13§equential and random strategies.

of the trace whereas the same rate is reached by the random and £ ;+re directions include a number of open issues. A first
sequential strategies at time 8,810. When node 44 is thesour question is the impact of the selected neighbor, i.e., hdvete
PACS and Oracle complete the dissemination while the randofy, seject the relaying node when having several simuliasieo
and sequential strategies fail (represents 14.5% Of tEPBI  4niact opportunities. Results from Section 9 indicaté the

Fig 19). Here, the random and sequential strategies inf8¥t 0 5nqom selection of the relaying nodes can lead to situstion
82% nodes when PACS achieves full dissemination. Finallyyhere the last non-infected node becomes isolated. A mere so
when node 47 is the source, random and sequential strategigfjsticated relay selection strategy could avoid such aaie
achieve the dissemination while Oracle and PACS fail (reprepy infecting nodes likely to be isolated first. Second, weldou
sents 1.6% of the points in Fig. 19). In this case, PACS isfeClgyen the population of users to the case of multiple grofips
98% of the nodes at time 6,681 and fails to infect the last ”Odgarious interests. In this case, extending the algorithth wi
even if it still remains 30% of the total time. We find that the caching policy could be a good solution [29, 30]. Finally, we

last non-infected node becomes isolated at this momens.ig hi are currently implementing PACS on Android phones. To this
due to the random selection of the neighbor with whom piecegq practical questions should be addressed, as the ireset t

are exchanged. of the prevalence vector and issues related to the selection
the content to be transferred when multiple choices existo A
10. Conclusion and open issues a practical concern is related to hardware limitations Leiseent

devices require root privilege to enable ad hoc commurunati
In this paper, we investigate challenges of large contesat di using the Wi-Fi interface.

semination in opportunistic networks. First, we obseneg th
fragmentation reduces the dissemination delay and even en- Knowled
ables the dissemination of contents that could not be dissenh‘cknowledgment

inated otherwise. Second, we address the piece size selecti  This work is partially supported by the ANR Crowd project

problem and show that, for reasonable header size, the pie¢g,der contract ANR-08-VERS-006. and CNPq and FAPERJ
size can in general be selected from a large range of valugsysyjjian agencies.

without significant impact on the results. Finally, we preed,

designed, and evaluated PACS, dificéent strategy to dissem-

inate large contents in opportunistic networks. PACS selec References
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