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Overview. In a seminal paper of 2005, Nualart and Peccati [37] discovered a surprising
central limit theorem (called the “Fourth Moment Theorem” in the sequel) for sequences of multiple
stochastic integrals of a fixed order: in this context, convergence in distribution to the standard
normal law is equivalent to convergence of just the fourth moment. Shortly afterwards, Peccati and
Tudor [44] gave a multidimensional version of this characterization.

Since the publication of these two beautiful papers, many improvements and developments on
this theme have been considered. Among them is the work by Nualart and Ortiz-Latorre [36],
giving a new proof only based on Malliavin calculus and the use of integration by parts on Wiener
space. A second step is my joint paper [25] (written in collaboration with Peccati) in which, by
bringing together Stein’s method with Malliavin calculus, we have been able (among other things)
to associate quantitative bounds to the Fourth Moment Theorem. It turns out that Stein’s method
and Malliavin calculus fit together admirably well. Their interaction has led to some remarkable
new results involving central and non-central limit theorems for functionals of infinite-dimensional
Gaussian fields.

The current survey aims to introduce the main features of this recent theory. It originates from
a series of lectures I delivered∗ at the Collège de France between January and March 2012, within
the framework of the annual prize of the Fondation des Sciences Mathématiques de Paris. It may
be seen as a teaser for the book [29], in which the interested reader will find much more than in this
short survey.

Acknowledgments. It is a pleasure to thank the Fondation des Sciences Mathématiques de
Paris for its generous support during the academic year 2011-12 and for giving me the opportunity
to speak about my recent research in the prestigious Collège de France. I am grateful to all the
participants of these lectures for their assiduity. My last thank goes to Giovanni Peccati, not only
for accepting to give a lecture (resulting to the material developed in Section 10) but also (and
especially!) for all the nice theorems we recently discovered together. I do hope it will continue this
way as long as possible!

∗You may watch the videos of the lectures at http://www.sciencesmaths-paris.fr/index.php?page=175.

1



Contents

1 Breuer-Major Theorem 2

2 Universality of Wiener chaos 8

3 Stein’s method 14

4 Malliavin calculus in a nutshell 19

5 Stein meets Malliavin 28

6 The smart path method 36

7 Cumulants on the Wiener space 40

8 A new density formula 44

9 Exact rates of convergence 49

10 An extension to the Poisson space (following the invited talk by Giovanni
Peccati) 53

11 Fourth Moment Theorem and free probability 62

1 Breuer-Major Theorem

The aim of this first section is to illustrate, through a guiding example, the power of the approach
we will develop in this survey.

Let {Xk}k>1 be a centered stationary Gaussian family. In this context, stationary just means
that there exists ρ : Z → R such that E[XkXl] = ρ(k − l), k, l > 1. Assume further that ρ(0) = 1,
that is, each Xk is N (0, 1) distributed.

Let ϕ : R → R be a measurable function satisfying

E[ϕ2(X1)] =
1√
2π

∫

R

ϕ2(x)e−x2/2dx <∞. (1.1)

Let H0,H1, . . . denote the sequence of Hermite polynomials. The first few Hermite polynomials are
H0 = 1, H1 = X, H2 = X2−1 and H3 = X3−3X. More generally, the qth Hermite polynomial Hq

is defined through the relation XHq = Hq+1 + qHq−1. It is a well-known fact that, when it verifies

(1.1), the function ϕ may be expanded in L2(R, e−x2/2dx) (in a unique way) in terms of Hermite
polynomials as follows:

ϕ(x) =

∞∑

q=0

aqHq(x). (1.2)

Let d > 0 be the first integer q > 0 such that aq 6= 0 in (1.2). It is called the Hermite rank of ϕ;
it will play a key role in our study. Also, let us mention the following crucial property of Hermite
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polynomials with respect to Gaussian elements. For any integer p, q > 0 and any jointly Gaussian
random variables U, V ∼ N (0, 1), we have

E[Hp(U)Hq(V )] =

{
0 if p 6= q

q!E[UV ]q if p = q.
(1.3)

In particular (choosing p = 0) we have that E[Hq(X1)] = 0 for all q > 1, meaning that
a0 = E[ϕ(X1)] in (1.2). Also, combining the decomposition (1.2) with (1.3), it is straightforward
to check that

E[ϕ2(X1)] =

∞∑

q=0

q!a2q . (1.4)

We are now in position to state the celebrated Breuer-Major theorem.

Theorem 1.1 (Breuer, Major, 1983; see [6]) Let {Xk}k>1 and ϕ : R → R be as above. Assume
further that a0 = E[ϕ(X1)] = 0 and that

∑
k∈Z |ρ(k)|d < ∞, where ρ is the covariance function of

{Xk}k>1 and d is the Hermite rank of ϕ (observe that d > 1). Then, as n→ ∞,

Vn =
1√
n

n∑

k=1

ϕ(Xk)
law→ N (0, σ2), (1.5)

with σ2 given by

σ2 =
∞∑

q=d

q!a2q
∑

k∈Z
ρ(k)q ∈ [0,∞). (1.6)

(The fact that σ2 ∈ [0,∞) is part of the conclusion.)

The proof of Theorem 1.1 is far from being obvious. Before doing so, let us make some relevant
comments.

Remark 1.2 1. First, it is worthwhile noticing that Theorem 1.1 (strictly) contains the classical
central limit theorem (CLT), which is not an evident claim at first glance. Indeed, let {Yk}k>1

be a sequence of i.i.d. centered random variables with common variance σ2 > 0, and let FY

denote the common cumulative distribution function. Consider the pseudo-inverse F−1
Y of FY ,

defined as

F−1
Y (u) = inf{y ∈ R : u 6 FY (y)}, u ∈ (0, 1).

When U ∼ U[0,1] is uniformly distributed, it is well-known that F−1
Y (U)

law
= Y1. Observe

also that 1√
2π

∫ X1

−∞ e−t2/2dt is U[0,1] distributed. By combining these two facts, we get that

ϕ(X1)
law
= Y1 with

ϕ(x) = F−1
Y

(
1√
2π

∫ x

−∞
e−t2/2dt

)
, x ∈ R.

Assume now that ρ(0) = 1 and ρ(k) = 0 for k 6= 0, that is, assume that the sequence {Xk}k>1

is composed of i.i.d. N (0, 1) random variables. Theorem 1.1 yields that

1√
n

n∑

k=1

Yk
law
=

1√
n

n∑

k=1

ϕ(Xk)
law→ N


0,

∞∑

q=d

q!a2q


 ,
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thereby concluding the proof of the CLT since σ2 = E[ϕ2(X1)] =
∑∞

q=d q!a
2
q , see (1.4). Of

course, such a proof of the CLT is like to crack a walnut with a sledgehammer. This approach
has nevertheless its merits: it shows that the independence assumption in the CLT is not
crucial to allow a Gaussian limit. Indeed, this is rather the summability of a series which is
responsible of this fact, see also the second point of this remark.

2. Assume that d > 2 and that ρ(k) ∼ |k|−D as |k| → ∞ for some D ∈ (0, 1d). In this case, it may

be shown that ndD/2−1
∑n

k=1 ϕ(Xk) converges in law to a non-Gaussian (non degenerated)
random variable. This shows in particular that, in the case where

∑
k∈Z |ρ(k)|d = ∞, we

usually get a non-Gaussian limit. In other words, the summability assumption in Theorem
1.1 is, roughly speaking, equivalent (when d > 2) to the asymptotic normality.

3. There exists a functional version of Theorem 1.1, in which the sum
∑n

k=1 is replaced by
∑[nt]

k=1
for t > 0. It is actually not that much harder to prove and, unsurprisingly, the limiting process
is then the standard Brownian motion multiplied by σ.

4. The original proof of Theorem 1.1 consisted to show that all the moments of Vn converge to
those of the Gaussian law N (0, σ2). As anyone might guess, this required a high ability and
a lot of combinatorics. In the proof we will offer, the complexity is the same than checking
that the variance and the fourth moment of Vn converges to σ2 and 3σ4 respectively, which is
a drastic simplification with respect to the original proof.

Let us now prove Theorem 1.1. We first compute the limiting variance, which will justify the
formula (1.6) we claim for σ2. Thanks to (1.2) and (1.3), we can write

E[V 2
n ] =

1

n
E






∞∑

q=d

aq

n∑

k=1

Hq(Xk)




2
 =

1

n

∞∑

p,q=d

apaq

n∑

k,l=1

E[Hp(Xk)Hq(Xl)]

=
1

n

∞∑

q=d

q!a2q

n∑

k,l=1

ρ(k − l)q =

∞∑

q=d

q!a2q
∑

r∈Z
ρ(r)q

(
1− |r|

n

)
1{|r|<n}.

When q > d and r ∈ Z are fixed, we have that

q!a2qρ(r)
q
(
1− |r|

n

)
1{|r|<n} → q!a2qρ(r)

q as n→ ∞.

On the other hand, using that |ρ(k)| = |E[X1Xk+1]| 6
√
E[X2

1 ]E[X2
1+k] = 1, we have

q!a2q |ρ(r)|q
(
1− |r|

n

)
1{|r|<n} 6 q!a2q |ρ(r)|q 6 q!a2q |ρ(r)|d,

with
∑∞

q=d

∑
r∈Z q!a

2
q |ρ(r)|d = E[ϕ2(X1)]×

∑
r∈Z |ρ(r)|d <∞, see (1.4). By applying the dominated

convergence theorem, we deduce that E[V 2
n ] → σ2 as n→ ∞, with σ2 ∈ [0,∞) given by (1.6).

Let us next concentrate on the proof of (1.5). We shall do it in three steps of increasing generality
(but of decreasing complexity!):

(i) when ϕ = Hq has the form of a Hermite polynomial (for some q > 1);

(ii) when ϕ = P ∈ R[X] is a real polynomial;
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(iii) in the general case when ϕ ∈ L2(R, e−x2/2dx).

We first show that (ii) implies (iii). That is, let us assume that Theorem 1.1 is shown for
polynomial functions ϕ, and let us show that it holds true for any function ϕ ∈ L2(R, e−x2/2dx).
We proceed by approximation. Let N > 1 be a (large) integer (to be chosen later) and write

Vn =
1√
n

N∑

q=d

aq

n∑

k=1

Hq(Xk) +
1√
n

∞∑

q=N+1

aq

n∑

k=1

Hq(Xk) =: Vn,N +Rn,N .

Similar computations as above leads to

sup
n>1

E[R2
n,N ] 6

∞∑

q=N+1

q!a2q ×
∑

r∈Z
|ρ(r)|d → 0 as N → ∞. (1.7)

(Recall from (1.4) that E[ϕ2(X1)] =
∑∞

q=d q!a
2
q < ∞.) On the other hand, using (ii) we have that,

for fixed N and as n→ ∞,

Vn,N
law→ N


0,

N∑

q=d

q!a2q
∑

k∈Z
ρ(k)q


 . (1.8)

It is then a routine exercise (details are left to the reader) to deduce from (1.7)-(1.8) that

Vn = Vn,N +Rn,N
law→ N (0, σ2) as n→ ∞, that is, that (iii) holds true.

Next, let us prove (i). We actually need to work with a specific realization of the sequence
{Xk}k>1. The space

H := span{X1,X2, . . .}
L2(Ω)

being a real separable Hilbert space, it is isometrically isomorphic to either RN (with N > 1) or
L2(R+). Let us assume that H ≃ L2(R+), the case where H ≃ RN being easier to handle. Let
Φ : H → L2(R+) be an isometry. Set ek = Φ(Xk) for each k > 1. We have

ρ(k − l) = E[XkXl] =

∫ ∞

0
ek(x)el(x)dx, k, l > 1 (1.9)

If B = (Bt)t>0 denotes a standard Brownian motion, we deduce that

{Xk}k>1
law
=

{∫ ∞

0
ek(t)dBt

}

k>1

,

these two families being indeed centered, Gaussian and have the same covariance structure (by
construction of the ek’s). On the other hand, it is a well-known result of stochastic analysis (which
follows from an induction argument through the Itô’s formula) that, for any function e ∈ L2(R+)
such that ‖e‖L2(R+) = 1, we have

Hq

(∫ ∞

0
e(t)dBt

)
= q!

∫ ∞

0
dBt1e(t1)

∫ t1

0
dBt2e(t2) . . .

∫ tq−1

0
dBtqe(tq). (1.10)

(For instance, by Itô’s formula we can write
(∫ ∞

0
e(t)dBt

)2

= 2

∫ ∞

0
dBt1e(t1)

∫ t1

0
dBt2e(t2) +

∫ ∞

0
e(t)2dt

= 2

∫ ∞

0
dBt1e(t1)

∫ t1

0
dBt2e(t2) + 1,
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which is nothing but (1.10) for q = 2, since H2 = X2 − 1.) At this stage, let us adopt the two
following notational conventions:

(a) If ϕ (resp. ψ) is a function of r (resp. s) arguments, then the tensor product ϕ ⊗ ψ is the
function of r + s arguments given by ϕ ⊗ ψ(x1, . . . , xr+s) = ϕ(x1, . . . , xr)ψ(xr+1, . . . , xr+s).
Also, if q > 1 is an integer and e is a function, the tensor product function e⊗q is the function
e⊗ . . .⊗ e where e appears q times.

(b) If f ∈ L2(Rq
+) is symmetric (meaning that f(x1, . . . , xq) = f(xσ(1), . . . , xσ(q)) for all

permutation σ ∈ Sq and almost all x1, . . . , xq ∈ R+) then

Iq(f) =

∫

R
q
+

f(t1, . . . , tq)dBt1 . . . dBtq := q!

∫ ∞

0
dBt1

∫ t1

0
dBt2 . . .

∫ tq−1

0
dBtqf(t1, . . . , tq).

With these new notations at hand, observe that we can rephrase (1.10) in a simple way as

Hq

(∫ ∞

0
e(t)dBt

)
= Iq(e

⊗q). (1.11)

It is now time to introduce a very powerful tool, the so-called Fourth Moment Theorem of Nualart
and Peccati. This wonderful result lies at the heart of the approach we shall develop in these lecture
notes. We will prove it in Section 5.

Theorem 1.3 (Nualart, Peccati, 2005; see [37]) Fix an integer q > 2, and let {fn}n>1 be a
sequence of symmetric functions of L2(Rq

+). Assume that E[Iq(fn)
2] = q!‖fn‖2L2(Rq

+)
→ σ2 as

n→ ∞ for some σ > 0. Then, the following three assertions are equivalent as n→ ∞:

(1) Iq(fn)
law→ N (0, σ2);

(2) E[Iq(fn)
4]

law→ 3σ4;

(3) ‖fn⊗r fn‖L2(R2q−2r
+ ) → 0 for each r = 1, . . . , q−1, where fn⊗r fn is the function of L2(R2q−2r

+ )

defined by

fn ⊗r fn(x1, . . . , x2q−2r)

=

∫

Rr
+

fn(x1, . . . , xq−r, y1, . . . , yr)fn(xq−r+1, . . . , x2q−2r, y1, . . . , yr)dy1 . . . dyr.

In other words, Theorem 1.3 states that the convergence in law of a normalized sequence of multiple
Wiener-Itô integrals Iq(fn) towards the Gaussian law N (0, σ2) is equivalent to convergence of just
the fourth moment to 3σ4. This surprising result has been the starting point of a new line of
research, and has quickly led to several applications, extensions and improvement. One of these
improvements is the following quantitative bound associated to Theorem 1.3 that we shall prove in
Section 5 by combining Stein’s method with the Malliavin calculus.

Theorem 1.4 (Nourdin, Peccati, 2009; see [25]) If q > 2 is an integer and f is a symmetric
element of L2(Rq

+) satisfying E[Iq(f)
2] = q!‖f‖2

L2(Rq
+)

= 1, then

sup
A⊂B(R)

∣∣∣∣P [Iq(f) ∈ A]− 1√
2π

∫

A
e−x2/2dx

∣∣∣∣ 6 2

√
q − 1

3q

√∣∣E[Iq(f)4]− 3
∣∣.
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Let us go back to (i), that is, to the proof of (1.5) for ϕ = Hq. Recall that the sequence {ek}
has be chosen for (1.9) to hold. Using (1.10) (see also (1.11)), we can write Vn = Iq(fn), with

fn =
1√
n

n∑

k=1

e⊗q
k .

We already showed that E[V 2
n ] → σ2 as n→ ∞. So, according to Theorem 1.3, to get (i) it remains

to check that ‖fn ⊗r fn‖L2(R2q−2r
+ ) → 0 for any r = 1, . . . , q − 1. We have

fn ⊗r fn =
1

n

n∑

k,l=1

e⊗q
k ⊗r e

⊗q
l =

1

n

n∑

k,l=1

〈ek, el〉rL2(R+) e
⊗q−r
k ⊗ e⊗q−r

l

=
1

n

n∑

k,l=1

ρ(k − l)r e⊗q−r
k ⊗ e⊗q−r

l ,

implying in turn

‖fn ⊗r fn‖2L2(R2q−2r
+ )

=
1

n2

n∑

i,j,k,l=1

ρ(i− j)rρ(k − l)r〈e⊗q−r
i ⊗ e⊗q−r

j , e⊗q−r
k ⊗ e⊗q−r

l 〉
L2(R2q−2r

+ )

=
1

n2

n∑

i,j,k,l=1

ρ(i− j)rρ(k − l)rρ(i− k)q−rρ(j − l)q−r.

Observe that |ρ(k − l)|r|ρ(i − k)|q−r 6 |ρ(k − l)|q + |ρ(i − k)|q. This, together with other obvious
manipulations, leads to the bound

‖fn ⊗r fn‖2L2(R2q−2r
+ )

6
2

n

∑

k∈Z
|ρ(k)|q

∑

|i|<n

|ρ(i)|r
∑

|j|<n

|ρ(j)|q−r

6
2

n

∑

k∈Z
|ρ(k)|d

∑

|i|<n

|ρ(i)|r
∑

|j|<n

|ρ(j)|q−r

= 2
∑

k∈Z
|ρ(k)|d × n

− q−r
q

∑

|i|<n

|ρ(i)|r × n
− r

q

∑

|j|<n

|ρ(j)|q−r .

Thus, to get that ‖fn ⊗r fn‖L2(R2q−2r
+ )

→ 0 for any r = 1, . . . , q − 1, it suffices to show that

sn(r) := n−
q−r
q

∑

|i|<n

|ρ(i)|r → 0 for any r = 1, . . . , q − 1.

Let r = 1, . . . , q − 1. Fix δ ∈ (0, 1) (to be chosen later) and let us decompose sn(r) into

sn(r) = n
− q−r

q

∑

|i|<[nδ]

|ρ(i)|r + n
− q−r

q

∑

[nδ]6|i|<n

|ρ(i)|r =: s1,n(δ, r) + s2,n(δ, r).

Using Hölder inequality, we get that

s1,n(δ, r) 6 n−
q−r
r


 ∑

|i|<[nδ]

|ρ(i)|q



r/q

(1 + 2[nδ])
q−r
q 6 cst× δ1−r/q,
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as well as

s2,n(δ, r) 6 n−
q−r
r




∑

[nδ]6|i|<n

|ρ(i)|q



r/q

(2n)
q−r
q 6 cst×



∑

|i|>[nδ]

|ρ(i)|q



r/q

.

Since 1 − r/q > 0, it is a routine exercise (details are left to the reader) to deduce that sn(r) → 0
as n→ ∞. Since this is true for any r = 1, . . . , q − 1, this concludes the proof of (i).

It remains to show (ii). We shall use the multivariate counterpart of Theorem 1.3, which was
obtained shortly afterwards by Peccati and Tudor. Since only a weak version (where all the involved
multiple Wiener-Itô integrals have different orders) is needed here, we state the result of Peccati
and Tudor only in this situation. We refer to Section 6 for a proof of a more general version.

Theorem 1.5 (Peccati, Tudor, 2005; see [44]) Consider l integers q1, . . . , ql > 1, with l > 2.
Assume that all the qi’s are pairwise different. For each i = 1, . . . , l, let {f in}n>1 be a sequence of
symmetric functions of L2(Rqi

+) satisfying E[Iqi(f
i
n)

2] = qi!‖f in‖2L2(R
qi
+ )

→ σ2i as n → ∞ for some

σi > 0. Then, the following two assertions are equivalent as n→ ∞:

(1) Iqi(f
i
n)

law→ N (0, σ2i ) for all i = 1, . . . , l;

(2)
(
Iq1(f

1
n), . . . , Iql(f

l
n)
) law→ N

(
0,diag(σ21 , . . . , σ

2
l )
)
.

In other words, Theorem 1.5 proves the surprising fact that, for a sequence of vectors of multiple
Wiener-Itô integrals, componentwise convergence to Gaussian always implies joint convergence. We
shall combine Theorem 1.5 with (i) to prove (ii). Let ϕ have the form of a real polynomial. In
particular, it admits a decomposition of the type ϕ =

∑N
q=d aqHq for some finite integer N > d.

Together with (i), Theorem 1.5 yields that

(
1√
n

n∑

k=1

Hd(Xk), . . . ,
1√
n

n∑

k=1

HN (Xk)

)
law→ N

(
0,diag(σ2d, . . . , σ

2
N )
)
,

where σ2q = q!
∑

k∈Z ρ(k)
q, q = d, . . . ,N . We deduce that

Vn =
1√
n

N∑

q=d

aq

n∑

k=1

Hq(Xk)
law→ N


0,

N∑

q=d

a2qq!
∑

k∈Z
ρ(k)q


 ,

which is the desired conclusion in (ii) and conclude the proof of Theorem 1.1.

To go further. In [30], one associates quantitative bounds to Theorem 1.1 by using a similar
approach.

2 Universality of Wiener chaos

Before developing the material which will be necessary for the proof of the Fourth Moment Theorem
1.3 (as well as other related results), to motivate the reader let us study yet another consequence
of this beautiful result.

For any sequence X1,X2, . . . of i.i.d. random variables with mean 0 and variance 1, the central

limit theorem asserts that Vn = (X1 + . . . + Xn)/
√
n

law→ N (0, 1) as n → ∞. It is a particular
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instance of what is commonly referred to as a ‘universality phenomenon’ in probability. Indeed, we
observe that the limit of the sequence Vn does not rely on the specific law of the Xi’s, but only of
the fact that its first two moments are 0 and 1 respectively.

Another example that exhibits a universality phenomenon is given by the Wigner’s theorem in
the random matrices theory. More precisely, let {Xij}j>i>1 and {Xii/

√
2}i>1 be two independent

families composed of i.i.d. random variables with mean 0, variance 1, and all the moments. SetXji =

Xij and consider the n × n random matrix Mn = (
Xij√
n
)16i,j6n. The matrix Mn being symmetric,

its eigenvalues λ1,n, . . . , λn,n (possibly repeated with multiplicity) belong to R. Wigner’s theorem
then asserts that the spectral measure of Mn, that is, the random probability measure defined
as 1

n

∑n
k=1 δλk,n

, always converge almost surely to the semicircular law 1
2π

√
4− x21[−2,2](x)dx,

whatever the exact distribution of the entries of Mn are.
In this section, our aim is to prove yet another universality phenomenon, which is in the spirit

of the two afore-mentioned results. To do so, we need to introduce the following two blocks of basic
ingredients:

(i) Three sequences X = (X1,X2, . . .), G = (G1, G2, . . .) and E = (ε1, ε2, . . .) of i.i.d. random
variables, all with mean 0, variance 1 and finite fourth moment. We are more specific with G

and E, by assuming further that G1 ∼ N (0, 1) and P (ε1 = 1) = P (ε1 = −1) = 1/2. (As we
will see, E will actually play no role in the statement of Theorem 2.1; we will however use it
to build a interesting counterexample.)

(ii) A fixed integer d > 1 as well as a sequence gn : {1, . . . , n}d → R, n > 1 of real functions, each
gn satisfying in addition: for all i1, . . . , id = 1, . . . , n,

(a) gn(i1, . . . , id) = gn(iσ(1), . . . , iσ(d)) for all permutation σ ∈ Sd;

(b) gn(i1, . . . , id) = 0 whenever ik = il for some k 6= l;

(c) d!
∑n

i1,...,id=1 gn(i1, . . . , id)
2 = 1.

(Of course, conditions (a) and (b) are becoming immaterial when d = 1.) If x = (x1, x2, . . .)
is a given real sequence, we also set

Qd(gn,x) =
n∑

i1,...,id=1

gn(i1, . . . , id)xi1 . . . xid .

Using (b) and (c), it is straightforward to check that, for any n > 1, we have E[Qd(gn,X)] = 0
and E[Qd(gn,X)2] = 1.

We are now in position to state our new universality phenomenon.

Theorem 2.1 (Nourdin, Peccati, Reinert, 2010; see [31]) Assume that d > 2. Then, as
n→ ∞, the following two assertions are equivalent:

(α) Qd(gn,G)
law→ N (0, 1);

(β) Qd(gn,X)
law→ N (0, 1) for any sequence X as given in (i).

Before proving Theorem 2.1, let us address some comments.
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Remark 2.2 1. In reality, the universality phenomenon in Theorem 2.1 is a bit more subtle than
in the CLT or in the Wigner’s theorem. To illustrate what we have in mind, let us consider
an explicit situation (in the case d = 2). Let gn : {1, . . . , n}2 → R be the function given by

gn(i, j) =
1

2
√
n− 1

1{i=1,j>2 or j=1,i>2}.

It is easy to check that gn satisfies the three assumptions (a)-(b)-(c) and also that

Q2(gn,x) = x1 ×
1√
n− 1

n∑

k=2

xk.

The classical CLT then implies that Q2(gn,G)
law→ G1G2 and Q2(gn,E)

law→ ε1G2. Moreover, it
is a classical and easy exercise to check that ε1G2 is N (0, 1) distributed. Thus, what we just

showed is that, although Q2(gn,E)
law→ N (0, 1) as n → ∞, the assertion (β) in Theorem 2.1

fails when choosing X = G (indeed, the product of two independent N (0, 1) random variables
is not gaussian). This means that, in Theorem 2.1, we cannot replace the sequence G in (α)
by any other sequence (at least, not by E !).

2. Theorem 2.1 is completely false when d = 1. For an explicit counterexample, consider for
instance gn(i) = 1{i=1}, i = 1, . . . , n. We then have Q1(gn,x) = x1. Consequently, the
assertion (α) is trivially verified (it is even an equality in law!) but the assertion (β) is never
true unless X1 ∼ N (0, 1).

Proof of Theorem 2.1. Of course, only the implication (α)→(β) must be shown. Let us divide its
proof into three steps.

Step 1. Set ei = 1[i−1,i], i > 1, and let fn ∈ L2(Rd
+) be the symmetric function defined as

fn =

n∑

i1,...,id=1

gn(i1, . . . , id)ei1 ⊗ . . .⊗ eid .

By the very definition of Id(fn), we have

Id(fn) = d!

n∑

i1,...,id=1

gn(i1, . . . , id)

∫ ∞

0
dBt1ei1(t1)

∫ t1

0
dBt2ei2(t2) . . .

∫ td−1

0
dBtdeid(td).

Observe that
∫ ∞

0
dBt1ei1(t1)

∫ t1

0
dBt2ei2(t2) . . .

∫ td−1

0
dBtdeid(td)

is not almost surely zero (if and) only if id 6 id−1 6 . . . 6 i1. By combining this fact with
assumption (b), we deduce that

Id(fn) = d!
∑

16id<...<i16n

gn(i1, . . . , id)

∫ ∞

0
dBt1ei1(t1)

∫ t1

0
dBt2ei2(t2) . . .

∫ td−1

0
dBtdeid(td)

= d!
∑

16id<...<i16n

gn(i1, . . . , id)(Bi1 −Bi1−1) . . . (Bid −Bid−1)

=

n∑

i1,...,id=1

gn(i1, . . . , id)(Bi1 −Bi1−1) . . . (Bid −Bid−1)
law
= Qd(gn,G).
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That is, the sequence Qd(gn,G) in (α) has actually the form of a multiple Wiener-Itô integral.
On the other hand, going back to the definition of fn ⊗d−1 fn and using that 〈ei, ej〉L2(R+) = δij
(Kronecker symbol), we get

fn ⊗d−1 fn =

n∑

i,j=1




n∑

k2,...,kd=1

gn(i, k2, . . . , kd)gn(j, k2, . . . , kd)


 ei ⊗ ej ,

so that

‖fn ⊗d−1 fn‖2L2(R2
+) =

n∑

i,j=1




n∑

k2,...,kd=1

gn(i, k2, . . . , kd)gn(j, k2, . . . , kd)




2

>

n∑

i=1




n∑

k2,...,kd=1

gn(i, k2, . . . , kd)
2




2

(by summing only over i = j)

> max
16i6n




n∑

k2,...,kd=1

gn(i, k2, . . . , kd)
2




2

= τ2n, (2.12)

where

τn := max
16i6n

n∑

k2,...,kd=1

gn(i, k2, . . . , kd)
2. (2.13)

Now, assume that (α) holds. By Theorem 1.3 and because Qd(gn,G)
law
= Id(fn), we have in

particular that ‖fn ⊗d−1 fn‖L2(R2
+) → 0 as n → ∞. Using the inequality (2.12), we deduce that

τn → 0 as n→ ∞.

Step 2. We claim that the following result (whose proof is detailed in Step 3) allows to conclude
the proof of (α) → (β).

Theorem 2.3 (Mossel, O’Donnel, Oleszkiewicz, 2010; see [18]) Let X and G be given as in
(i) and let gn : {1, . . . , n}d → R be a function satisfying the three conditions (a)-(b)-(c). Set
γ = max{3, E[X4

1 ]} > 1 and let τn be the quantity given by (2.13). Then, for all function ϕ : R → R

of class C3 with ‖ϕ′′′‖∞ <∞, we have

∣∣E[ϕ(Qd(gn,X))] − E[ϕ(Qd(gn,G))]
∣∣ 6 γ

3
(3 + 2γ)

3
2
(d−1)d3/2

√
d! ‖ϕ′′′‖∞

√
τn.

Indeed, assume that (α) holds. By Step 1, we have that τn → 0 as n→ ∞. Next, Theorem 2.3
together with (α), lead to (β) and therefore conclude the proof of Theorem 2.1.

Step 3: Proof of Theorem 2.3. During the proof, we will need the following auxiliary lemma,
which is of independent interest.

Lemma 2.4 (Hypercontractivity) Let n > d > 1, and consider a multilinear polynomial
P ∈ R[x1, . . . , xn] of degree d, that is, P is of the form

P (x1, . . . , xn) =
∑

S⊂{1,...,n}
|S|=d

aS
∏

i∈S
xi.

11



Let X be as in (i). Then,

E
[
P (X1, . . . ,Xn)

4
]
6
(
3 + 2E[X4

1 ]
)2d

E
[
P (X1, . . . ,Xn)

2
]2
. (2.14)

Proof. The proof is by induction on n. The case n = 1 is trivial. Indeed, in this case we have d = 1
so that P (x1) = ax1; the conclusion therefore asserts that (recall that E[X2

1 ] = 1, implying in turn
that E[X4

1 ] > E[X2
1 ]

2 = 1)

a4E[X4
1 ] 6 a4

(
3 + 2E[X4

1 ]
)2
,

which is evident. Assume now that n > 2. We can write

P (x1, . . . , xn) = R(x1, . . . , xn−1) + xnS(x1, . . . , xn−1),

where R,S ∈ R[x1, . . . , xn−1] are multilinear polynomials of n − 1 variables. Observe that R
has degree d, while S has degree d − 1. Now write P = P (X1, . . . ,Xn), R = R(X1, . . . ,Xn−1),
S = S(X1, . . . ,Xn−1) and α = E[X4

1 ]. Clearly, R and S are independent of Xn. We have, using
E[Xn] = 0 and E[X2

n] = 1:

E[P2] = E[(R + SXn)
2] = E[R2] + E[S2]

E[P4] = E[(R + SXn)
4] = E[R4] + 6E[R2

S
2] + 4E[X3

n]E[RS
3] + E[X4

n]E[S4].

Observe that E[R2
S
2] 6

√
E[R4]

√
E[S4] and

E[X3
n]E[RS

3] 6 α
3
4
(
E[R4]

) 1
4
(
E[S4]

) 3
4 6 α

√
E[R4]

√
E[S4] + αE[S4],

where the last inequality used both x
1
4 y

3
4 6

√
xy+ y (by considering x < y and x > y) and α

3
4 6 α

(because α > E[X4
n] > E[X2

n]
2 = 1). Hence

E[P4] 6 E[R4] + 2(3 + 2α)
√
E[R4]

√
E[S4] + 5αE[S4]

6 E[R4] + 2(3 + 2α)
√
E[R4]

√
E[S4] + (3 + 2α)2E[S4]

=
(√

E[R4] + (3 + 2α)
√
E[S4]

)2
.

By induction, we have
√
E[R4] 6 (3 + 2α)dE[R2] and

√
E[S4] 6 (3 + 2α)d−1E[S2]. Therefore

E[P4] 6 (3 + 2α)2d
(
E[R2] + E[S2]

)2
= (3 + 2α)2dE[P2]2,

and the proof of the lemma is concluded.

We are now in position to prove Theorem 2.3. We use the Lindeberg replacement trick. Without
loss of generality, we assume that X and G are stochastically independent. For i = 0, . . . , n, let
W

(i) = (G1, . . . , Gi,Xi+1, . . . ,Xn). Fix a particular i = 1, . . . , n and write

Ui =
∑

16i1,...,id6n

i1 6=i,...,id 6=i

gn(i1, . . . , id)W
(i)
i1
. . . W

(i)
id
,

Vi =
∑

16i1,...,id6n

∃j: ij=i

gn(i1, . . . , id)W
(i)
i1
. . .

̂
W

(i)
i . . .W

(i)
id

= d

n∑

i2,...,id=1

gn(i, i2, . . . , id)W
(i)
i2
. . .W

(i)
id
,
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where
̂
W

(i)
i means that this particular term is dropped (observe that this notation bears no

ambiguity: indeed, since gn vanishes on diagonals, each string i1, . . . , id contributing to the definition
of Vi contains the symbol i exactly once). For each i, note that Ui and Vi are independent of the
variables Xi and Gi, and that

Qd(gn,W
(i−1)) = Ui +XiVi and Qd(gn,W

(i)) = Ui +GiVi.

By Taylor’s theorem, using the independence of Xi from Ui and Vi, we have
∣∣∣∣E
[
ϕ(Ui +XiVi)

]
− E

[
ϕ(Ui)

]
−E

[
ϕ′(Ui)Vi

]
E[Xi]−

1

2
E
[
ϕ′′(Ui)V

2
i

]
E[X2

i ]

∣∣∣∣

6
1

6
‖ϕ′′′‖∞E[|Xi|3]E[|Vi|3].

Similarly,
∣∣∣∣E
[
ϕ(Ui +GiVi)

]
− E

[
ϕ(Ui)

]
− E

[
ϕ′(Ui)Vi

]
E[Gi]−

1

2
E
[
ϕ′′(Ui)V

2
i

]
E[G2

i ]

∣∣∣∣

6
1

6
‖ϕ′′′‖∞E[|Gi|3]E[|Vi|3].

Due to the matching moments up to second order on one hand, and using that E[|Xi|3] 6 γ and
E[|Gi|3] 6 γ on the other hand, we obtain that

∣∣∣E
[
ϕ(Qd(gn,W

(i−1)))
]
− E

[
ϕ(Qd(gn,W

(i)))
]∣∣∣ =

∣∣E
[
ϕ(Ui +GiVi)

]
− E

[
ϕ(Ui +XiVi)

]∣∣

6
γ

3
‖ϕ′′′‖∞E[|Vi|3].

By Lemma 2.4, we have

E[|Vi|3] 6 E[V 4
i ]

3
4 6 (3 + 2γ)

3
2
(d−1)E[V 2

i ]
3
2 .

Using the independence between X and G, the properties of gn (which is symmetric and vanishes
on diagonals) as well as E[Xi] = E[Gi] = 0 and E[X2

i ] = E[G2
i ] = 1, we get

E[V 2
i ]

3/2 =

(
dd!

n∑

i2,...,id=1

gn(i, i2, . . . , id)
2

)3/2

6 (dd!)3/2

√√√√max
16j6n

n∑

j2,...,jd=1

gn(j, j2, . . . , jd)2 ×
n∑

i2,...,id=1

gn(i, i2, . . . , id)
2,

implying in turn that

n∑

i=1

E[V 2
i ]

3/2
6 (dd!)3/2

√√√√max
16j6n

n∑

j2,...,jd=1

gn(j, j2, . . . , jdk)
2 ×

n∑

i1,...,id=1

gn(i1, i2, . . . , id)
2,

= d3/2
√
d!
√
τn.
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By collecting the previous bounds, we get

|E[ϕ(Qd(gn,X))] − E[ϕ(Qd(gn,G))]|

6

n∑

i=1

∣∣∣E
[
ϕ(Qd(gn,W

(i−1)))
]
− E

[
ϕ(Qd(gn,W

(i)))
]∣∣∣

6
γ

3
‖ϕ′′′‖∞

n∑

i=1

E[|Vi|3] 6
γ

3
(3 + 2γ)

3
2
(d−1)‖ϕ′′′‖∞

n∑

i=1

E[V 2
i ]

3
2

6
γ

3
(3 + 2γ)

3
2
(d−1)d3/2

√
d! ‖ϕ′′′‖∞

√
τn.

As a final remark, let us observe that Theorem 2.3 contains the CLT as a special case. Indeed,
fix d = 1 and let gn : {1, . . . , n} → R be the function given by gn(i) =

1√
n
. We then have τn = 1/n.

It is moreover clear that Q1(gn,G) ∼ N (0, 1). Then, for any function ϕ : R → R of class C3 with
‖ϕ′′′‖∞ <∞ and any sequence X as in (i), Theorem 2.3 implies that

∣∣∣∣E
[
ϕ

(
X1 + . . . +Xn√

n

)]
− 1√

2π

∫

R

ϕ(y)e−y2/2dy

∣∣∣∣ 6 max{E[X4
1 ]/3, 1}‖ϕ′′′‖∞,

from which it is straightforward to deduce the CLT.

To go further. In [31], Theorem 2.1 is extended to the case where the target law is the centered
Gamma law. In [46], there is a version of Theorem 2.1 in which the sequence G is replaced by P,
a sequence of i.i.d. Poisson random variables. Finally, let us mention that Theorems 2.1 and 2.3
have been extended to the free probability framework (see Section 11) in the reference [12].

3 Stein’s method

In this section, we shall introduce some basic features of the so-called Stein’s method, which is the
first step toward the proof of the Fourth Moment Theorem 1.3. Actually, we will not need the full
force of this method, only a basic estimate.

A random variable X is N (0, 1) distributed if and only if E[eitX ] = e−t2/2 for all t ∈ R. This
simple fact leads to the idea that a random variable X has a law which is close to N (0, 1) if and only
if E[eitX ] is approximatively e−t2/2 for all t ∈ R. This last claim is nothing but the usual criterion
for the convergence in law through the use of characteristic functions.

Stein’s seminal idea is somehow similar. He noticed in [50] that X is N (0, 1) distributed if and
only if E[f ′(X)−Xf(X)] = 0 for all function f belonging to a sufficiently rich class of functions (for
instance, the functions which are C1 and whose derivative growths at most polynomially). He then
wondered whether a suitable quantitative version of this identity may have fruitful consequences.
This is actually the case and, even for specialists (at least for me!), the reason why it works so well
remains a bit mysterious. Surprisingly, the simple following statement happens to contain all the
elements of Stein’s method that are needed for our discussion. (For more details or extensions of
the method, one can consult the recent books [8, 29] and the references therein.)

Lemma 3.1 (Stein, 1972; see [50]) Let N ∼ N (0, 1) be a standard Gaussian random variable.
Let h : R → [0, 1] be any continuous function. Define f : R → R by

f(x) = e
x2

2

∫ x

−∞

(
h(a)− E[h(N)]

)
e−

a2

2 da (3.15)

= −ex2

2

∫ ∞

x

(
h(a)− E[h(N)]

)
e−

a2

2 da. (3.16)
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Then f is of class C1, and satisfies |f(x)| 6
√
π/2, |f ′(x)| 6 2 and

f ′(x) = xf(x) + h(x)− E[h(N)] (3.17)

for all x ∈ R.

Proof: The equality between (3.15) and (3.16) comes from

0 = E
[
h(N)− E[h(N)]

]
=

1√
2π

∫ +∞

−∞

(
h(a)− E[h(N)]

)
e−

a2

2 da.

Using (3.16) we have, for x > 0:

∣∣xf(x)
∣∣ =

∣∣∣∣xe
x2

2

∫ +∞

x

(
h(a)− E[h(N)]

)
e−

a2

2 da

∣∣∣∣

6 xe
x2

2

∫ +∞

x
e−

a2

2 da 6 e
x2

2

∫ +∞

x
ae−

a2

2 da = 1.

Using (3.15) we have, for x 6 0:

∣∣xf(x)
∣∣ =

∣∣∣∣xe
x2

2

∫ x

−∞

(
h(a)− E[h(N)]

)
e−

a2

2 da

∣∣∣∣

6 |x|ex2

2

∫ +∞

|x|
e−

a2

2 da 6 e
x2

2

∫ +∞

|x|
ae−

a2

2 da = 1.

The identity (3.17) is readily checked. We deduce, in particular, that

|f ′(x)| 6 |xf(x)|+ |h(x)− E[h(N)]| 6 2

for all x ∈ R. On the other hand, by (3.15)-(3.16), we have, for every x ∈ R,

|f(x)| 6 ex
2/2min

(∫ x

−∞
e−y2/2dy,

∫ ∞

x
e−y2/2dy

)
= ex

2/2

∫ ∞

|x|
e−y2/2dy 6

√
π

2
,

where the last inequality is obtained by observing that the function s : R+ → R given by
s(x) = ex

2/2
∫∞
x e−y2/2dy attains its maximum at x = 0 (indeed, we have

s′(x) = xex
2/2

∫ ∞

x
e−y2/2dy − 1 6 ex

2/2

∫ ∞

x
ye−y2/2dy − 1 = 0

so that s is decreasing on R+) and that s(0) =
√
π/2.

The proof of the lemma is complete.

To illustrate how Stein’s method is a powerful approach, we shall use it to prove the celebrated
Berry-Esseen theorem. (Our proof is based on an idea introduced by Ho and Chen in [15], see also
Bolthausen [3].)

Theorem 3.2 (Berry, Esseen, 1956; see [14]) Let X = (X1,X2, . . .) be a sequence of i.i.d.
random variables with E[X1] = 0, E[X2

1 ] = 1 and E[|X1|3] <∞, and define

Vn =
1√
n

n∑

k=1

Xk, n > 1,

to be the associated sequence of normalized partial sums. Then, for any n > 1, one has

sup
x∈R

∣∣∣∣P (Vn 6 x)− 1√
2π

∫ x

−∞
e−u2/2du

∣∣∣∣ 6
33E[|X1|3]√

n
. (3.18)

15



Remark 3.3 One may actually show that (3.18) holds with the constant 0.4784 instead of 33. This
has been proved by Korolev and Shevtsova [17] in 2010. (They do not use Stein’s method.) On the
other hand, according to Esseen [14] himself, it is impossible to expect a universal constant smaller
than 0.4097.

Proof of (3.18). For each n > 2, let Cn > 0 be the best possible constant satisfying, for all i.i.d.
random variables X1, . . . ,Xn with E[|X1|3] <∞, E[X2

1 ] = 1 and E[X1] = 0, that

sup
x∈R

∣∣∣∣P (Vn 6 x)− 1√
2π

∫ x

−∞
e−u2/2du

∣∣∣∣ 6
Cn E[|X1|3]√

n
. (3.19)

As a first (rough) estimation, we first observe that, since X1 is centered with E[X2
1 ] = 1, one has

E[|X1|3] > E[X2
1 ]

3
2 = 1, so that Cn 6

√
n. This is of course not enough to conclude, since we need

to show that Cn 6 33.
For any x ∈ R and ε > 0, introduce the function

hx,ε(u) =





1 if u 6 x− ε
linear if x− ε < u < x+ ε
0 if u > x+ ε

.

It is immediately checked that, for all n > 2, ε > 0 and x ∈ R, we have

E[hx−ε,ε(Vn)] 6 P (Vn 6 x) 6 E[hx+ε,ε(Vn)].

Moreover, for N ∼ N (0, 1), ε > 0 and x ∈ R, we have, using that the density of N is bounded by
1√
2π

,

E[hx+ε,ε(N)]− 4ε√
2π

6 E[hx−ε,ε(N)] 6 P (N 6 x)

6 E[hx+ε,ε(N)] 6 E[hx−ε,ε(N)] +
4ε√
2π
.

Therefore, for all n > 2 and ε > 0, we have

sup
x∈R

∣∣∣∣P (Vn 6 x)− 1√
2π

∫ x

−∞
e−u2/2du

∣∣∣∣ 6 sup
x∈R

∣∣E[hx,ε(Vn)]− E[hx,ε(N)]
∣∣+ 4ε√

2π
.

Assume for the time being that, for all ε > 0,

sup
x∈R

|E[hx,ε(Vn)]− E[hx,ε(N)]| 6 6E[|X1|3]√
n

+
3Cn−1E[|X1|3]2

ε n
. (3.20)

We deduce that, for all ε > 0,

sup
x∈R

∣∣∣∣P (Vn 6 x)− 1√
2π

∫ x

−∞
e−u2/2du

∣∣∣∣ 6
6E[|X1|3]√

n
+

3Cn−1E[|X1|3]2
ε n

+
4ε√
2π
.

By choosing ε =
√

Cn−1

n E[|X1|3], we get that

sup
x∈R

∣∣∣∣P (Vn 6 x)− 1√
2π

∫ x

−∞
e−u2/2du

∣∣∣∣ 6
E[|X1|3]√

n

[
6 +

(
3 +

4√
2π

)√
Cn−1

]
,
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so that Cn 6 6 +
(
3 + 4√

2π

)√
Cn−1. It follows by induction that Cn 6 33 (recall that Cn 6

√
n so

that C2 6 33 in particular), which is the desired conclusion.
We shall now use Stein’s Lemma 3.1 to prove that (3.20) holds. Fix x ∈ R and ε > 0, and let

f denote the Stein’s solution associated with h = hx,ε, that is, f satisfies (3.15). Observe that h is
continuous, and therefore f is C1. Recall from Lemma 3.1 that ‖f‖∞ 6

√
π
2 and ‖f ′‖∞ 6 2. Set

also f̃(x) = xf(x), x ∈ R. We then have

∣∣f̃(x)− f̃(y)
∣∣ =

∣∣f(x)(x− y) + (f(x)− f(y))y
∣∣ 6

(√
π

2
+ 2|y|

)
|x− y|. (3.21)

On the other hand, set

V i
n = Vn − Xi√

n
, i = 1, . . . , n.

Observe that V i
n and Xi are independent by construction. One can thus write

E[h(Vn)]− E[h(N)] = E[f ′(Vn)− Vnf(Vn)]

=

n∑

i=1

E

[
f ′(Vn)

1

n
− f(Vn)

Xi√
n

]

=
n∑

i=1

E

[
f ′(Vn)

1

n
−
(
f(Vn)− f(V i

n)
) Xi√

n

]
because E[f(V i

n)Xi] = E[f(V i
n)]E[Xi] = 0

=

n∑

i=1

E

[
f ′(Vn)

1

n
− f ′

(
V i
n + θ

Xi√
n

)
X2

i

n

]
with θ ∼ U[0,1] independent of X1, . . . ,Xn.

We have f ′(x) = f̃(x) + h(x)− E[h(N)], so that

E[h(Vn)]− E[h(N)] =

n∑

i=1

(
ai(f̃)− bi(f̃) + ai(h) − bi(h)

)
, (3.22)

where

ai(g) = E[g(Vn)− g(V i
n)]

1

n
and bi(g) = E

[(
g

(
V i
n + θ

Xi√
n

)
− g(V i

n)

)
X2

i

]
1

n
.

(Here again, we have used that V i
n and Xi are independent.) Hence, to prove that (3.20) holds true,

we must bound four terms.
1st term. One has, using (3.21) as well as E[|X1|] 6 E[X2

1 ]
1
2 = 1 and E[|V i

n|] 6 E[(V i
n)

2]
1
2 6 1,

∣∣ai(f̃)
∣∣ 6

1

n
√
n

(
E[|X1|]

√
π

2
+ 2E[|X1|]E[|V i

n|]
)

6

(√
π

2
+ 2

)
1

n
√
n
.

2nd term. Similarly and because E[θ] = 1
2 , one has

∣∣bi(f̃)
∣∣ 6

1

n
√
n

(
E[θ]E[|X1|3]

√
π

2
+ 2E[θ]E[|X1|3]E[|V i

n|]
)

6

(
1

2

√
π

2
+ 1

)
E[|X1|3]
n
√
n

.

3rd term. By definition of h, we have

h(v) − h(u) = (v − u)

∫ 1

0
h′(u+ s(v − u))ds = −v − u

2ε
E
[
1[x−ε,x+ε](u+ θ̂(v − u))

]
,
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with θ̂ ∼ U[0,1] independent of θ and X1, . . . ,Xn, so that

∣∣ai(h)
∣∣ 6

1

2ε n
√
n
E

[
|Xi|1[x−ε,x+ε]

(
V i
n + θ̂

Xi√
n

)]

=
1

2ε n
√
n
E

[
|Xi|P

(
x− y√

n
− ε 6 V i

n 6 x− y√
n
+ ε

) ∣∣∣∣
y=θ̂Xi

]

6
1

2ε n
√
n

sup
y∈R

P

(
x− y√

n
− ε 6 V i

n 6 x− y√
n
+ ε

)
.

We are thus left to bound P (a 6 V i
n 6 b) for all a, b ∈ R with a 6 b. For that, set

Ṽ i
n = 1√

n−1

∑
j 6=iXj , so that V i

n =
√

1− 1
n Ṽ

i
n. We then have, using in particular (3.19) (with

n− 1 instead of n) and the fact that the standard Gaussian density is bounded by 1√
2π

,

P (a 6 V i
n 6 b) = P


 a√

1− 1
n

6 Ṽ i
n 6

b√
1− 1

n




= P


 a√

1− 1
n

6 N 6
b√
1− 1

n




+P


 a√

1− 1
n

6 Ṽ i
n 6

b√
1− 1

n


− P


 a√

1− 1
n

6 N 6
b√
1− 1

n




6
b− a

√
2π
√

1− 1
n

+
2Cn−1E[|X1|3]√

n− 1
.

We deduce that

∣∣ai(h)
∣∣ 6 1√

2πn
√
n− 1

+
Cn−1E[|X1|3]
n
√
n
√
n− 1 ε

.

4th term. Similarly, we have

∣∣bi(h)
∣∣ =

1

2n
√
nε

∣∣∣∣E
[
X3

i θ 1[x−ε,x+ε]

(
V i
n + θ̂ θ

Xi√
n

)]∣∣∣∣

6
E[|X1|3]
4n

√
nε

sup
y∈R

P

(
x− y√

n
− ε 6 V i

n 6 x− y√
n
+ ε

)

6
E[|X1|3]

2
√
2πn

√
n− 1

+
Cn−1E[|X1|3]2
2n

√
n
√
n− 1 ε

.

Plugging these four estimates into (3.22) and by using the fact that n > 2 (and therefore n−1 >
n
2 )

and E[|X1|3] > 1, we deduce the desired conclusion.

To go further. Stein’s method has developed considerably since its first appearance in 1972.
A comprehensive and very nice reference to go further is the book [8] by Chen, Goldstein and Shao,
in which several applications of Stein’s method are carefully developed.
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4 Malliavin calculus in a nutshell

The second ingredient for the proof of the Fourth Moment Theorem 1.3 is the Malliavin calculus
(the first one being the Stein’s method, as developed in the previous section). So, let us introduce
the reader to the basic operators of Malliavin calculus. For the sake of simplicity and to avoid
technicalities that would be useless in this survey, we will only consider the case where the
underlying Gaussian process (fixed once for all throughout the sequel) is a classical Brownian motion
B = (Bt)t>0 defined on some probability space (Ω,F , P ); we further assume that the σ-field F is
generated by B.

For a detailed exposition of Malliavin calculus (in a more general context) and for missing proofs,
we refer the reader to the textbooks [29, 35].

Dimension one. In this first section, we would like to introduce the basic operators of Malliavin
calculus in the simplest situation (where only one Gaussian random variable is involved). While
easy, it is a sufficiently rich context to encapsulate all the essence of this theory. We first need to
recall some useful properties of Hermite polynomials.

Proposition 4.1 The family (Hq)q∈N ⊂ R[X] of Hermite polynomials has the following properties.

(a) H ′
q = qHq−1 and Hq+1 = XHq − qHq−1 for all q ∈ N.

(b) The family
(

1√
q!
Hq

)
q∈N

is an orthonormal basis of L2(R, 1√
2π
e−x2/2dx).

(c) Let (U, V ) be a Gaussian vector with U, V ∼ N (0, 1). Then, for all k, l ∈ N,

E[Hp(U)Hq(V )] =

{
q!E[UV ]q if p = q
0 otherwise.

Proof. See, e.g., [29, Proposition 1.4.2].

Let ϕ : R → R be an element of L2(R, 1√
2π
e−x2/2dx). Proposition 4.1(b) implies that ϕ may be

expanded (in a unique way) in terms of Hermite polynomials as follows:

ϕ =

∞∑

q=0

aqHq. (4.23)

When ϕ is such that
∑
qq!a2q <∞, let us define

Dϕ =
∞∑

q=0

qaqHq−1. (4.24)

Since the Hermite polynomials satisfy H ′
q = qHq−1 (Proposition 4.1(a)), observe that

Dϕ = ϕ′

(in the sense of distributions). Let us now define the Ornstein-Uhlenbeck semigroup (Pt)t>0 by

Ptϕ =

∞∑

q=0

e−qtaqHq. (4.25)
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Plainly, P0 = Id, PtPs = Pt+s (s, t > 0) and

DPt = e−tPtD. (4.26)

Since (Pt)t>0 is a semigroup, it admits a generator L defined as

L =
d

dt
|t=0Pt.

Of course, for any t > 0 one has that

d

dt
Pt = lim

h→0

Pt+h − Pt

h
= lim

h→0
Pt
Ph − Id

h
= Pt lim

h→0

Ph − Id

h
= Pt

d

dh

∣∣∣∣
h=0

Ph = PtL,

and, similarly, d
dtPt = LPt. Moreover, going back to the definition of (Pt)t>0, it is clear that the

domain of L is the set of functions ϕ ∈ L2(R, 1√
2π
e−x2/2dx) such that

∑
q2q!a2q < ∞ and that, in

this case,

Lϕ = −
∞∑

q=0

qaqHq.

We have the following integration by parts formula.

Proposition 4.2 Let ϕ be in the domain of L and ψ be in the domain of D. Then

∫

R

Lϕ(x)ψ(x)
e−x2/2

√
2π

dx = −
∫

R

Dϕ(x)Dψ(x)
e−x2/2

√
2π

dx. (4.27)

Proof. By bilinearity and approximation, it is enough to show (4.27) for ϕ = Hp and ψ = Hq,
p, q ∈ N. When p 6= q, we have

∫

R

Lϕ(x)ψ(x)
e−x2/2

√
2π

dx = −p
∫

R

Hp(x)Hq(x)
e−x2/2

√
2π

dx == 0

and

∫

R

Dϕ(x)Dψ(x)
e−x2/2

√
2π

dx = pq

∫

R

Hp−1(x)Hq−1(x)
e−x2/2

√
2π

dx = 0

by Proposition 4.1(c), so the desired conclusion holds true in this case. When p = q, we have

∫

R

Lϕ(x)ψ(x)
e−x2/2

√
2π

dx = −p
∫

R

Hp(x)
2 e

−x2/2

√
2π

dx = −pp!

and

∫

R

Dϕ(x)Dψ(x)
e−x2/2

√
2π

dx = p2
∫

R

Hp−1(x)
2 e

−x2/2

√
2π

dx = p2(p− 1)! = pp!

by Proposition 4.1(c), so the desired conclusion holds true in this case as well.

We shall now extend all the previous operators in a situation where, instead of dealing with
a random variable of the form F = ϕ(N) (that involves only one Gaussian random variable N),
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we deal more generally with a random variable F that is measurable with respect to the Brownian
motion (Bt)t>0.

Wiener integral. For any adapted† and square integrable stochastic process u = (ut)t>0, let
us denote by

∫∞
0 utdBt its Itô integral. Recall from any standard textbook of stochastic analysis

that the Itô integral is a linear functional that takes its values on L2(Ω) and has the following basic
features, coming mainly from the independence property of the increments of B:

E

[∫ ∞

0
usdBs

]
= 0 (4.28)

E

[∫ ∞

0
usdBs ×

∫ ∞

0
vsdBs

]
= E

[∫ ∞

0
usvsds

]
. (4.29)

In the particular case where u = f ∈ L2(R+) is deterministic, we say that
∫∞
0 f(s)dBs is the Wiener

integral of f ; it is then easy to show that
∫ ∞

0
f(s)dBs ∼ N

(
0,

∫ ∞

0
f2(s)ds

)
. (4.30)

Multiple Wiener-Itô integrals and Wiener chaoses. Let f ∈ L2(Rq). Let us see how one
could give a ‘natural’ meaning to the q-fold multiple integral

IWq (f) =

∫ ′

Rq

f(s1, . . . , sq)dWs1 . . . dWsq ,

where the prime indicates that one does not integrate over the hyperdiagonals ti = tj , i 6= j. To
achieve this goal, we shall use an iterated Itô integral; the following heuristic ‘calculations’ are thus
natural within this framework:

∫ ′

Rq

f(s1, . . . , sq)dWs1 . . . dWsq

=
∑

σ∈Sq

∫ ′

Rq

f(s1, . . . , sq)1{sσ(1)>...>sσ(q)}dWs1 . . . dWsq

=
∑

σ∈Sq

∫ ∞

−∞
dWsσ(1)

∫ sσ(1)

−∞
dWsσ(2)

. . .

∫ sσ(q−1)

−∞
dWsσ(q)

f(s1, . . . , sq)

=
∑

σ∈Sq

∫ ∞

−∞
dWt1

∫ t1

−∞
dWt2 . . .

∫ tq−1

−∞
dWtqf(tσ−1(1), . . . , tσ−1(q))

=
∑

σ∈Sq

∫ ∞

−∞
dWt1

∫ t1

−∞
dWt2 . . .

∫ tq−1

−∞
dWtqf(tσ(1), . . . , tσ(q)). (4.31)

Now, we can use (4.31) as a natural candidate for being IWq (f).

Definition 4.3 Let q > 1 be an integer.
1. When f ∈ L2(Rq), we set

IWq (f) =
∑

σ∈Sq

∫ ∞

−∞
dWt1

∫ t1

−∞
dWt2 . . .

∫ tq−1

−∞
dWtqf(tσ(1), . . . , tσ(q)). (4.32)

†Any adapted process u that is either càdlàg or càglàd admits a progressively measurable version. We will always

assume that we are dealing with it.
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The random variable IWq (f) is called the qth multiple Wiener-Itô integral of f .

2. The set HW
q of random variables of the form IWq (f), f ∈ L2(Rq), is called the qth Wiener chaos

of W . We also use the convention HW
0 = R.

The following properties are readily checked.

Proposition 4.4 Let q > 1 be an integer and let f ∈ L2(Rq).
1. If f is symmetric, then

IWq (f) = q!

∫ ∞

−∞
dWt1

∫ t1

−∞
dWt2 . . .

∫ tq−1

−∞
dWtq f(t1, . . . , tq). (4.33)

2. We have

IWq (f) = IWq (f̃), (4.34)

where f̃ stands for the symmetrization of f given by

f̃(t1, . . . , tq) =
1

q!

∑

σ∈Sq

f(tσ(1), . . . , tσ(q)). (4.35)

3. For any p, q > 1, f ∈ L2(Rp) and g ∈ L2(Rq),

E[IWq (f)] = 0 (4.36)

E[IWp (f)IWq (g)] = p!〈f̃ , g̃〉L2(Rp) if p = q (4.37)

E[IWp (f)IWq (g)] = 0 if p 6= q. (4.38)

The space L2(Ω) can be decomposed into the infinite orthogonal sum of the spaces Hq. (It is a
statement which is analogous to the content of Proposition 4.1(b), and it is precisely here that we
need to assume that the σ-field F is generated by B.) It follows that any square-integrable random
variable F ∈ L2(Ω) admits the following chaotic expansion:

F = E[F ] +

∞∑

q=1

Iq(fq), (4.39)

where the functions fq ∈ L2(Rq
+) are symmetric and uniquely determined by F .

The following result contains a very useful property of multiple Wiener-Itô integrals.

Theorem 4.5 (Nelson, 1973; see [19]) Let f ∈ L2(Rq
+) with q > 1. Then, for all r > 2,

E
[
|Iq(f)|r

]
6 [(r − 1)qq!]r/2‖f‖rL2(Rq

+) <∞. (4.40)

Proof. See, e.g., [29, Corollary 2.8.14]. (The proof uses the hypercontractivity property of (Pt)t>0

defined as (4.48).)

Multiple Wiener-Itô integrals are linear by construction. Let us see how they behave with respect
to multiplication. To this aim, we need to introduce the concept of contractions.
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Definition 4.6 When r ∈ {1, . . . , p ∧ q}, f ∈ L2(Rp
+) and g ∈ L2(Rq

+), we write f ⊗r g to indicate

the rth contraction of f and g, defined as being the element of L2(Rp+q−2r
+ ) given by

(f ⊗r g)(t1, . . . , tp+q−2r) (4.41)

=

∫

Rr
+

f(t1, . . . , tp−r, x1, . . . , xr)g(tp−r+1, . . . , tp+q−2r, x1, . . . , xr)dx1 . . . dxr.

By convention, we set f ⊗0 g = f ⊗ g as being the tensor product of f and g, that is,

(f ⊗0 g)(t1, . . . , tp+q) = f(t1, . . . , tp)g(tp+1, . . . , tp+q).

Observe that

‖f ⊗r g‖L2(Rp+q−2r
+ )

6 ‖f‖L2(Rp
+)‖g‖L2(Rq

+), r = 0, . . . , p ∧ q (4.42)

by Cauchy-Schwarz, and that f ⊗p g = 〈f, g〉L2(Rp
+) when p = q. The next result is the fundamental

product formula between multiple Wiener-Itô integrals.

Theorem 4.7 Let p, q > 1 and let f ∈ L2(Rp
+) and g ∈ L2(Rq

+) be two symmetric functions. Then

Ip(f)Iq(g) =

p∧q∑

r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f⊗̃rg), (4.43)

where f⊗̃rg stands for the symmetrization of f ⊗r g (see (4.35)).

Proof. See, e.g., [35, page 12].

Malliavin derivatives. We shall extend the operator D introduced in (4.24). Let F ∈ L2(Ω)
and consider the chaotic expansion (4.39).

Definition 4.8 1. When m > 1 is an integer, we say that F belongs to the Sobolev-Watanabe space
Dm,2 if

∞∑

q=1

qmq!‖fq‖2L2(Rq
+) <∞. (4.44)

2. When (4.44) holds with m = 1, the Malliavin derivative DF = (DtF )t>0 of F is the element of
L2(Ω ×R+) given by

DtF =
∞∑

q=1

qIq−1 (fq(·, t)) . (4.45)

3. More generally, when (4.44) holds with m > 2 we define the mth Malliavin derivative
DmF = (Dt1,...,tmF )t1,...,tm>0 of F as the element of L2(Ω× Rm

+ ) given by

Dt1,...,tmF =
∞∑

q=m

q(q − 1) . . . (q −m+ 1)Iq−m (fq(·, t1, . . . , tm)) . (4.46)

It is clear by construction that D is a linear operator. Using (4.37)-(4.38), it is easy to compute the
L2-norm of DF in terms of the kernels fq appearing in the chaotic expansion (4.39) of F :
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Proposition 4.9 Let F ∈ D1,2. We have

E
[
‖DF‖2L2(R+)

]
=

∞∑

q=1

qq!‖fq‖2L2(Rq
+).

Proof. By (4.45), we can write

E
[
‖DF‖2L2(R+)

]
=

∫

R+

E






∞∑

q=1

qIq−1 (fq(·, t))




2
 dt

=

∞∑

p,q=1

pq

∫

R+

E [Ip−1 (fp(·, t)) Iq−1 (fq(·, t))] dt.

Using (4.38), we deduce that

E
[
‖DF‖2L2(R+)

]
=

∞∑

q=1

q2
∫

R+

E
[
Iq−1 (fq(·, t))2

]
dt.

Finally, using (4.37), we get that

E
[
‖DF‖2L2(R+)

]
=

∞∑

q=1

q2(q − 1)!

∫

R+

‖fq(·, t)‖2L2(Rq−1
+ )

dt =

∞∑

q=1

qq! ‖fq‖2L2(Rq
+) .

Let Hq be the qth Hermite polynomial (for some q > 1) and let e ∈ L2(R+) have norm 1. Recall
(1.10) and Proposition 4.1(a). We deduce that, for any t > 0,

Dt

(
Hq

(∫ ∞

0
e(s)dWs

))
= Dt(Iq(e

⊗q)) = qIq−1(e
⊗q−1)e(t)

= qHq−1

(∫ ∞

0
e(s)dBs

)
e(t) = H ′

q

(∫ ∞

0
e(s)dBs

)
Dt

(∫ ∞

0
e(s)dBs

)
.

More generally, the Malliavin derivative D verifies the chain rule:

Theorem 4.10 Let ϕ : R → R be both of class C1 and Lipschitz, and let F ∈ D1,2. Then,
ϕ(F ) ∈ D1,2 and

Dtϕ(F ) = ϕ′(F )DtF, t > 0. (4.47)

Proof. See, e.g., [35, Proposition 1.2.3].

Ornstein-Uhlenbeck semigroup. We now introduce the extension of (4.25) in our infinite-
dimensional setting.

Definition 4.11 The Ornstein-Uhlenbeck semigroup is the family of linear operators (Pt)t>0 defined
on L2(Ω) by

PtF =

∞∑

q=0

e−qtIq(fq), (4.48)

where the symmetric kernels fq are given by (4.39).
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A crucial property of (Pt)t>0 is the Mehler’s formula, that gives an alternative and often useful
representation formula for Pt. To be able to state it, we need to introduce a further notation.
Let (B,B′) be a two-dimensional Brownian motion defined on the product probability space
(Ω,F ,P) = (Ω × Ω′,F ⊗ F ′, P × P ′). Let F ∈ L2(Ω). Since F is measurable with respect to
the Brownian motion B, we can write F = ΨF (B) with ΨF a measurable mapping determined
P ◦ B−1 a.s.. As a consequence, for any t > 0 the random variable ΨF (e

−tB +
√
1− e−2tB′) is

well-defined P × P ′ a.s. (note indeed that e−tB +
√
1− e−2tB′ is again a Brownian motion for any

t > 0). We then have the following formula.

Theorem 4.12 (Mehler’s formula) For every F = F (B) ∈ L2(Ω) and every t > 0, we have

Pt(F ) = E′[ΨF (e
−tB +

√
1− e−2tB′)

]
, (4.49)

where E′ denotes the expectation with respect to P ′.

Proof. By using standard arguments, one may show that the linear span of random variables F
having the form F = exp

∫∞
0 h(s)dBs with h ∈ L2(R+) is dense in L2(Ω). Therefore, it suffices

to consider the case where F has this particular form. On the other hand, we have the following
identity, see, e.g., [29, Proposition 1.4.2(vi)]: for all c, x ∈ R,

ecx−c2/2 =

∞∑

q=0

cq

q!
Hq(x),

with Hq the qth Hermite polynomial. By setting c = ‖h‖L2(R+) = ‖h‖ and x =
∫∞
0

h(s)
‖h‖ dBs, we

deduce that

exp

∫ ∞

0
h(s)dBs = e

1
2
‖h‖2

∞∑

q=0

‖h‖q
q!

Hq

(∫ ∞

0

h(s)

‖h‖ dBs

)
,

implying in turn, using (1.10), that

exp

∫ ∞

0
h(s)dBs = e

1
2
‖h‖2

∞∑

q=0

1

q!
Iq
(
h⊗q

)
. (4.50)

Thus, for F = exp
∫∞
0 h(s)dBs,

PtF = e
1
2
‖h‖2

∞∑

q=0

e−qt

q!
Iq
(
h⊗q

)
.

On the other hand,

E′[ΨF (e
−tB +

√
1− e−2tB′)

]
= E′

[
exp

∫ ∞

0
h(s)(e−tdBs +

√
1− e−2tdB′

s)

]

= exp

(
e−t

∫ ∞

0
h(s)dBs

)
exp

(
1− e−2t

2
‖h‖2

)

= exp

(
1− e−2t

2
‖h‖2

)
e

e−2t

2
‖h‖2

∞∑

q=0

e−qt

q!
Iq
(
h⊗q

)
by (4.50)

= PtF.
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The desired conclusion follows.

Generator of the Ornstein-Uhlenbeck semigroup. Recall the definition (4.44) of the
Sobolev-Watanabe spaces Dm,2, m > 1, and that the symmetric kernels fq ∈ L2(Rq

+) are uniquely
defined through (4.39).

Definition 4.13 1. The generator of the Ornstein-Uhlenbeck semigroup is the linear operator L
defined on D2,2 by

LF = −
∞∑

q=0

qIq(fq).

2. The pseudo-inverse of L is the linear operator L−1 defined on L2(Ω) by

L−1F = −
∞∑

q=1

1

q
Iq(fq).

It is obvious that, for any F ∈ L2(Ω), we have that L−1F ∈ D2,2 and

LL−1F = F − E[F ]. (4.51)

Our terminology for L−1 is explained by the identity (4.51). Another crucial property of L is
contained in the following result, which is the exact generalization of Proposition 4.2.

Proposition 4.14 Let F ∈ D2,2 and G ∈ D1,2. Then

E[LF ×G] = −E[〈DF,DG〉L2(R+)]. (4.52)

Proof. By bilinearity and approximation, it is enough to show (4.52) for F = Ip(f) and G = Iq(g)
with p, q > 1 and f ∈ L2(Rp

+), g ∈ L2(Rq
+) symmetric. When p 6= q, we have

E[LF ×G] = −pE[Ip(f)Iq(g)] = 0

and

E[〈DF,DG〉L2(R+)] = pq

∫ ∞

0
E[Ip−1(f(·, t))Iq−1(g(·, t))]dt = 0

by (4.38), so the desired conclusion holds true in this case. When p = q, we have

E[LF ×G] = −pE[Ip(f)Ip(g)] = 0 = −pp!〈f, g〉L2(Rp
+)

and

E[〈DF,DG〉L2(R+)] = p2
∫ ∞

0
E[Ip−1(f(·, t))Ip−1(g(·, t))]dt

= p2(p− 1)!

∫ ∞

0
〈f(·, t), g(·, t)〉

L2(Rp−1
+ )

dt = pp!〈f, g〉L2(Rp
+)

by (4.37), so the desired conclusion holds true also in this case.

We are now in position to state and prove an integration by parts formula which will play a
crucial role in the sequel.
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Theorem 4.15 Let ϕ : R → R be both of class C1 and Lipschitz, and let F ∈ D1,2 and G ∈ L2(Ω).
Then

Cov
(
G,ϕ(F )

)
= E

[
ϕ′(F )〈DF,−DL−1G〉L2(R+)

]
. (4.53)

Proof. Using the assumptions made on F and ϕ, we can write:

Cov
(
G,ϕ(F )

)
= E

[
L(L−1G)× ϕ(F )

]
(by (4.51))

= E
[
〈Dϕ(F ),−DL−1G〉L2(R+)

]
(by (4.52))

= E
[
ϕ′(F )〈Dϕ(F ),−DL−1G〉L2(R+)

]
(by (4.47)),

which is the announced formula.

Theorem 4.15 admits a useful extension to indicator functions. Before stating and proving it,
we recall the following classical result from measure theory.

Proposition 4.16 Let C be a Borel set in R, assume that C ⊂ [−A,A] for some A > 0, and let
µ be a finite measure on [−A,A]. Then, there exists a sequence (hn) of continuous functions with
support included in [−A,A] and such that hn(x) ∈ [0, 1] and 1C(x) = limn→∞ hn(x) µ-a.e.

Proof. This is an immediate corollary of Lusin’s theorem, see e.g. [48, page 56].

Corollary 4.17 Let C be a Borel set in R, assume that C ⊂ [−A,A] for some A > 0, and let
F ∈ D1,2 be such that E[F ] = 0. Then

E

[
F

∫ F

−∞
1C(x)dx

]
= E

[
1C(F )〈DF,−DL−1F 〉L2(R+)

]
.

Proof. Let λ denote the Lebesgue measure and let PF denote the law of F . By Proposition 4.16
with µ = (λ + PF )|[−A,A] (that is, µ is the restriction of λ + PF to [−A,A]), there is a sequence
(hn) of continuous functions with support included in [−A,A] and such that hn(x) ∈ [0, 1] and
1C(x) = limn→∞ hn(x) µ-a.e. In particular, 1C(x) = limn→∞ hn(x) λ-a.e. and PF -a.e. By Theorem
4.15, we have moreover that

E

[
F

∫ F

−∞
hn(x)dx

]
= E

[
hn(F )〈DF,−DL−1F 〉L2(R+)

]
.

The dominated convergence applies and yields the desired conclusion.

As a corollary of both Theorem 4.15 and Corollary 4.17, we shall prove that the law of any
multiple Wiener-Itô integral is always absolutely continuous with respect to the Lebesgue measure
except, of course, when its kernel is identically zero.

Corollary 4.18 (Shigekawa; see [49]) Let q > 1 be an integer and let f be a non zero element of
L2(Rq

+). Then the law of F = Iq(f) is absolutely continuous with respect to the Lebesgue measure.

Proof. Without loss of generality, we further assume that f is symmetric. The proof is by induction
on q. When q = 1, the desired property is readily checked because I1(f) ∼ N (0, ‖f‖2L2(R+)), see

(4.30). Now, let q > 2 and assume that the statement of Corollary 4.18 holds true for q− 1, that is,
assume that the law of Iq−1(g) is absolutely continuous for any symmetric element g of L2(Rq−1

+ )
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such that ‖g‖L2(Rq−1
+ ) > 0. Let f be a symmetric element of L2(Rq

+) with ‖f‖L2(Rq
+) > 0. Let

h ∈ L2(R) be such that
∥∥∫∞

0 f(·, s)h(s)ds
∥∥
L2(Rq−1

+ )
6= 0. (Such an h necessarily exists because,

otherwise, we would have that f(·, s) = 0 for almost all s > 0 which, by symmetry, would imply
that f ≡ 0; this would be in contradiction with our assumption.) Using the induction assumption,
we have that the law of

〈DF, h〉L2(R+) =

∫ ∞

0
DsF h(s)ds = qIq−1

(∫ ∞

0
f(·, s)h(s)ds

)

is absolutely continuous with respect to the Lebesgue measure. In particular,

P (〈DF, h〉L2(R+) = 0) = 0,

implying in turn, because {‖DF‖L2(R+) = 0} ⊂ {〈DF, h〉L2(R+) = 0}, that

P (‖DF‖L2(R+) > 0) = 1. (4.54)

Now, let C be a Borel set in R. Using Corollary 4.17, we can write, for every n > 1,

E

[
1C∩[−n,n](F )

1

q
‖DF‖2L2(R+)

]
= E

[
1C∩[−n,n](F )〈DF,−DL−1F 〉L2(R+)

]

= E

[
F

∫ F

−∞
1C∩[−n,n](y)dy

]
.

Assume that the Lebesgue measure of C is zero. The previous equality implies that

E

[
1C∩[−n,n](F )

1

q
‖DF‖2L2(R+)

]
= 0, n > 1.

But (4.54) holds as well, so P (F ∈ C ∩ [−n, n]) = 0 for all n > 1. By monotone convergence, we
actually get P (F ∈ C) = 0. This shows that the law of F is absolutely continuous with respect to
the Lebesgue measure. The proof of Corollary 4.18 is concluded.

To go further. In the literature, the most quoted reference on Malliavin calculus is the excellent
book [35] by Nualart. It contains many applications of this theory (such as the study of the
smoothness of probability laws or the anticipating stochastic calculus) and constitutes, as such, an
inevitable reference to go further.

5 Stein meets Malliavin

We are now in a position to prove the Fourth Moment Theorem 1.3. As we will see, to do so we
will combine the results of Section 3 (Stein’s method) with those of Section 4 (Malliavin calculus).
This explains the title of the current section!

We start by introducing the distance we shall use to measure the closeness of the laws of random
variables.

Definition 5.1 The total variation distance between the laws of two real-valued random variables
Y and Z is defined by

dTV (Y,Z) = sup
C∈B(R)

∣∣P (Y ∈ C)− P (Z ∈ C)
∣∣, (5.55)

where B(R) stands for the set of Borel sets in R.
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When C ∈ B(R), we have that P (Y ∈ C ∩ [−n, n]) → P (Y ∈ C) and P (Z ∈ C ∩ [−n, n]) →
P (Z ∈ C) as n → ∞ by the monotone convergence theorem. So, without loss we may restrict the
supremum in (5.55) to be taken over bounded Borel sets, that is,

dTV (Y,Z) = sup
C∈B(R)
C bounded

∣∣P (Y ∈ C)− P (Z ∈ C)
∣∣. (5.56)

We are now ready to derive a bound for the Gaussian approximation of any centered element F
belonging to D1,2.

Theorem 5.2 (Nourdin, Peccati, 2009; see [25]) Consider F ∈ D1,2 with E[F ] = 0. Then,
with N ∼ N (0, 1),

dTV (F,N) 6 2E
[∣∣1− 〈DF,−DL−1F 〉L2(R+)

∣∣] . (5.57)

Proof. Let C be a bounded Borel set in R. Let A > 0 be such that C ⊂ [−A,A]. Let λ denote the
Lebesgue measure and let PF denote the law of F . By Proposition 4.16 with µ = (λ+ PF )|[−A−,A]

(the restriction of λ + PF to [−A,A]), there is a sequence (hn) of continuous functions such
that hn(x) ∈ [0, 1] and 1C(x) = limn→∞ hn(x) µ-a.e. By the dominated convergence theorem,
E[hn(F )] → P (F ∈ C) and E[hn(N)] → P (N ∈ C) as n → ∞. On the other hand, using Lemma
3.1 (and denoting by fn the function associated with hn) as well as (4.53) we can write, for each n,

∣∣E[hn(F )]− E[hn(N)]
∣∣ =

∣∣E[f ′n(F )]− E[Ffn(F )]
∣∣

=
∣∣E[f ′n(F )(1 − 〈DF,−DL−1F 〉L2(R+)]

6 2E
[
|1− 〈DF,−DL−1F 〉L2(R+)|

]
.

Letting n goes to infinity yields
∣∣P (F ∈ C)− P (N ∈ C)

∣∣ 6 2E
[
|1− 〈DF,−DL−1F 〉L2(R+)|

]
,

which, together with (5.56), implies the desired conclusion.

Wiener chaos and the Fourth Moment Theorem. In this section, we apply Theorem 5.2
to chaotic random variables, that is, to random variables having the specific form of a multiple
Wiener-Itô integral. We begin with a technical lemma.

Lemma 5.3 Let q > 1 be an integer and consider a symmetric function f ∈ L2(Rq
+). Set F = Iq(f)

and σ2 = E[F 2] = q!‖f‖2
L2(Rq

+)
. The following two identities hold:

E

[(
σ2 − 1

q
‖DF‖2L2(R+)

)2
]
=

q−1∑

r=1

r2

q2
r!2
(
q

r

)4

(2q − 2r)!‖f⊗̃rf‖2L2(R2q−2r
+ )

(5.58)

and

E[F 4]− 3σ4 =
3

q

q−1∑

r=1

rr!2
(
q

r

)4

(2q − 2r)!‖f⊗̃rf‖2L2(R2q−2r
+ )

(5.59)

=

q−1∑

r=1

q!2
(
q

r

)2{
‖f⊗rf‖2L2(R2q−2r

+ )
+

(
2q − 2r

q − r

)
‖f⊗̃rf‖2L2(R2q−2r

+ )

}
.

(5.60)
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In particular,

E

[(
σ2 − 1

q
‖DF‖2L2(R+)

)2
]
6
q − 1

3q

(
E[F 4]− 3σ4

)
. (5.61)

Proof. For any t > 0, we have DtF = qIq−1

(
f(·, t)

)
so that, using (4.43),

1

q
‖DF‖2L2(R+) = q

∫ ∞

0
Iq−1

(
f(·, t)

)2
dt

= q

∫ ∞

0

q−1∑

r=0

r!

(
q − 1

r

)2

I2q−2−2r

(
f(·, t)⊗̃rf(·, t)

)
dt

= q

∫ ∞

0

q−1∑

r=0

r!

(
q − 1

r

)2

I2q−2−2r

(
f(·, t)⊗r f(·, t)

)
dt

= q

q−1∑

r=0

r!

(
q − 1

r

)2

I2q−2−2r

(∫ ∞

0
f(·, t)⊗r f(·, t)dt

)

= q

q−1∑

r=0

r!

(
q − 1

r

)2

I2q−2−2r(f ⊗r+1 f)

= q

q∑

r=1

(r − 1)!

(
q − 1

r − 1

)2

I2q−2r(f ⊗r f)

= q!‖f‖2L2(Rq
+) + q

q−1∑

r=1

(r − 1)!

(
q − 1

r − 1

)2

I2q−2r(f ⊗r f). (5.62)

Since E[F 2] = q!‖f‖2
L2(Rq

+)
= σ2, the identity (5.58) follows now from (5.62) and the orthogonality

properties of multiple Wiener-Itô integrals. Recall the hypercontractivity property (4.40) of multiple
Wiener-Itô integrals, and observe the relations −L−1F = 1

qF and D(F 3) = 3F 2DF . By combining

formula (4.53) with an approximation argument (the derivative of ϕ(x) = x3 being not bounded),
we infer that

E[F 4] = E
[
F × F 3

]
=

3

q
E
[
F 2‖DF‖2L2(R+)

]
. (5.63)

Moreover, the multiplication formula (4.43) yields

F 2 = Iq(f)
2 =

q∑

s=0

s!

(
q

s

)2

I2q−2s(f⊗̃sf). (5.64)

By combining this last identity with (5.62) and (5.63), we obtain (5.59) and finally (5.61). It remains
to prove (5.60). Let σ be a permutation of {1, . . . , 2q} (this fact is written in symbols as σ ∈ S2q).
If r ∈ {0, . . . , q} denotes the cardinality of {σ(1), . . . , σ(q)} ∩ {1, . . . , q} then it is readily checked
that r is also the cardinality of {σ(q + 1), . . . , σ(2q)} ∩ {q + 1, . . . , 2q} and that∫

R
2q
+

f(t1, . . . , tq)f(tσ(1), . . . , tσ(q))f(tq+1, . . . , t2q)

×f(tσ(q+1), . . . , tσ(2q))dt1 . . . dt2q

=

∫

R
2q−2r
+

(f ⊗r f)(x1, . . . , x2q−2r)
2dx1 . . . dx2q−2r

= ‖f ⊗r f‖2L2(R2q−2r
+ )

. (5.65)
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Moreover, for any fixed r ∈ {0, . . . , q}, there are
(
q
r

)2
(q!)2 permutations σ ∈ S2q such that

#{σ(1), . . . , σ(q)} ∩ {1, . . . , q} = r. (Indeed, such a permutation is completely determined by
the choice of: (a) r distinct elements y1, . . . , yr of {1, . . . , q}; (b) q− r distinct elements yr+1, . . . , yq
of {q + 1, . . . , 2q}; (c) a bijection between {1, . . . , q} and {y1, . . . , yq}; (d) a bijection between
{q + 1, . . . , 2q} and {1, . . . , 2q} \ {y1, . . . , yq}.) Now, observe that the symmetrization of f ⊗ f is
given by

f⊗̃f(t1, . . . , t2q) =
1

(2q)!

∑

σ∈S2q

f(tσ(1), . . . , tσ(q))f(tσ(q+1), . . . , tσ(2q)).

Therefore,

‖f⊗̃f‖2
L2(R2q

+ )

=
1

(2q)!2

∑

σ,σ′∈S2q

∫

R
2q
+

f(tσ(1), . . . , tσ(q))f(tσ(q+1), . . . , tσ(2q))

×f(tσ′(1), . . . , tσ′(q))f(tσ′(q+1), . . . , tσ′(2q))dt1 . . . dt2q

=
1

(2q)!

∑

σ∈S2q

∫

R
2q
+

f(t1, . . . , tq)f(tq+1, . . . , t2q)

×f(tσ(1), . . . , tσ(q))f(tσ(q+1), . . . , tσ(2q))dt1 . . . dt2q

=
1

(2q)!

q∑

r=0

∑

σ∈S2q

{σ(1),...,σ(q)}∩{1,...,q}=r

∫

R
2q
+

f(t1, . . . , tq)f(tq+1, . . . , t2q)

×f(tσ(1), . . . , tσ(q))f(tσ(q+1), . . . , tσ(2q))dt1 . . . dt2q.

Using (5.65), we deduce that

(2q)!‖f⊗̃f‖2
L2(R2q

+ )
= 2(q!)2‖f‖4L2(Rq

+) + (q!)2
q−1∑

r=1

(
q

r

)2

‖f ⊗r f‖2L2(R2q−2r
+ )

. (5.66)

Using the orthogonality and isometry properties of multiple Wiener-Itô integrals, the identity (5.64)
yields

E[F 4] =

q∑

r=0

(r!)2
(
q

r

)4

(2q − 2r)!‖f⊗̃rf‖2L2(R2q−2r
+ )

= (2q)!‖f⊗̃f‖2
L2(R2q

+ )
+ (q!)2‖f‖4L2(Rq

+)

+

q−1∑

r=1

(r!)2
(
q

r

)4

(2q − 2r)!‖f⊗̃rf‖2L2(R2q−2r
+ )

.

By inserting (5.66) in the previous identity (and because (q!)2‖f‖4
L2(Rq

+)
= E[F 2]2 = σ4), we get

(5.60).

As a consequence of Lemma 5.3, we deduce the following bound on the total variation distance
for the Gaussian approximation of a normalized multiple Wiener-Itô integral. This is nothing but
Theorem 1.4 but we restate it for convenience.
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Theorem 5.4 (Nourdin, Peccati, 2009; see [25]) Let q > 1 be an integer and consider a
symmetric function f ∈ L2(Rq

+). Set F = Iq(f), assume that E[F 2] = 1, and let N ∼ N (0, 1).
Then

dTV (F,N) 6 2

√
q − 1

3q

∣∣E[F 4]− 3
∣∣. (5.67)

Proof. Since L−1F = −1
qF , we have 〈DF,−DL−1F 〉L2(R+) =

1
q‖DF‖2L2(R+). So, we only need to

apply Theorem 5.2 and then formula (5.61) to conclude.

The estimate (5.67) allows to deduce the following characterization of CLTs on Wiener chaos.
(This is the Fourth Moment Theorem 1.3 of Nualart and Peccati!)

Corollary 5.5 (Nualart, Peccati, 2005; see [37]) Let q > 1 be an integer and consider a
sequence (fn) of symmetric functions of L2(Rq

+). Set Fn = Iq(fn) and assume that E[F 2
n ] → σ2 > 0

as n→ ∞. Then, as n→ ∞, the following three assertions are equivalent:

(i) Fn
Law→ N ∼ N (0, σ2);

(ii) E[F 4
n ] → E[N4] = 3σ4;

(iii) ‖fn⊗̃rfn‖L2(R2q−2r
+ ) → 0 for all r = 1, . . . , q − 1.

(iv) ‖fn ⊗r fn‖L2(R2q−2r
+ ) → 0 for all r = 1, . . . , q − 1.

Proof. Without loss of generality, we may and do assume that σ2 = 1 and E[F 2
n ] = 1 for all

n. The implication (ii) → (i) is a direct application of Theorem 5.4. The implication (i) → (ii)
comes from the Continuous Mapping Theorem together with an approximation argument (observe
that supn>1E[F 4

n ] < ∞ by the hypercontractivity relation (4.40)). The equivalence between
(ii) and (iii) is an immediate consequence of (5.59). The implication (iv) → (iii) is obvious (as
‖fn⊗̃rfn‖ 6 ‖fn ⊗r fn‖) whereas the implication (ii) → (iv) follows from (5.60).

Quadratic variation of the fractional Brownian motion. In this section, we aim to
illustrate Theorem 5.2 in a concrete situation. More precisely, we shall use Theorem 5.2 in order to
derive an explicit bound for the second-order approximation of the quadratic variation of a fractional
Brownian motion on [0, 1]. Let BH = (BH

t )t>0 be a fractional Brownian motion with Hurst index
H ∈ (0, 1). This means that BH is a centered Gaussian process with covariance function given by

E[BH
t B

H
s ] =

1

2

(
t2H + s2H − |t− s|2H

)
, s, t > 0.

It is easily checked that BH is selfsimilar of index H and has stationary incremements. Consider
the suitably normalized quadratic variation of BH , given by

Fn =
n2H

σn

n−1∑

k=0

[
(BH

(k+1)/n −BH
k/n)

2 − n−2H
] (law)

=
1

σn

n−1∑

k=0

[
(BH

k+1 −BH
k )2 − 1

]
,

where σn > 0 is so that E[F 2
n ] = 1. We have the following result.
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Theorem 5.6 Let N ∼ N (0, 1) and assume that H 6 3/4. Then, limn→∞ σ2n/n = 2
∑

r∈Z ρ
2(r) if

H ∈ (0, 34), with ρ : Z → R given by

ρ(r) =
1

2

(
|r + 1|2H + |r − 1|2H − 2|r|2H

)
, (5.68)

and limn→∞ σ2n/(n log n) =
9
16 if H = 3

4 . Moreover, there exists a constant cH > 0 (depending only
on H) such that, for every n > 1,

dTV (Fn, N) 6 cH ×





1√
n

if H ∈ (0, 58)

(logn)3/2√
n

if H = 5
8

n4H−3 if H ∈ (58 ,
3
4 )

1
logn if H = 3

4

. (5.69)

In order to show Theorem 5.6, we will need the following ancillary result.

Lemma 5.7 1. For any r ∈ Z, let ρ(r) be defined by (5.68). If H 6= 1
2 , one has ρ(r) ∼

H(2H − 1)|r|2H−2 as |r| → ∞. If H = 1
2 and |r| > 1, one has ρ(r) = 0. Consequently,∑

r∈Z ρ
2(r) <∞ if and only if H < 3/4.

2. For all α > −1, we have
∑n−1

r=1 r
α ∼ nα+1

α+1 as n→ ∞.

Proof. 1. The sequence ρ is symmetric, that is, one has ρ(n) = ρ(−n). When r → ∞,

ρ(r) = H(2H − 1)r2H−2 + o(r2H−2).

Using the usual criterion for convergence of Riemann sums, we deduce that
∑

r∈Z ρ
2(r) <∞ if and

only if 4H − 4 < −1 if and only if H < 3
4 .

2. For α > −1, we have:

1

n

n∑

r=1

( r
n

)α
→
∫ 1

0
xαdx =

1

α+ 1
as n→ ∞.

We deduce that
∑n

r=1 r
α ∼ nα+1

α+1 as n→ ∞.

We are now in position to prove Theorem 5.6.

Proof of Theorem 5.6. Without loss of generality, we will rather use the second expression of Fn:

Fn =
1

σn

n−1∑

k=0

[
(BH

k+1 −BH
k )2 − 1

]
.

Consider the linear span H of (BH
k )k∈N, that is, H is the closed linear subspace of L2(Ω) generated

by (BH
k )k∈N. It is a real separable Hilbert space and, consequently, there exists an isometry

Φ : H → L2(R+). For any k ∈ N, set ek = Φ(BH
k+1 −BH

k ); we then have, for all k, l ∈ N,

∫ ∞

0
ek(s)el(s)ds = E[(BH

k+1 −BH
k )(BH

l+1 −BH
l )] = ρ(k − l) (5.70)
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with ρ given by (5.68). Therefore,

{BH
k+1 −BH

k : k ∈ N} law
=

{∫ ∞

0
ek(s)dBs : k ∈ N

}
= {I1(ek) : k ∈ N} ,

where B is a Brownian motion and Ip(·), p > 1, stands for the pth multiple Wiener-Itô integral
associated to B. As a consequence, we can replace Fn by Consequently we can, without loss of
generality, replace Fn by

Fn =
1

σn

n−1∑

k=0

[
(I1(ek))

2 − 1
]
.

Now, using the multiplication formula (4.43), we deduce that

Fn = I2(fn), with fn =
1

σn

n−1∑

k=0

ek ⊗ ek.

Let us compute the exact value of σn. By the isometry formula (4.37) we can write

E[F 2
n ] = 2‖fn‖2L2(R2

+) =
2

σ2n

n−1∑

k,l=0

〈ek ⊗ ek, el ⊗ el〉L2(R2
+) =

2

σ2n

n−1∑

k,l=0

〈ek, el〉2L2(R+)

=
2

σ2n

n−1∑

k,l=0

ρ2(k − l).

That is,

σ2n = 2
n−1∑

k,l=0

ρ2(k − l) = 2
∑

|r|<n

(n− |r|)ρ2(r).

Assume that H < 3
4 and write

σ2n
n

= 2
∑

r∈Z
ρ2(r)

(
1− |r|

n

)
1{|r|<n}.

Since
∑

r∈Z ρ
2(r) <∞ by Lemma 5.7, we obtain by dominated convergence that, when H < 3

4 ,

lim
n→∞

σ2n
n

= 2
∑

r∈Z
ρ2(r). (5.71)

Assume now that H = 3
4 . We then have ρ2(r) ∼ 9

64|r| as |r| → ∞, implying in turn

n
∑

|r|<n

ρ2(r) ∼ 9n

64

∑

0<|r|<n

1

|r| ∼
9n log n

32

and

∑

|r|<n

|r|ρ2(r) ∼ 9

64

∑

|r|<n

1 ∼ 9n

32
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as n→ ∞. Hence, when H = 3
4 ,

lim
n→∞

σ2n
n log n

=
9

16
. (5.72)

On the other hand, recall that the convolution of two sequences {u(n)}n∈Z and {v(n)}n∈Z is the
sequence u ∗ v defined as (u ∗ v)(j) =

∑
n∈Z u(n)v(j − n), and observe that (u ∗ v)(l − i) =∑

k∈Z u(k − l)v(k − i) whenever u(n) = u(−n) and v(n) = v(−n) for all n ∈ Z. Set

ρn(k) = |ρ(k)|1{|k|6n−1}, k ∈ Z, n > 1.

We then have (using (5.58) for the first equality, and noticing that fn ⊗1 fn = fn⊗̃1fn),

E

[(
1− 1

2
‖D[I2(fn)]‖2L2(R+)

)2
]

= 8 ‖fn ⊗1 fn‖2L2(R2
+) =

8

σ4n

n−1∑

i,j,k,l=0

ρ(k − l)ρ(i− j)ρ(k − i)ρ(l − j)

6
8

σ4n

n−1∑

i,l=0

∑

j,k∈Z
ρn(k − l)ρn(i− j)ρn(k − i)ρn(l − j)

=
8

σ4n

n−1∑

i,l=0

(ρn ∗ ρn)(l − i)2 6
8n

σ4n

∑

k∈Z
(ρn ∗ ρn)(k)2 =

8n

σ4n
‖ρn ∗ ρn‖2ℓ2(Z).

Recall Young’s inequality: if s, p, q > 1 are such that 1
p + 1

q = 1 + 1
s , then

‖u ∗ v‖ℓs(Z) 6 ‖u‖ℓp(Z)‖v‖ℓq(Z). (5.73)

Let us apply (5.73) with u = v = ρn, s = 2 and p = 4
3 . We get ‖ρn ∗ ρn‖2ℓ2(Z) 6 ‖ρn‖4

ℓ
4
3 (Z)

, so that

E

[(
1− 1

2
‖D[I2(fn)]‖2L2(R+)

)2
]
6

8n

σ4n


∑

|k|<n

|ρ(k)| 43



3

. (5.74)

Recall the asymptotic behavior of ρ(k) as |k| → ∞ from Lemma 5.7(1). Hence

∑

|k|<n

|ρ(k)| 43 =





O(1) if H ∈ (0, 58)
O(log n) if H = 5

8

O(n(8H−5)/3) if H ∈ (58 , 1).

(5.75)

Assume first that H < 3
4 and recall (5.71). This, together with (5.74) and (5.75), imply that

E

[∣∣∣∣1−
1

2
‖D[I2(fn)]‖2L2(R+)

∣∣∣∣
]

6

√√√√E

[(
1− 1

2
‖D[I2(fn)]‖2L2(R+)

)2
]

6 cH ×





1√
n

if H ∈ (0, 58)

(logn)3/2√
n

if H = 5
8

n4H−3 if H ∈ (58 ,
3
4)

.

35



Therefore, the desired conclusion holds for H ∈ (0, 34) by applying Theorem 5.2. Assume now that
H = 3

4 and recall (5.72). This, together with (5.74) and (5.75), imply that

E

[∣∣∣∣1−
1

2
‖D[I2(fn)]‖2L2(R+)

∣∣∣∣
]

6

√√√√E

[(
1− 1

2
‖D[I2(fn)]‖2L2(R+)

)2
]
= O(1/ log n),

and leads to the desired conclusion for H = 3
4 as well.

To go further. In [25], one may find a version of Theorem 5.2 where N is replaced by a
centered Gamma law (see also [24]). In [1], one associate to Corollary 5.5 an almost sure central
limit theorem. In [5], the case where H is bigger than 3/4 in Theorem 5.6 is analyzed.

6 The smart path method

The aim of this section is to prove Theorem 1.5, and even a more general version of it. Following
the approach developed in the previous section for the one-dimensional case, a possible way for
achieving this goal would have consisted in extending Stein’s method to the multivariate setting, so
to combine them with the tools of Malliavin calculus. This is indeed the approach developed in [32]
and it works well. In this survey, we will actually proceed differently, by using the so-called ‘smart
path method’ (which is a popular method in spin glasses theory, see, e.g., Talagrand [51]).

Let us first illustrate this approach in dimension one. Let F ∈ D1,2 with E[F ] = 0, let
N ∼ N (0, 1) and let h : R → R be a C2 function satisfying ‖ϕ′′‖∞ < ∞. Imagine we want
to estimate E[h(F )] − E[h(N)]. Without loss of generality, we may assume that N and F are
stochastically independent. We further have:

E[h(F )] − E[h(N)] =

∫ 1

0

d

dt
E[h(

√
tF +

√
1− tN)]dt

=

∫ 1

0

(
1

2
√
t
E[h′(

√
tF +

√
1− tN)F ]− 1

2
√
1− t

E[h′(
√
tF +

√
1− tN)N ]

)
dt.

For any x ∈ R and t ∈ [0, 1], Theorem 4.15 implies that

E[h′(
√
tF +

√
1− tx)F ] =

√
t E[h′′(

√
tF +

√
1− tx)〈DF,−DL−1F 〉L2(R+)]

whereas a classical integration by parts yields

E[h′(
√
tx+

√
1− tN)N ] =

√
1− t E[h′′(

√
tx+

√
1− tN)].

We deduce, since N and F are independent, that

E[h(F )] − E[h(N)] =
1

2

∫ 1

0
E[h′′(

√
tx+

√
1− tN)(〈DF,−DL−1F 〉L2(R+) − 1)]dt, (6.76)

implying in turn

∣∣E[h(F )] − E[h(N)]
∣∣ 6 1

2
‖h′′‖∞E

[∣∣1− 〈DF,−DL−1F 〉L2(R+)

∣∣] , (6.77)

compare with (5.57).
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It happens that this approach extends easily to the multivariate setting. To see why, we will
adopt the following short-hand notation: for every h : Rd → R of class C2, we set

‖h′′‖∞ = max
i,j=1,...,d

sup
x∈Rd

∣∣∣∣
∂2h

∂xi∂xj
(x)

∣∣∣∣ .

Theorem 6.1 below is a first step towards Theorem 1.5, and is nothing but the multivariate
counterpart of (6.76)-(6.77).

Theorem 6.1 Fix d > 2 and let F = (F1, . . . , Fd) be such that Fi ∈ D1,2 with E[Fi] = 0 for any i.
Let C ∈ Md(R) be a symmetric and positive matrix, and let N be a centered Gaussian vector with
covariance C. Then, for any h : Rd → R belonging to C2 and such that ‖h′′‖∞ <∞, we have

∣∣E[h(F )] − E[h(N)]
∣∣ 6 1

2
‖h′′‖∞

d∑

i,j=1

E
[∣∣C(i, j) − 〈DFj ,−DL−1Fi〉L2(R+)

∣∣] . (6.78)

Proof. Without loss of generality, we assume that N is independent of the underlying Brownian
motion B. Let h be as in the statement of the theorem. For any t ∈ [0, 1], set Ψ(t) =
E
[
h
(√

1− tF +
√
tN
)]
, so that

E[h(N)] − E[h(F )] = Ψ(1)−Ψ(0) =

∫ 1

0
Ψ′(t)dt.

We easily see that Ψ is differentiable on (0, 1) with

Ψ′(t) =
d∑

i=1

E

[
∂h

∂xi

(√
1− tF +

√
tN
)( 1

2
√
t
Ni −

1

2
√
1− t

Fi

)]
.

By integrating by parts, we can write

E

[
∂h

∂xi

(√
1− tF +

√
tN
)
Ni

]
= E

{
E

[
∂h

∂xi

(√
1− tx+

√
tN
)
Ni

]

|x=F

}

=
√
t

d∑

j=1

C(i, j)E

{
E

[
∂2h

∂xi∂xj

(√
1− tx+

√
tN
)]

|x=F

}

=
√
t

d∑

j=1

C(i, j)E

[
∂2h

∂xi∂xj

(√
1− tF +

√
tN
)]
.

By using Theorem 4.15 in order to perform the integration by parts, we can also write

E

[
∂h

∂xi

(√
1− tF +

√
tN
)
Fi

]
= E

{
E

[
∂h

∂xi

(√
1− tF +

√
tx
)
Fi

]

|x=N

}

=
√
1− t

d∑

j=1

E

{
E

[
∂2h

∂xi∂xj

(√
1− tF +

√
tx
)
〈DFj ,−DL−1Fi〉L2(R+)

]

|x=N

}

=
√
1− t

d∑

j=1

E

[
∂2h

∂xi∂xj

(√
1− tF +

√
tN
)
〈DFj ,−DL−1Fi〉L2(R+)

]
.
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Hence

Ψ′(t) =
1

2

d∑

i,j=1

E

[
∂2h

∂xi∂xj

(√
1− tF +

√
tN
) (
C(i, j)− 〈DFj ,−DL−1Fj〉L2(R+)

)]
,

and the desired conclusion follows.

We are now in position to prove Theorem 1.3. We will actually even show the following more
general version.

Theorem 6.2 (Peccati, Tudor, 2005; see [44]) Let d > 2 and qd, . . . , q1 > 1 be some fixed
integers. Consider vectors

Fn = (F1,n, . . . , Fd,n) = (Iq1(f1,n), . . . , Iqd(fd,n)), n > 1,

with fi,n ∈ L2(Rqi
+) symmetric. Let C ∈ Md(R) be a symmetric and positive matrix, and let N be

a centered Gaussian vector with covariance C. Assume that

lim
n→∞

E[Fi,nFj,n] = C(i, j), 1 6 i, j 6 d. (6.79)

Then, as n→ ∞, the following two conditions are equivalent:

(a) Fn converges in law to N ;

(b) for every 1 6 i 6 d, Fi,n converges in law to N (0, C(i, i)).

Proof. The implication (a) ⇒ (b) being trivial, we only concentrate on (b) ⇒ (a). So, assume (b) and
let us show that (a) holds true. Thanks to (6.78), we are left to show that, for each i, j = 1, . . . , d,

〈DFj,n,−DL−1Fi,n〉L2(R+) =
1

qi
〈DFj,n,DFi,n〉L2(R+)

L2(Ω)→ C(i, j) as n→ ∞. (6.80)

We consider all the possible cases for qi and qj.

First case: qi = qj = 1. We have 〈DFj,n,DFi,n〉L2(R+) = 〈fi,n, fj,n〉L2(R+) = E[Fi,nFj,n]. But it
is our assumption that E[Fi,nFj,n] → C(i, j) so (6.80) holds true in this case.

Second case: qi = 1 and qj > 2 (a similar analysis might be done whenever qj = 1 and qi > 2).
We have 〈DFj,n,DFi,n〉L2(R+) = 〈fi,n,DFj,n〉L2(R+) = Iqj−1(fi,n ⊗1 fj,n). We deduce that

E[〈DFj,n,DFi,n〉2L2(R+)] = (qj − 1)!‖fi,n⊗̃1fj,n‖2
L2(R

qj−1

+ )
6 (qj − 1)!‖fi,n ⊗1 fj,n‖2

L2(R
qj−1

+ )

= (qj − 1)!〈fi,n ⊗ fi,n, fj,n ⊗qj−1 fj,n〉L2(R2
+)

6 (qj − 1)!‖fi,n‖2L2(R+)‖fj,n ⊗qj−1 fj,n‖L2(R2
+)

= (qj − 1)!E[F 2
i,n]‖fj,n ⊗qj−1 fj,n‖L2(R2

+).

At this stage, observe the following two facts. First, because qi 6= qj, we have C(i, j) = 0

necessarily. Second, since E[F 2
j,n] → C(j, j) and Fj,n

Law→ N (0, C(j, j)), we have by Theorem 5.5
that ‖fj,n ⊗qj−1 fj,n‖L2(R2

+) → 0. Hence, (6.80) holds true in this case as well.
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Third case: qi = qj > 2. We have, using the product formula (4.43),

1

qi
〈DFj,n,DFi,n〉L2(R+) = qi

∫ ∞

0
Iqi(fi,n(·, t))Iqi(fj,n(·, t))dt

= qi

qi−1∑

r=0

r!

(
qi − 1

r

)2

I2qi−2−2r

(∫ ∞

0
fi,n(·, t) ⊗r fj,n(·, t)dt

)

= qi

qi−1∑

r=0

r!

(
qi − 1

r

)2

I2qi−2−2r (fi,n ⊗r+1 fj,n)

= qi!〈fi,n, fj,n〉L2(R
qi
+ ) + qi

qi−1∑

r=1

(r − 1)!

(
qi − 1

r − 1

)2

I2qi−2r(fi,n ⊗r fj,n)

= E[Fi,nFj,n] + qi

qi−1∑

r=1

(r − 1)!

(
qi − 1

r − 1

)2

I2qi−2r(fi,n ⊗r fj,n).

We deduce that

E

[(
1

qi
〈DFj,n,DFi,n〉L2(R+) − C(i, j)

)2
]

=
(
E[Fi,nFj,n]− C(i, j)

)2
+ q2i

qi−1∑

r=1

(r − 1)!2
(
qi − 1

r − 1

)4

(2qi − 2r)!‖fi,n⊗̃rfj,n‖2
L2(R

2qi−2r
+ )

.

The first term of the right-hand side tends to zero by assumption. For the second term, we can
write, whenever r ∈ {1, . . . , qi − 1},

‖fi,n⊗̃rfj,n‖2
L2(R

2qi−2r
+ )

6 ‖fi,n ⊗r fj,n‖2
L2(R

2qi−2r
+ )

= 〈fi,n ⊗qi−r fi,n, fj,n ⊗qi−r fj,n〉L2(R2r
+ )

6 ‖fi,n ⊗qi−r fi,n‖L2(R2r
+ )‖fj,n ⊗qi−r fj,n‖L2(R2r

+ ).

Since Fi,n
Law→ N (0, C(i, i)) and Fj,n

Law→ N (0, C(j, j)), by Theorem 5.5 we have that ‖fi,n ⊗qi−r

fi,n‖L2(R2r
+ )‖fj,n ⊗qi−r fj,n‖L2(R2r

+ ) → 0, thereby showing that (6.80) holds true in our third case.

Fourth case: qj > qi > 2 (a similar analysis might be done whenever qi > qj > 2). We have,
using the product formula (4.43),

1

qi
〈DFj,n,DFi,n〉L2(R+) = qj

∫ ∞

0
Iqi(fi,n(·, t))Iqj (fj,n(·, t))dt

= qj

qi−1∑

r=0

r!

(
qi − 1

r

)(
qj − 1

r

)
Iqi+qj−2−2r

(∫ ∞

0
fi,n(·, t)⊗r fj,n(·, t)dt

)

= qj

qi−1∑

r=0

r!

(
qi − 1

r

)(
qj − 1

r

)
Iqi+qj−2−2r (fi,n ⊗r+1 fj,n)

= qj

qi∑

r=1

(r − 1)!

(
qi − 1

r − 1

)(
qj − 1

r − 1

)
Iqi+qj−2r(fi,n ⊗r fj,n).
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We deduce that

E

[
1

qi
〈DFj,n,DFi,n〉2L2(R+)

]

= q2j

qi∑

r=1

(r − 1)!2
(
qi − 1

r − 1

)2(qj − 1

r − 1

)2

(qi + qj − 2r)!‖fi,n⊗̃rfj,n‖2
L2(R

qi+qj−2r

+ )
.

For any r ∈ {1, . . . , qi}, we have

‖fi,n⊗̃rfj,n‖2
L2(R

qi+qj−2r

+ )
6 ‖fi,n ⊗r fj,n‖2

L2(R
qi+qj−2r

+ )

= 〈fi,n ⊗qi−r fi,n, fj,n ⊗qj−r fj,n〉L2(R2r
+ )

6 ‖fi,n ⊗qi−r fi,n‖L2(R2r
+ )‖fj,n ⊗qj−r fj,n‖L2(R2r

+ )

6 ‖fi,n‖2L2(R
qi
+ )

‖fj,n ⊗qj−r fj,n‖L2(R2r
+ )

Since Fj,n
Law→ N (0, C(j, j)) and qj − r ∈ {1, . . . , qj − 1}, by Theorem 5.5 we have that

‖fj,n ⊗qj−r fj,n‖L2(R2r
+ ) → 0. We deduce that (6.80) holds true in our fourth case.

Summarizing, we have that (6.80) is true for any i and j, and the proof of the theorem is done.

When the integers qd, . . . , q1 are pairwise disjoint in Theorem 6.2, notice that (6.79) is
automatically verified with C(i, j) = 0 for all i 6= j, see indeed (4.38). As such, we recover the
version of Theorem 6.2 (that is, Theorem 1.5) which was stated and used in Lecture 1 to prove
Breuer-Major theorem.

To go further. In [32], Stein’s method is combined with Malliavin calculus in a multivariate
setting to provide bounds for the Wasserstein distance between the laws of N ∼ Nd(0, C) and
F = (F1, . . . , Fd) where each Fi ∈ D1,2 verifies E[Fi] = 0. Compare with Theorem 6.1.

7 Cumulants on the Wiener space

In this section, our aim is to analyze the cumulants of a given element F of D1,2 and to show how
the formula we shall obtain allows to give yet another proof of the Fourth Moment Theorem 1.3.

Let F be a random variable with, say, all the moments (to simplify the exposition). Let φF
denote its characteristic function, that is, φF (t) = E[eitF ], t ∈ R. Then, it is well-known that we
may recover the moments of F from φF through the identity

E[F j ] = (−i)j d
j

dtj
|t=0 φF (t).

The cumulants of F , denoted by {κj(F )}j>1, are defined in a similar way, just by replacing φF by
log φF in the previous expression:

κj(F ) = (−i)j d
j

dtj
|t=0 log φF (t).

The first few cumulants are

κ1(F ) = E[F ],

κ2(F ) = E[F 2]− E[F ]2 = Var(F ),

κ3(F ) = E[F 3]− 3E[F 2]E[F ] + 2E[F ]3.
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It is immediate that

κj(F +G) = κj(F ) + κj(G) and κj(λF ) = λjκj(F ) (7.81)

for all j > 1, when λ ∈ R and F and G are independent random variables (with all the moments).
Also, it is easy to express moments in terms of cumulants and vice-versa. Finally, let us observe
that the cumulants of F ∼ N (0, σ2) are all zero, except the second one which is σ2. This fact,
together with the two properties (7.81), gives a quick proof of the classical CLT and illustrates
that cumulants are often relevant when wanting to decide whether a given random variable is
approximately normally distributed.

The following simple lemma is a useful link between moments and cumulants.

Lemma 7.1 Let F be a random variable (in a given probability space (Ω,F , P )) having all the
moments. Then, for all m ∈ N,

E[Fm+1] =

m∑

s=0

(
m

s

)
κs+1(F )E[Fm−s].

Proof. We can write

E[Fm+1] = (−i)m+1 d
m+1

dtm+1
|t=0 φF (t) = (−i)m+1 d

m

dtm
|t=0

(
d

dt
(φF (t) log φF (t))

)

= (−i)m+1
m∑

s=0

(
m

s

)(
ds+1

dts+1
|t=0 log φF (t)

)(
dm−s

dtm−s
|t=0 φF (t)

)
by Leibniz

=

m∑

s=0

(
m

s

)
κs+1(F )E[Fm−s].

From now on, we will deal with a random variable F with all moments that is further measurable
with respect to the Brownian motion (Bt)t>0. We let the notation of Section 4 prevail and we
consider the chaotic expansion (4.39) of F . We further assume (only to avoid technical issues) that
F belongs to D∞, meaning that F ∈ Dm,2 for all m > 1 and that E[‖DmF‖p

L2(Rm
+ )

] < ∞ for all

m > 1 and all p > 2. This assumption allows us to introduce recursively the following (well-defined)
sequence of random variables related to F . Namely, set Γ0(F ) = F and

Γj+1(F ) = 〈DF,−DL−1Γj(F )〉L2(R+).

The following result contains a neat expression of the cumulants of F in terms of the family
{Γs(F )}s∈N.

Theorem 7.2 (Nourdin, Peccati, 2010; see [26]) Let F ∈ D∞. Then, for any s ∈ N,

κs+1(F ) = s!E[Γs(F )].

Proof. The proof is by induction. It consists to compute κs+1(F ) using the induction hypothesis,
together with Lemma 7.1 and (4.53). First, the result holds true for s = 0, as it only says that
κ1(F ) = E[Γ0(F )] = E[F ]. Assume now that m > 1 is given and that κs+1(F ) = s!E[Γs(F )] for all
s 6 m− 1. We can then write

κm+1(F ) = E[Fm+1]−
m−1∑

s=0

(
m

s

)
κs+1(F )E[Fm−s] by Lemma 7.1

= E[Fm+1]−
m−1∑

s=0

s!

(
m

s

)
E[Γs(F )]E[Fm−s] by the induction hypothesis.
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On the other hand, by applying (4.53) repeatedly, we get

E[Fm+1] = E[Fm]E[Γ0(F )] + Cov(Fm,Γ0(F )) = E[Fm]E[Γ0(F )] +mE[Fm−1Γ1(F )]

= E[Fm]E[Γ0(F )] +mE[Fm−1]E[Γ1(F )] +mCov(Fm−1,Γ1(F ))

= E[Fm]E[Γ0(F )] +mE[Fm−1]E[Γ1(F )] +m(m− 1)E[Fm−2Γ2(F )]

= . . .

=

m∑

s=0

s!

(
m

s

)
E[Fm−s]E[Γs(F )].

Thus

κm+1(F ) = E[Fm+1]−
m−1∑

s=0

s!

(
m

s

)
E[Γs(F )]E[Fm−s] = m!E[Γm(F )],

and the desired conclusion follows.

Let us now focus on the computation of cumulants associated to random variables having the
form of a multiple Wiener-Itô integral. The following statement provides a compact representation
for the cumulants of such random variables.

Theorem 7.3 Let q > 2 and assume that F = Iq(f), where f ∈ L2(Rq
+). We have κ1(F ) = 0,

κ2(F ) = q!‖f‖2
L2(Rq

+)
and, for every s > 3,

κs(F ) = q!(s − 1)!
∑

cq(r1, . . . , rs−2)
〈
(...((f⊗̃r1f)⊗̃r2f) . . . ⊗̃rs−3f)⊗̃rs−2f, f

〉
L2(Rq

+)
, (7.82)

where the sum
∑

runs over all collections of integers r1, . . . , rs−2 such that:

(i) 1 6 r1, . . . , rs−2 6 q;

(ii) r1 + . . .+ rs−2 =
(s−2)q

2 ;

(iii) r1 < q, r1 + r2 <
3q
2 , . . ., r1 + . . .+ rs−3 <

(s−2)q
2 ;

(iv) r2 6 2q − 2r1, . . ., rs−2 6 (s − 2)q − 2r1 − . . . − 2rs−3;

and where the combinatorial constants cq(r1, . . . , rs−2) are recursively defined by the relations

cq(r) = q(r − 1)!

(
q − 1

r − 1

)2

,

and, for a > 2,

cq(r1, . . . , ra) = q(ra − 1)!

(
aq − 2r1 − . . .− 2ra−1 − 1

ra − 1

)(
q − 1

ra − 1

)
cq(r1, . . . , ra−1).

Remark 7.4 1. If sq is odd, then κs(F ) = 0, see indeed condition (ii). This fact is easy to see

in any case: use that κs(−F ) = (−1)sκs(F ) and observe that, when q is odd, then F
(law)
= −F

(since B
(law)
= −B).
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2. If q = 2 and F = I2(f) with f ∈ L2(R2
+), then the only possible integers r1, . . . , rs−2 verifying

(i) − (iv) in the previous statement are r1 = . . . = rs−2 = 1. On the other hand, we
immediately compute that c2(1) = 2, c2(1, 1) = 4, c2(1, 1, 1) = 8, and so on. Therefore,

κs(I2(f)) = 2s−1(s − 1)!
〈
(...(f ⊗1 f) . . . f)⊗1 f, f

〉
L2(R2

+)
, (7.83)

and we recover the classical expression of the cumulants of a double integral.

3. If q > 2 and F = Iq(f), f ∈ L2(Rq
+), then (7.82) for s = 4 reads

κ4(Iq(f)) = 6q!

q−1∑

r=1

cq(r, q − r)
〈
(f⊗̃rf)⊗̃q−rf, f

〉
L2(Rq

+)

=
3

q

q−1∑

r=1

rr!2
(
q

r

)4

(2q − 2r)!
〈
(f⊗̃rf)⊗q−r f, f

〉
L2(Rq

+)

=
3

q

q−1∑

r=1

rr!2
(
q

r

)4

(2q − 2r)!
〈
f⊗̃rf, f ⊗r f

〉
L2(R2q−2r

+ )

=
3

q

q−1∑

r=1

rr!2
(
q

r

)4

(2q − 2r)!‖f⊗̃rf‖2L2(R2q−2r
+ )

, (7.84)

and we recover the expression for κ4(F ) given in (5.59) by a different route.

Proof of Theorem 7.3. Let us first show the following formula: for any s > 2, we claim that

Γs−1(F ) =

q∑

r1=1

. . .

[(s−1)q−2r1−...−2rs−2]∧q∑

rs−1=1

cq(r1, . . . , rs−1)1{r1<q} . . . 1{r1+...+rs−2<
(s−1)q

2
}

×Isq−2r1−...−2rs−1

(
(...(f⊗̃r1f)⊗̃r2f) . . . f)⊗̃rs−1f

)
.

(7.85)

We shall prove (7.85) by induction. When s = 2, identity (7.85) simply reads Γ1(F ) =∑q
r=1 cq(r)I2q−2r(f⊗̃rf) and is nothing but (5.62). Assume now that (7.85) holds for Γs−1(F ),

and let us prove that it continues to hold for Γs(F ). We have, using the product formula (4.43) and
following the same line of reasoning as in the proof of (5.62),

Γs(F ) = 〈DF,−DL−1Γs−1F 〉L2(R+)

=

q∑

r1=1

. . .

[(s−1)q−2r1−...−2rs−2]∧q∑

rs−1=1

qcq(r1, . . . , rs−1)1{r1<q} . . . 1{r1+...+rs−2<
(s−1)q

2
}

×1{r1+...+rs−1<
sq
2
}
〈
Iq−1(f), Isq−2r1−...−2rs−1−1

(
(...(f⊗̃r1f)⊗̃r2f) . . . f)⊗̃rs−1f

)〉
L2(R+)

=

q∑

r1=1

. . .

[(s−1)q−2r1−...−2rs−2]∧q∑

rs−1=1

[sq−2r1−...−2rs−1]∧q∑

rs=1

cq(r1, . . . , rs−1)× q(rs − 1)!

×
(
sq − 2r1 − . . .− 2rs−1 − 1

rs − 1

)(
q − 1

rs − 1

)
1{r1<q} . . . 1{r1+...+rs−2<

(s−1)q
2

}

×1{r1+...+rs−1<
sq
2
}I(s+1)q−2r1−...−2rs

(
(...(f⊗̃r1f)⊗̃r2f) . . . f)⊗̃rsf

)
,
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which is the desired formula for Γs(F ). The proof of (7.85) for all s > 1 is thus finished. Now, let
us take the expectation on both sides of (7.85). We get

κs(F ) = (s− 1)!E[Γs−1(F )]

= (s− 1)!

q∑

r1=1

. . .

[(s−1)q−2r1−...−2rs−2]∧q∑

rs−1=1

cq(r1, . . . , rs−1)1{r1<q} . . . 1{r1+...+rs−2<
(s−1)q

2
}

×1{r1+...+rs−1=
sq
2
} × (...(f⊗̃r1f)⊗̃r2f) . . . f)⊗̃rs−1f.

Observe that, if 2r1 + . . . + 2rs−1 = sq and rs−1 6 (s − 1)q − 2r1 − . . . − 2rs−2 then 2rs−1 =
q + (s− 1)q − 2r1 − . . .− 2rs−2 > q + rs−1, so that rs−1 > q. Therefore,

κs(F ) = (s− 1)!

q∑

r1=1

. . .

[(s−2)q−2r1−...−2rs−3]∧q∑

rs−2=1

cq(r1, . . . , rs−2, q)1{r1<q} . . . 1{r1+...+rs−3<
(s−2)q

2
}

×1{r1+...+rs−2=
(s−2)q

2
}
〈
(...(f⊗̃r1f)⊗̃r2f) . . . f)⊗̃rs−2f, f

〉
L2(Rq

+)
,

which is the announced result, since cq(r1, . . . , rs−2, q) = q!cq(r1, . . . , rs−2).

We conclude this section by providing yet another proof (based on our new formula (7.82)) of
the Fourth Moment Theorem 1.3. More precisely, let us show by another route that, if q > 2
is fixed and if (Fn)n>1 is a sequence of the form Fn = Iq(fn) with fn ∈ L2(Rq

+) such that
E[F 2

n ] = q!‖fn‖2L2(Rq
+)

= 1 for all n > 1 and E[F 4
n ] → 3 as n → ∞, then Fn → N (0, 1) in law

as n→ ∞.
To this end, observe that κ1(Fn) = 0 and κ2(Fn) = 1. To estimate κs(Fn), s > 3, we consider the

expression (7.82). Let r1, . . . , rs−2 be some integers such that (i)–(iv) in Theorem 7.3 are satisfied.
Using Cauchy-Schwarz and then successively

‖g⊗̃rh‖L2(Rp+q−2r
+ ) 6 ‖g ⊗r h‖L2(Rp+q−2r

+ ) 6 ‖g‖L2(Rp
+)‖h‖L2(Rq

+)

whenever g ∈ L2(Rp
+), h ∈ L2(Rq

+) and r = 1, . . . , p ∧ q, we get that
∣∣〈(...(fn⊗̃r1fn)⊗̃r2fn) . . . fn)⊗̃rs−2fn, fn〉L2(Rq

+)

∣∣

6 ‖(...(fn⊗̃r1fn)⊗̃r2fn) . . . fn)⊗̃rs−2fn‖L2(Rq
+)‖fn‖L2(Rq

+)

6 ‖fn⊗̃r1fn‖L2(R
2q−2r1
+ )

‖fn‖s−2
L2(Rq

+)

= (q!)1−
s
2 ‖fn⊗̃r1fn‖L2(R

2q−2r1
+ )

. (7.86)

Since E[F 4
n ] − 3 = κ4(Fn) → 0, we deduce from (7.84) that ‖fn⊗̃rfn‖L2(R2q−2r

+ ) → 0 for all

r = 1, . . . , q − 1. Consequently, by combining (7.82) with (7.86), we get that κs(Fn) → 0 as
n→ ∞ for all s > 3, implying in turn that Fn → N (0, 1) in law.

To go further. The multivariate version of Theorem 7.2 may be found in [21].

8 A new density formula

In this section, we shall explain how the quantity 〈DF,−DL−1F 〉L2(R+) is related to the density
of F ∈ D1,2 (provided it exists). More specifically, when F ∈ D1,2 is such that E[F ] = 0, let us
introduce the function gF : R → R, defined by means of the following identity:

gF (F ) = E[〈DF,−DL−1F 〉L2(R+)|F ]. (8.87)
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A key property of the random variable gF (F ) is as follows.

Proposition 8.1 If F ∈ D1,2 satisfies E[F ] = 0, then P (gF (F ) > 0) = 1.

Proof. Let C be a Borel set of R and set φn(x) =
∫ x
0 1C∩[−n,n](t)dt, n > 1 (with the usual convention∫ x

0 = −
∫ 0
x for x < 0). Since φn is increasing and vanishing at zero, we have xφn(x) > 0 for all

x ∈ R. In particular,

0 6 E[Fφn(F )] = E

[
F

∫ F

0
1C∩[−n,n](t)dt

]
= E

[
F

∫ F

−∞
1C∩[−n,n](t)dt

]
.

Therefore, we deduce from Corollary 4.17 that E
[
gF (F )1C∩[−n,n](F )

]
> 0. By dominated

convergence, this yields E [gF (F )1C(F )] > 0, implying in turn that P (gF (F ) > 0) = 1.

The following theorem gives a new density formula for F in terms of the function gF . We will
then study some of its consequences.

Theorem 8.2 (Nourdin, Viens, 2009; see [34]) Let F ∈ D1,2 with E[F ] = 0. Then, the
law of F admits a density with respect to Lebesgue measure (say, ρ : R → R) if and only if
P (gF (F ) > 0) = 1. In this case, the support of ρ, denoted by supp ρ, is a closed interval of R

containing zero and we have, for (almost) all x ∈ suppρ:

ρ(x) =
E[|F |]
2gF (x)

exp

(
−
∫ x

0

y dy

gF (y)

)
. (8.88)

Proof. Assume that P (gF (F ) > 0) = 1 and let C be a Borel set. Let n > 1. Corollary 4.17 yields

E

[
F

∫ F

−∞
1C∩[−n,n](t)dt

]
= E

[
1C∩[−n,n](F )gF (F )

]
. (8.89)

Suppose that the Lebesgue measure of C is zero. Then
∫ F
−∞ 1C∩[−n,n](t)dt = 0, so that

E
[
1C∩[−n,n](F )gF (F )

]
= 0 by (8.89). But, since P (gF (F ) > 0) = 1, we get that P (F ∈

C ∩ [−n, n]) = 0 and, by letting n → ∞, that P (F ∈ C) = 0. Therefore, the Radon-Nikodym
criterion is verified, hence implying that the law of F has a density.

Conversely, assume that the law of F has a density, say ρ. Let φ : R → R be a continuous
function with compact support, and let Φ denote any antiderivative of φ. Note that Φ is necessarily
bounded. We can write:

E
[
φ(F )gF (F )

]
= E

[
Φ(F )F

]
by (4.53)

=

∫

R

Φ(x)x ρ(x)dx =
(∗)

∫

R

φ(x)

(∫ ∞

x
yρ(y)dy

)
dx = E

[
φ(F )

∫∞
F yρ(y)dy

ρ(F )

]
.

Equation (∗) was obtained by integrating by parts, after observing that

∫ ∞

x
yρ(y)dy → 0 as |x| → ∞

(for x→ +∞, this is because F ∈ L1(Ω); for x→ −∞, this is because F has mean zero). Therefore,
we have shown that, P -a.s.,

gF (F ) =

∫∞
F yρ(y)dy

ρ(F )
. (8.90)
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(Notice that P (ρ(F ) > 0) =
∫
R
1{ρ(x)>0}ρ(x)dx =

∫
R
ρ(x)dx = 1, so that identity (8.90) always

makes sense.) Since F ∈ D1,2, one has (see, e.g., [35, Proposition 2.1.7]) that suppρ = [α, β] with
−∞ 6 α < β 6 +∞. Since F has zero mean, note that α < 0 and β > 0 necessarily. For every
x ∈ (α, β), define

ϕ (x) =

∫ ∞

x
yρ (y) dy. (8.91)

The function ϕ is differentiable almost everywhere on (α, β), and its derivative is −xρ (x). In
particular, since ϕ(α) = ϕ(β) = 0 and ϕ is strictly increasing before 0 and strictly decreasing
afterwards, we have ϕ(x) > 0 for all x ∈ (α, β). Hence, (8.90) implies that P (gF (F ) > 0) = 1.

Finally, let us prove (8.88). Let ϕ still be defined by (8.91). On the one hand, we have
ϕ′(x) = −xρ(x) for almost all x ∈ suppρ. On the other hand, by (8.90), we have, for almost
all x ∈ suppρ,

ϕ(x) = ρ(x)gF (x). (8.92)

By putting these two facts together, we get the following ordinary differential equation satisfied by
ϕ:

ϕ′(x)
ϕ(x)

= − x

gF (x)
for almost all x ∈ supp ρ.

Integrating this relation over the interval [0, x] yields

logϕ(x) = logϕ(0) −
∫ x

0

y dy

gF (y)
.

Taking the exponential and using 0 = E(F ) = E(F+)− E(F−) so that E|F | = E(F+) + E(F−) =
2E(F+) = 2ϕ(0), we get

ϕ(x) =
1

2
E[|F |] exp

(
−
∫ x

0

y dy

gF (y)

)
.

Finally, the desired conclusion comes from (8.92).

A consequence of Theorem 8.2 is the following statement, yielding sufficient conditions in order
for the law of F to have a support equal to the real line.

Corollary 8.3 Let F ∈ D1,2 with E[F ] = 0. Assume that there exists σmin > 0 such that

gF (F ) > σ2min, P -a.s. (8.93)

Then the law of F , which has a density ρ by Theorem 8.2, has R for support and (8.88) holds almost
everywhere in R.

Proof. It is an immediate consequence of Theorem 8.2, except the fact that supp ρ = R. For the
moment, we just know that suppρ = [α, β] with −∞ 6 α < 0 < β 6 +∞. Identity (8.90) yields

∫ ∞

x
yρ (y) dy > σ2min ρ (x) for almost all x ∈ (α, β). (8.94)
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Let ϕ be defined by (8.91), and recall that ϕ(x) > 0 for all x ∈ (α, β). When multiplied by

x ∈ [0, β), the inequality (8.94) gives ϕ′(x)
ϕ(x) > − x

σ2
min

. Integrating this relation over the interval [0, x]

yields logϕ (x)− logϕ (0) > − x2

2σ2
min

, i.e., since ϕ(0) = 1
2E|F |,

ϕ (x) =

∫ ∞

x
yρ (y) dy >

1

2
E|F |e

− x2

2σ2
min . (8.95)

Similarly, when multiplied by x ∈ (α, 0], inequality (8.94) gives ϕ′(x)
ϕ(x) 6 − x

σ2
min
. Integrating this

relation over the interval [x, 0] yields logϕ (0)− logϕ (x) 6 x2

2σ2
min

, i.e. (8.95) still holds for x ∈ (α, 0].

Now, let us prove that β = +∞. If this were not the case, by definition, we would have ϕ (β) = 0;
on the other hand, by letting x tend to β in the above inequality, because ϕ is continuous, we would

have ϕ (β) > 1
2E|F |e

− β2

2σ2
min > 0, which contradicts β < +∞. The proof of α = −∞ is similar. In

conclusion, we have shown that supp ρ = R.

Using Corollary 8.3, we deduce a neat criterion for normality.

Corollary 8.4 Let F ∈ D1,2 with E[F ] = 0 and assume that F is not identically zero. Then F is
Gaussian if and only if Var(gF (F )) = 0.

Proof : By (4.53) (choose ϕ(x) = x, G = F and recall that E[F ] = 0), we have

E[〈DF,−DL−1F 〉H] = E[F 2] = VarF. (8.96)

Therefore, the condition Var(gF (F )) = 0 is equivalent to P (gF (F ) = VarF ) = 1. Let F ∼ N (0, σ2)
with σ > 0. Using (8.90), we immediately check that gF (F ) = σ2, P -a.s. Conversely, if
gF (F ) = σ2 > 0 P -a.s., then Corollary 8.3 implies that the law of F has a density ρ, given by

ρ(x) = E|F |
2σ2 e

− x2

2σ2 for almost all x ∈ R, from which we immediately deduce that F ∼ N (0, σ2).

Observe that if F ∼ N (0, σ2) with σ > 0, then E|F | =
√

2/π σ, so that the formula (8.88) for
ρ agrees, of course, with the usual one in this case.

As a ‘concrete’ application of (8.88), let us consider the following situation. Let K : [0, 1]2 → R

be a square-integrable kernel such that K(t, s) = 0 for s > t, and consider the centered Gaussian
process X = (Xt)t∈[0,1] defined as

Xt =

∫ 1

0
K(t, s)dBs =

∫ t

0
K(t, s)dBs, t ∈ [0, 1]. (8.97)

Fractional Brownian motion is an instance of such a process, see, e.g., [23, Section 2.3]. Consider
the maximum

Z = sup
t∈[0,1]

Xt. (8.98)

Assume further that the kernel K satisfies

∃c, α > 0, ∀s, t ∈ [0, 1]2, s 6= t, 0 <

∫ 1

0
(K(t, u)−K(s, u))2du 6 c|t− s|α. (8.99)
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It ensures (see, e.g., [10]) that: (i) Z ∈ D1,2; (ii) the law of Z has a density with respect to Lebesgue
measure; (iii) there exists a (a.s.) unique random point τ ∈ [0, 1] where the supremum is attained,
that is, such that Z = Xτ =

∫ 1
0 K(τ, s)dBs; and (iv) DtZ = K(τ, t), t ∈ [0, 1]. We claim the

following formula.

Proposition 8.5 Let Z be given by (8.98), X be defined as (8.97) and K ∈ L2([0, 1]2) be satisfying
(8.99). Then, the law of Z has a density ρ whose support is R+, given by

ρ(x) =
E|Z − E[Z]|

2hZ(x)
exp

(
−
∫ x

E[Z]

(y − E[Z])dy

hZ(y)

)
, x > 0.

Here,

hZ(x) =

∫ ∞

0
e−u

E [R(τ0, τu)|Z = x] du,

where R(s, t) = E[XsXt], s, t ∈ [0, 1], and τu is the (almost surely) unique random point where

X
(u)
t =

∫ 1

0
K(t, s)(e−udBs +

√
1− e−2udB′

s)

attains its maximum on [0, 1], with (B,B′) a two-dimensional Brownian motion defined on the
product probability space (Ω,F ,P) = (Ω× Ω′,F ⊗ F ′, P × P ′).

Proof. Set F = Z−E[Z]. We have −DtL
−1F =

∑∞
q=1 Iq−1(fq(·, t)) and DtF =

∑∞
q=1 qIq−1(fq(·, t)).

Thus
∫ ∞

0
e−uPu(DtF )du =

∞∑

q=1

Iq−1(fq(·, t))
∫ ∞

0
e−uqe−(q−1)udu =

∞∑

q=1

Iq−1(fq(·, t)).

Consequently,

−DtL
−1F =

∫ ∞

0
e−uPu(DtF )du, t ∈ [0, 1].

By Mehler’s formula (4.49), and since DF = DZ = K(τ, ·) with τ = argmaxt∈[0,1]
∫ 1
0 K(t, s)dBs,

we deduce that

−DtL
−1F =

∫ ∞

0
e−uE′[K(τu, t)]du,

implying in turn

gF (F ) = E[〈DF,−DL−1F 〉L2([0,1])|F ] =
∫ 1

0
dt

∫ ∞

0
du e−uK(τ0, t)E[E′[K(τu, t)|F ]]

=

∫ ∞

0
e−uE

[
E′
[∫ 1

0
K(τ0, t)K(τu, t)dt|F

]]
du =

∫ ∞

0
e−uE

[
E′ [R(τ0, τu)|F ]

]
du

=

∫ ∞

0
e−u

E [R(τ0, τu)|F ] du.

The desired conclusion follows now from Theorem 8.2 and the fact that F = Z − E[Z].

To go further. The reference [34] also contains interesting concentration inequalities for
centered random variables F ∈ D1,2 satisfying gF (F ) 6 αF +β. The paper [38] shows how Theorem
8.2 can lead to optimal Gaussian density estimates for a class of stochastic equations with additive
noise.
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9 Exact rates of convergence

Let {Fn}n>1 be a sequence of random variables in D1,2 such that E[Fn] = 0, Var(Fn) = 1 and

Fn
law→ N ∼ N (0, 1) as n→ ∞. In this section, our aim is to develop tools for computing the exact

asymptotic expression of the (suitably normalized) sequence

P (Fn 6 x)− P (N 6 x), n > 1,

when x ∈ R is fixed. This will complement the content of Theorem 5.2.

A technical computation. For every fixed x, we denote by fx : R → R the function

fx(u) = eu
2/2

∫ u

−∞

(
1(−∞,x](a)− Φ(x)

)
e−a2/2da

=
√
2πeu

2/2 ×
{

Φ(u)(1− Φ(x)) if u 6 x
Φ(x)(1− Φ(u)) if u > x

, (9.100)

where Φ(x) = 1√
2π

∫ x
−∞ e−a2/2da. We have the following result.

Proposition 9.1 Let N ∼ N (0, 1). We have, for every x ∈ R,

E[f ′x(N)N ] =
1

3
(x2 − 1)

e−x2/2

√
2π

. (9.101)

Proof. Integrating by parts (the bracket term is easily shown to vanish), we first obtain that

E[f ′x(N)N ] =

∫ +∞

−∞
f ′x(u)u

e−u2/2

√
2π

du =

∫ +∞

−∞
fx(u)(u

2 − 1)
e−u2/2

√
2π

du

=
1√
2π

∫ +∞

−∞
(u2 − 1)

(∫ u

−∞

[
1(−∞,x](a)− Φ(x)

]
e−a2/2da

)
du.

Integrating by parts once again, this time using the relation u2 − 1 = 1
3 (u

3 − 3u)′, we deduce that

∫ +∞

−∞
(u2 − 1)

(∫ u

−∞

[
1(−∞,x](a)− Φ(x)

]
e−a2/2da

)
du

= −1

3

∫ +∞

−∞
(u3 − 3u)

[
1(−∞,x](u)− Φ(x)

]
e−u2/2du

= −1

3

(∫ x

−∞
(u3 − 3u)e−u2/2du− Φ(x)

∫ +∞

−∞
(u3 − 3u)e−u2/2du

)

=
1

3
(x2 − 1)e−x2/2, since [(u2 − 1)e−u2/2]′ = −(u3 − 3u)e−u2/2.

A general result. Assume that {Fn}n>1 is a sequence of (sufficiently regular) centered random
variables with unitary variance such that the sequence

ϕ(n) :=
√
E[(1 − 〈DFn,−DL−1Fn〉L2(R+))

2], n > 1, (9.102)

converges to zero as n→ ∞. According to Theorem 5.2 one has that, for any x ∈ R and as n→ ∞,

P (Fn 6 x)− P (N 6 x) 6 dTV (Fn, N) 6 2ϕ(n) → 0, (9.103)
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where N ∼ N (0, 1). The forthcoming result provides a useful criterion in order to compute an exact
asymptotic expression (as n→ ∞) for the quantity

P (Fn 6 x)− P (N 6 x)

ϕ(n)
, n > 1.

Theorem 9.2 (Nourdin, Peccati, 2010; see [27]) Let {Fn}n>1 be a sequence of random
variables belonging to D1,2, and such that E[Fn] = 0, Var[Fn] = 1. Suppose moreover that the
following three conditions hold:

(i) we have 0 < ϕ(n) <∞ for every n and ϕ(n) → 0 as n→ ∞;

(ii) the law of Fn has a density with respect to Lebesgue measure for every n;

(iii) as n→ ∞, the two-dimensional vector

(
Fn,

〈DFn,−DL−1Fn〉L2(R+)−1

ϕ(n)

)
converges in distribution

to a centered two-dimensional Gaussian vector (N1, N2), such that E[N2
1 ] = E[N2

2 ] = 1 and
E[N1N2] = ρ.

Then, as n→ ∞, one has for every x ∈ R,

P (Fn 6 x)− P (N 6 x)

ϕ(n)
→ ρ

3
(1− x2)

e−x2/2

√
2π

. (9.104)

Proof. For any integer n and any C1-function f with a bounded derivative, we know by Theorem
4.15 that

E[Fnf(Fn)] = E[f ′(Fn)〈DFn,−DL−1Fn〉L2(R+)].

Fix x ∈ R and observe that the function fx defined by (9.100) is not C1 due to the singularity in x.
However, by using a regularization argument given assumption (ii), one can show that the identity

E[Fnfx(Fn)] = E[f ′x(Fn)〈DFn,−DL−1Fn〉L2(R+)]

is true for any n. Therefore, since P (Fn 6 x)− P (N 6 x) = E[f ′x(Fn)]− E[Fnfx(Fn)], we get

P (Fn 6 x)− P (N 6 x)

ϕ(n)
= E

[
f ′x(Fn)×

1− 〈DFn,−DL−1Fn〉L2(R+)

ϕ(n)

]
.

Reasoning as in Lemma 3.1, one may show that fx is Lipschitz with constant 2. Since ϕ(n)−1(1−
〈DFn,−DL−1Fn〉L2(R+)) has variance 1 by definition of ϕ(n), we deduce that the sequence

f ′x(Fn)×
1− 〈DFn,−DL−1Fn〉L2(R+)

ϕ(n)
, n > 1,

is uniformly integrable. Definition (9.100) shows that u→ f ′x(u) is continuous at every u 6= x. This
yields that, as n→ ∞ and due to assumption (iii),

E

[
f ′x(Fn)×

1− 〈DFn,−DL−1Fn〉L2(R+)

ϕ(n)

]
→ −E[f ′x(N1)N2] = −ρE[f ′x(N1)N1].

Consequently, relation (9.104) now follows from formula (9.101).

The double integrals case and a concrete application. When applying Theorem 9.2 in
concrete situations, the main issue is often to check that condition (ii) therein holds true. In the
particular case of sequences belonging to the second Wiener chaos, we can go further in the analysis,
leading to the following result.
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Proposition 9.3 Let N ∼ N (0, 1) and let Fn = I2(fn) be such that fn ∈ L2(R2
+) is symmetric

for all n > 1. Write κp(Fn), p > 1, to indicate the sequence of the cumulants of Fn. Assume that
κ2(Fn) = E[F 2

n ] = 1 for all n > 1 and that κ4(Fn) = E[F 4
n ] − 3 → 0 as n → ∞. If we have in

addition that

κ3(Fn)√
κ4(Fn)

→ α and
κ8(Fn)(
κ4(Fn)

)2 → 0, (9.105)

then, for all x ∈ R,

P (Fn 6 x)− P (N 6 x)√
κ4(Fn)

→ α

6
√
2π

(
1− x2

)
e−

x2

2 as n→ ∞. (9.106)

Remark 9.4 Due to (9.105), we see that (9.106) is equivalent to

P (Fn 6 x)− P (N 6 x)

κ3(Fn)
→ 1

6
√
2π

(
1− x2

)
e−

x2

2 as n→ ∞.

Since each Fn is centered, one also has that κ3(Fn) = E[F 3
n ].

Proof. We shall apply Theorem 9.2. Thanks to (5.60), we get that

κ4(Fn)

6
=
E[F 4

n ]− 3

6
= 8 ‖fn ⊗1 fn‖2L2(R2

+).

By combining this identity with (5.58) (here, it is worth observing that fn ⊗1 fn is symmetric, so
that the symmetrization fn⊗̃1fn is immaterial), we see that the quantity ϕ(n) appearing in (9.102)
is given by

√
κ4(Fn)/6. In particular, condition (i) in Theorem 9.2 is met (here, let us stress that

one may show that κ4(Fn) > 0 for all n by means of (5.60)). On the other hand, since Fn is
a non-zero double integral, its law has a density with respect to Lebesgue measure, according to
Theorem 4.18. This means that condition (ii) in Theorem 9.2 is also in order. Hence, it remains
to check condition (iii). Assume that (9.105) holds. Using (7.83) in the cases p = 3 and p = 8, we
deduce that

κ3(Fn)√
κ4(Fn)

=
8 〈fn, fn ⊗1 fn〉L2(R2

+)√
6ϕ(n)

and

κ8(Fn)

(κ4(Fn))
2 =

17920‖(fn ⊗1 fn)⊗1 (fn ⊗1 fn)‖2L2(R2
+)

ϕ(n)4
.

On the other hand, set

Yn =

1
2‖DFn‖2L2(R+) − 1

ϕ(n)
.

By (5.62), we have 1
2‖DYn‖2L2(R+) − 1 = 2 I2(fn ⊗1 fn). Therefore, by (5.58), we get that

E

[(
1

2
‖DYn‖2L2(R+) − 1

)2
]

=
128

ϕ(n)4
‖(fn ⊗1 fn)⊗1 (fn ⊗1 fn)‖L2(R2

+)

=
κ8(Fn)

140 (κ4(Fn))
2 → 0 as n→ ∞.
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Hence, by Theorem 5.5, we deduce that Yn
Law→ N (0, 1). We also have

E[YnFn] =
4

ϕ(n)
〈fn ⊗1 fn, fn〉L2(R2

+) =

√
6κ3(Fn)

2
√
κ4(Fn)

→ α
√
6

2
=: ρ as n→ ∞.

Therefore, to conclude that condition (iii) in Theorem 9.2 holds true, it suffices to apply Theorem
6.2.

To give a concrete application of Proposition 9.3, let us go back to the quadratic variation of
fractional Brownian motion. Let BH = (BH

t )t>0 be a fractional Brownian motion with Hurst index
H ∈ (0, 12) and let

Fn =
1

σn

n−1∑

k=0

[
(BH

k+1 −BH
k )2 − 1

]
,

where σn > 0 is so that E[F 2
n ] = 1. Recall from Theorem 5.6 that limn→∞ σ2n/n = 2

∑
r∈Z ρ

2(r) <
∞, with ρ : Z → R+ given by (5.68); moreover, there exists a constant cH > 0 (depending only on
H) such that, with N ∼ N (0, 1),

dTV (Fn, N) 6
cH√
n
, n > 1. (9.107)

The next two results aim to show that one can associate a lower bound to (9.107). We start by
the following auxiliary result.

Proposition 9.5 Fix an integer s > 2, let Fn be as above and let ρ be given by (5.68). Recall that
H < 1

2 , so that ρ ∈ ℓ1(Z). Then, the sth cumulant of Fn behaves asymptotically as

κs(Fn) ∼ n1−s/2 2s/2−1(s− 1)!
〈ρ∗(s−1), ρ〉ℓ2(Z)

‖ρ‖s
ℓ2(Z)

as n→ ∞. (9.108)

Proof. As in the proof of Theorem 5.6, we have that Fn
law
= I2(fn) with fn = 1

σn

∑n−1
k=0 e

⊗2
k . Now, let

us proceed with the proof. It is divided into several steps.

First step. Using the formula (7.83) giving the cumulants of Fn = I2(fn) as well as the very
definition of the contraction ⊗1, we immediately check that

κs(Fn) =
2s−1(s− 1)!

σsn

n−1∑

k1,...,ks=0

ρ(ks − ks−1) . . . ρ(k2 − k1)ρ(k1 − ks).

Second step. Since H < 1
2 , we have that ρ ∈ ℓ1(Z). Therefore, by applying Young inequality

repeatedly, we have

‖ |ρ|∗(s−1)‖ℓ∞(Z) 6 ‖ρ‖ℓ1(Z)‖ |ρ|∗(s−2)‖ℓ∞(Z) 6 . . . 6 ‖ρ‖s−1
ℓ1(Z)

<∞.

In particular, we have that 〈|ρ|∗(s−1), |ρ|〉ℓ2(Z) 6 ‖ρ‖sℓ1(Z) <∞.

Third step. Thanks to the result shown in the previous step, observe first that
∑

k2,...,ks∈Z
|ρ(k2)ρ(k2 − k3)ρ(k3 − k4) . . . ρ(ks−1 − ks)ρ(ks)| = 〈|ρ|∗(s−1), |ρ|〉ℓ2(Z) <∞.
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Hence, one can apply dominated convergence to get, as n→ ∞, that

σsn
2s−1(s− 1)!n

κs(Fn)

=
1

n

n−1∑

k1=0

n−1−k1∑

k2,...,ks=−k1

ρ(k2)ρ(k2 − k3)ρ(k3 − k4) . . . ρ(ks−1 − ks)ρ(ks)

=
∑

k2,...,ks∈Z
ρ(k2)ρ(k2 − k3)ρ(k3 − k4) . . . ρ(ks−1 − ks)ρ(ks)

×
[
1 ∧

(
1− max{k2, . . . , ks}

n

)
− 0 ∨

(
min{k2, . . . , ks}

n

)]
1{|k2|<n,...,|ks|<n}

→
∑

k2,...,ks∈Z
ρ(k2)ρ(k2 − k3)ρ(k3 − k4) . . . ρ(ks−1 − ks)ρ(ks) = 〈ρ∗(s−1), ρ〉ℓ2(Z).

(9.109)

Since σn ∼
√
2n ‖ρ‖ℓ2(Z) as n→ ∞, the desired conclusion follows.

Corollary 9.6 Let Fn be as above (with H < 1
2), let N ∼ N (0, 1), and let ρ be given by (5.68).

Then, for all x ∈ R, we have

√
n
(
P (Fn 6 x)− P (N 6 x)

)
→

〈ρ∗2, ρ〉ℓ2(Z)
3‖ρ‖2

ℓ2(Z)

(1− x2) e−
x2

2 as n→ ∞.

In particular, we deduce that there exists dH > 0 such that

dH√
n
6
∣∣P (Fn 6 0)− P (N 6 0)

∣∣ 6 dTV (Fn, N), n > 1. (9.110)

Proof. The desired conclusion follows immediately by combining Propositions 9.3 and 9.5.

By paying closer attention to the used estimates, one may actually show that (9.110) holds true
for any H < 5

8 (not only H < 1
2). See [29, Theorem 9.5.1] for the details.

To go further. The paper [27] contains several other examples of application of Theorem 9.2
and Proposition 9.3. In the reference [4], one shows that the deterministic sequence

max{E[F 3
n ], E[F 4

n ]− 3}, n > 1,

completely characterizes the rate of convergence (with respect to smooth distances) in CLTs
involving chaotic random variables.

10 An extension to the Poisson space (following the invited talk by

Giovanni Peccati)

Let B = (Bt)t>0 be a Brownian motion, let F be any centered element of D1,2 and let N ∼ N (0, 1).
We know from Theorem 5.2 that

dTV (F,N) 6 2E[|1 − 〈DF,−DL−1F 〉L2(R+)|]. (10.111)
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The aim of this section is to explain how to deduce inequalities of the type (10.111), when F is a
regular functional of a Poisson measure η and when the target law N is either Gaussian or Poisson.

We first need to introduce the basic concepts in this framework.

Poisson measure. In what follows, we shall use the symbol Po(λ) to indicate the Poisson

distribution of parameter λ > 0 (that is, Pλ ∼ Po(λ) if and only if P (Pλ = k) = e−λ λk

k! for
all k ∈ N), with the convention that Po(0) = δ0 (Dirac mass at 0). Set A = Rd with d > 1, let A
be the Borel σ-field on A, and let µ be a positive, σ-finite and atomless measure over (A,A). We
set Aµ = {B ∈ A : µ(B) <∞}.

Definition 10.1 A Poisson measure η with control µ is an object of the form {η(B)}B∈Aµ with the
following features:

(1) for all B ∈ Aµ, we have η(B) ∼ Po(µ(B)).

(2) for all B,C ∈ Aµ with B ∩ C 6= ∅, the random variables η(B) and η(C) are independent.

Also, we note η̂(B) = η(B)− µ(B).

Remark 10.2 1. As a simple example, note that for d = 1 and µ = λ × Leb (with ‘Leb’ the
Lebesgue measure) the process {η([0, t])}t>0 is nothing but a Poisson process with intensity
λ.

2. Let µ be a σ-finite atomless measure over (A,A), and observe that this implies that there
exists a sequence of disjoint sets {Aj : j > 1} ⊂ Aµ such that ∪jAj = A. For every j = 1, 2, ...
belonging to the set J0 of those indices such that µ(Aj) > 0 consider the following objects:

X(j) = {X(j)
k : k > 1} is a sequence of i.i.d. random variables with values in Aj and with

common distribution
µ|Aj

µ(Aj )
; Pj is a Poisson random variable with parameter µ(Aj). Assume

moreover that : (i) X(j) is independent of X(k) for every k 6= j, (ii) Pj is independent of
Pk for every k 6= j, and (iii) the classes {X(j)} and {Pj} are independent. Then, it is a
straightforward computation to verify that the random point measure

η(·) =
∑

j∈J0

Pj∑

k=1

δ
X

(j)
k

(·),

where δx indicates the Dirac mass at x and
∑0

k=1 = 0 by convention, is a a Poisson random
measure with control µ. See e.g. [47, Section 1.7].

Multiple integrals and chaotic expansion. As a preliminary remark, let us observe that
E[η̂(B)] = 0 and E[η̂(B)2] = µ(B) for all B ∈ Aµ. For any q > 1, set L2(µq) = L2(Aq,Aq, µq). We
want to appropriately define

Iq(f) =

∫

Aq

f(x1, . . . , xq)η̂(dx1) . . . η̂(dxq)

when f ∈ L2(µq). To reach our goal, we proceed in a classical way. We first consider the subset
E(µq) of simple functions, which is defined as

E(µq) = span
{
1B1 ⊗ . . .⊗ 1Bq , withB1, . . . , Bq ∈ Aµ such thatBi ∩Bj = ∅ for all i 6= j

}
.
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When f = 1B1 ⊗ . . . ⊗ 1Bq with B1, . . . , Bq ∈ Aµ such that Bi ∩Bj = ∅ for all i 6= j, we naturally
set

Iq(f) := η̂(B1) . . . η̂(Bq) =

∫

Aq

f(x1, . . . , xq)η̂(dx1) . . . η̂(dxq).

(For such a simple function f , note that the right-hand side in the previous formula makes perfectly
sense by considering η̂ as a signed measure.) We can extend by linearity the definition of Iq(f) to
any f ∈ E(µq). It is then a simple computation to check that

E[Ip(f)Iq(g)] = p!δp,q 〈f̃ , g̃〉L2(µp)

for all f ∈ E(µp) and g ∈ E(µq), with f̃ (resp. g̃) the symmetrization of f (resp. g) and δp,q the
Kronecker symbol. Since E(µq) is dense in L2(µq) (it is precisely here that the fact that µ has no
atom is crucial!), we can define Iq(f) by isometry to any f ∈ L2(µq). Relevant properties of Iq(f)

include E[Iq(f)] = 0, Iq(f) = Iq(f̃) and (importantly!) the fact that Iq(f) is a true multiple integral
when f ∈ E(µq).

Definition 10.3 Fix q > 1. The set of random variables of the form Iq(f) is called the qth Poisson-
Wiener chaos.

In this framework, we have an analogue of the chaotic decomposition (4.39) – see e.g. [43,
Corollary 10.0.5] for a proof.

Theorem 10.4 For all F ∈ L2(σ{η}) (that is, for all random variable F which is square integrable
and measurable with respect to η), we have

F = E[F ] +

∞∑

q=1

Iq(fq), (10.112)

where the kernels fq are (µq-a.e.) symmetric elements of L2(µq) and are uniquely determined by F .

Multiplication formula and contractions. When f ∈ E(µp) and g ∈ E(µq) are symmetric, we
define, for all r = 0, . . . , p ∧ q and l = 0, . . . , r:

f ⋆lr g(x1, . . . , xp+q−r−l)

=

∫

Al

f(y1, . . . , yl, x1, . . . , xr−l, xr−l+1, . . . , xp−l)g(y1, . . . , yl, x1, . . . , xr−l, xp−l+1, . . . , xp+q−r−l)

×µ(dy1) . . . µ(dyl).

We then have the following product formula, compare with (4.43).

Theorem 10.5 (Product formula) Let p, q > 1 and let f ∈ E(µp) and g ∈ E(µq) be symmetric.
Then

Ip(f)Iq(g) =

p∧q∑

r=0

r!

(
p

r

)(
q

r

) r∑

l=0

(
r

l

)
Ip+q−r−l

(
f̃ ⋆lr g

)
.
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Proof. Recall that, when dealing with functions in E(µp), Ip(f) is a true multiple integral (by seeing
η̂ as a signed measure). We deduce

Ip(f)Iq(g) =

∫

Ap+q

f(x1, . . . , xp)g(y1, . . . , yq)η̂(dx1) . . . η̂(dxp)η̂(dy1) . . . η̂(dyq).

By definition of f (the same applies for g), we have that f(x1, . . . , xp) = 0 when xi = xj for
some i 6= j. Consider r = 0, . . . , p ∧ q, as well as pairwise disjoint indices i1, . . . , ir ∈ {1, . . . , p}
and pairwise disjoint indices j1, . . . , jr ∈ {1, . . . , q}. Set {k1, . . . , kp−r} = {1, . . . , p} \ {i1, . . . , ir}
and {l1, . . . , lq−r} = {1, . . . , q} \ {j1, . . . , jr}. We have, since µ is atomless and using η̂(dx) =
η(dx) − µ(dx),

∫

Ap+q

f(x1, . . . , xp)g(y1, . . . , yq)1{xi1
=yj1 ,...,xir=yjr}η̂(dx1) . . . η̂(dxp)η̂(dy1) . . . η̂(dyq)

=

∫

Ap+q−2r

f(xk1 , . . . , xkp−r , xi1 , . . . , xir)g(yl1 , . . . , ylq−r , xi1 , . . . , xir)

×η̂(dxk1) . . . η̂(dxkp−r)η̂(dyl1) . . . η̂(dylq−r )η(dxi1) . . . η(dxir )

=

∫

Ap+q−2r

f(x1, . . . , xp−r, a1, . . . , ar)g(y1, . . . , yq−r, a1, . . . , ar)

×η̂(dx1) . . . η̂(dxp−r)η̂(dy1) . . . η̂(dyq−r)η(da1) . . . η(dar).

By decomposing over the hyperdiagonals {xi = yj}, we deduce that

Ip(f)Iq(g) =

p∧q∑

r=0

r!

(
p

r

)(
q

r

)∫

Ap+q−2r

f(x1, . . . , xp−r, a1, . . . , ar)g(y1, . . . , yq−r, a1, . . . , ar)

×η̂(dx1) . . . η̂(dxp−r)η̂(dy1) . . . η̂(dyq−r)η(da1) . . . η(dar),

and we get the desired conclusion by using the relationship

η(da1) . . . η(dar) =
(
η̂(da1) + µ(da1)

)
. . .
(
η̂(dar) + µ(dar)

)
.

Malliavin operators. Each time we deal with a random element F of L2({σ(η)}), in what follows
we always consider its chaotic expansion (10.112).

Definition 10.6 1. Set DomD = {F ∈ L2(σ{η}) : ∑ qq!‖fq‖2L2(µq) <∞}. If F ∈ DomD, we set

DtF =

∞∑

q=1

qIq−1(fq(·, t)), t ∈ A.

The operator D is called the Malliavin derivative.
2. Set DomL = {F ∈ L2(σ{η}) : ∑ q2q!‖fq‖2L2(µq) <∞}. If F ∈ DomL, we set

LF = −
∞∑

q=1

qIq(fq).

The operator L is called the generator of the Ornstein-Uhlenbeck semigroup.
3. If F ∈ L2(σ{η}), we set

L−1F = −
∞∑

q=1

1

q
Iq(fq).

The operator L−1 is called the pseudo-inverse of L.
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It is readily checked that LL−1F = F − E[F ] for F ∈ L2(σ{η}). Moreover, proceeding mutatis

mutandis as in the proof of Theorem 4.15, we get the following result.

Proposition 10.7 Let F ∈ L2(σ{η}) and let G ∈ DomD. Then

Cov(F,G) = E[〈DG,−DL−1F 〉L2(µ)]. (10.113)

The operator D does not satisfy the chain rule. Instead, it admits an ‘add-one cost’ representation
which plays an identical role.

Theorem 10.8 (Nualart, Vives, 1990; see [39]) Let F ∈ DomD. Since F is measurable with
respect to η, we can view it as F = F (η) with a slight abuse of notation. Then

DtF = F (η + δt)− F (η), t ∈ A, (10.114)

where δt stands for the Dirac mass at t.

Proof. By linearity and approximation, it suffices to prove the claim for F = Iq(f), with q > 1 and
f ∈ E(µq) symmetric. In this case, we have

F (η + δt) =

∫

Aq

f(x1, . . . , xq)
(
η̂(dx1) + δt(dx1)

)
. . .
(
η̂(dxq) + δt(dxq)

)
.

Let us expand the integrator. Each member of such an expansion such that there is strictly more
than one Dirac mass in the resulting expression gives a contribution equal to zero, since f vanishes
on diagonals. We therefore deduce that

F (η + δt) = F (η) +

q∑

l=1

∫

Aq

f(x1, . . . , xl−1, t, xl+1, . . . , xq)η̂(dx1) . . . η̂(dxl−1)η̂(dxl+1) . . . η̂(dxq)

= F (η) + qIq−1(f(t, ·)) by symmetry of f

= F (η) +DtF.

As an immediate corollary of the previous theorem, we get the formula

Dt(F
2) = (F +DtF )

2 − F 2 = 2F DtF + (DtF )
2, t ∈ A,

which shows how D is far from satisfying the chain rule (4.47).

Gaussian approximation. It happens that it is the following distance which is appropriate in our
framework.

Definition 10.9 The Wasserstein distance between the laws of two real-valued random variables Y
and Z is defined by

dW (Y,Z) = sup
h∈Lip(1)

∣∣E[h(Y )]− E[h(Z)]
∣∣, (10.115)

where Lip(1) stands for the set of Lipschitz functions h : R → R with constant 1.

Since we are here dealing with Lipschitz functions h, we need a suitable version of the Stein’s
lemma. Compare with Lemma 3.1.
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Lemma 10.10 (Stein, 1972; see [50]) Suppose h : R → R is a Lipschitz constant with constant
1. Let N ∼ N (0, 1). Then, there exists a solution to the equation

f ′(x)− xf(x) = h(x)− E[h(N)], x ∈ R,

that satisfies ‖f ′‖∞ 6

√
2
π and ‖f ′′‖∞ 6 2.

Proof. Let us recall that, according to Rademacher’s theorem, a function which is Lipschitz
continuous on R is almost everywhere differentiable. Let f : R → R be the (well-defined!) function
given by

f(x) = −
∫ ∞

0

e−t

√
1− e−2t

E[h(e−tx+
√

1− e−2tN)N ]dt. (10.116)

By dominated convergence we have that fh ∈ C1 with

f ′(x) = −
∫ ∞

0

e−2t

√
1− e−2t

E[h′(e−tx+
√

1− e−2tN)N ]dt.

We deduce, for any x ∈ R,

|f ′(x)| 6 E|N |
∫ ∞

0

e−2t

√
1− e−2t

dt =

√
2

π
. (10.117)

Now, let F : R → R be the function given by

F (x) =

∫ ∞

0
E[h(N) − h(e−tx+

√
1− e−2tN)]dt, x ∈ R.

Observe that F is well-defined since h(N) − h(e−tx+
√
1− e−2tN) is integrable due to

∣∣h(N)− h(e−tx+
√

1− e−2tN)
∣∣ 6 e−t|x|+

(
1−

√
1− e−2t

)
|N |

6 e−t|x|+ e−2t|N |,
where the last inequality follows from 1−

√
1− u = u/(

√
1− u+1) 6 u if u ∈ [0, 1]. By dominated

convergence, we immediately see that F is differentiable with

F ′(x) = −
∫ ∞

0
e−tE[h′(e−tx+

√
1− e−2tN)]dt.

By integrating by parts, we see that F ′(x) = f(x). Moreover, by using the notation introduced in
Section 4, we can write

f ′(x)− xf(x)

= LF (x), by decomposing in Hermite polynomials, since LHq = −qHq = H ′′
q −XH ′

q

= −
∫ ∞

0
LPth(x)dt, since F (x) =

∫∞
0

(
E[h(N)] − Pth(x)

)
dt

= −
∫ ∞

0

d

dt
Pth(x)dt

= P0h(x)− P∞h(x) = h(x) −E[h(N)].

This proves the claim for ‖f ′‖∞. The claim for ‖f ′′‖∞ is a bit more difficult to achieve; we refer to
Stein [50, pp. 25-28] to keep the length of this survey within bounds.

We can now derive a bound for the Gaussian approximation of any centered element F belonging
to DomD, compare with (10.111).
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Theorem 10.11 (Peccati, Solé, Taqqu, Utzet, 2010; see [42]) Consider F ∈ DomD with
E[F ] = 0. Then, with N ∼ N (0, 1),

dW (F,N) 6

√
2

π
E
[∣∣1− 〈DF,−DL−1F 〉L2(µ)

∣∣]+ E

[∫

A
(DtF )

2|DtL
−1F |µ(dt)

]
.

Proof. Let h ∈ Lip(1) and let f be the function of Lemma 10.10. Using (10.114) and a Taylor’s
formula, we can write

Dtf(F ) = f(F +DtF )− f(F ) = f ′(F )DtF +R(t),

with |R(t)| 6 1
2‖f ′′‖∞(DtF )

2 6 (DtF )
2. We deduce, using (10.113) as well,

E[h(F )] − E[h(N)] = E[f ′(F )]− E[Ff(F )] = E[f ′(F )]− E[〈Df(F ),−DL−1F 〉L2(µ)]

= E[f ′(F )(1 − 〈DF,−DL−1F 〉L2(µ))] +

∫

A
(−DtL

−1F )R(t)µ(dt).

Consequently, since ‖f ′‖∞ 6

√
2
π ,

dW (F,N) = sup
h∈Lip(1)

|E[h(F )] − E[h(N)]|

6

√
2

π
E
[∣∣1− 〈DF,−DL−1F 〉L2(µ)

∣∣]+ E

[∫

A
(DtF )

2|DtL
−1F |µ(dt)

]
.

Poisson approximation. To conclude this section, we will prove a very interesting results, which
may be seen as a Poisson counterpart of Theorem 10.11.

Theorem 10.12 (Peccati, 2012; see [40]) Let F ∈ DomD with E[F ] = λ > 0 and F taking its
values in N. Let Pλ ∼ Po(λ). Then,

sup
C⊂N

∣∣P (F ∈ C)− P (Pλ ∈ C)
∣∣ (10.118)

6
1− e−λ

λ
E|λ− 〈DF,−DL−1F 〉L2(µ)|+

1− e−λ

λ2
E

∫
|DtF (DtF − 1)DtL

−1F |µ(dt).

Just as a mere illustration, consider the case where F = η(B) = I1(1B) with B ∈ Aµ. We then
have DF = −DL−1F = 1B , so that 〈DF,−DL−1F 〉L2(µ) =

∫
1Bdµ = µ(B) and DF (DF − 1) = 0

a.e. The right-hand side of (10.118) is therefore zero, as it was expected since F ∼ Po(λ).

During the proof of Theorem 10.12, we shall use an analogue of Lemma 3.1 in the Poisson
context, which reads as follows.

Lemma 10.13 (Chen, 1975; see [7]) Let C ⊂ N, let λ > 0 and let Pλ ∼ Po(λ). The equation
with unknown f : N → R,

λ f(k + 1)− kf(k) = 1C(k)− P (Pλ ∈ C), k ∈ N, (10.119)

admits a unique solution such that f(0) = 0, denoted by fC . Moreover, by setting ∆f(k) =

f(k + 1)− f(k), we have ‖∆fC‖∞ 6
1−e−λ

λ and ‖∆2fC‖∞ 6
2
λ‖∆fC‖∞.
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Proof. We only provide a proof for the bound on ∆fC ; the estimate on ∆2fC is proved e.g. by Daly
in [9]. Multiplying both sides of (10.119) by λk/k! and summing up yields that, for every k > 1,

fC(k) =
(k − 1)!

λk

k−1∑

r=0

λr

r!
[1C(r)− P (Pλ ∈ C)] (10.120)

=
∑

j∈C
f{j}(k) (10.121)

= −fCc(k) (10.122)

= −(k − 1)!

λk

∞∑

r=k

λr

r!
[1C(r)− P (Pλ ∈ C)], (10.123)

where Cc denotes the complement of C in N. (Identity (10.121) comes from the additivity property
of C 7→ fC , identity (10.122) is because fN ≡ 0 and identity (10.122) is due to

∞∑

r=0

λr

r!
[1C(r)− P (Pλ ∈ C)] = E[1C(Pλ)− E[1C(Pλ)]] = 0.

)

Since fC(k) − fC(k + 1) = fCc(k + 1) − fCc(k) (due to (10.122)), it is sufficient to prove that, for
every k > 1 and every C ⊂ N, fC(k + 1) − fC(k) 6 (1 − e−λ)/λ. One has the following fact: for
every j > 1 the mapping k 7→ f{j}(k) is negative and decreasing for k = 1, ..., j and positive and
decreasing for k > j + 1. Indeed, we use (10.120) to deduce that, if 1 6 k 6 j,

f{j}(k) = −e−λλ
j

j!

k∑

r=1

λ−r (k − 1)!

(k − r)!
(which is negative and decreasing in k),

whereas (10.123) implies that, if k > j + 1,

f{j}(k) = e−λλ
j

j!

∞∑

r=0

λr
(k − 1)!

(k + r)!
(which is positive and decreasing in k).

Using (10.121), one therefore infers that fC(k+1)− fC(k) 6 f{k}(k+1)− f{k}(k), for every k > 0.
Since

f{k}(k + 1)− f{k}(k) = e−λ

[
k−1∑

r=0

λr

r!k
+

∞∑

r=k+1

λr−1

r!

]
=
e−λ

λ

[
k∑

r=1

λr

r!
× r

k
+

∞∑

r=k+1

λr

r!

]

6
1− e−λ

λ
,

the proof is concluded.

We are now in a position to prove Theorem 10.12.

Proof of Theorem 10.12. The main ingredient is the following simple inequality, which is a kind of
Taylor’s formula: for all k, a ∈ N,

∣∣f(k)− f(a)−∆f(a)(k − a)
∣∣ 6 1

2
‖∆2f‖∞|(k − a)(k − a− 1)|. (10.124)
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Assume for the time being that (10.124) holds true and fix C ⊂ N. We have, using Lemma 10.13
and then (10.113)

∣∣P (F ∈ C)− P (Pλ ∈ C)
∣∣ =

∣∣E[λfC(F + 1)]− E[FfC(F )]
∣∣

=
∣∣λE[∆fC(F )] −E[(F − λ)fC(F )]

∣∣
=

∣∣λE[∆fC(F )] −E[〈DfC(F ),−DL−1F 〉L2(µ)]
∣∣.

Now, combining (10.114) with (10.124), we can write

DtfC(F ) = ∆fC(F )DtF + S(t),

with S(t) 6 1
2‖∆2fC‖∞|DtF (DtF − 1)| 6 1−e−λ

λ2 |DtF (DtF − 1)|, see indeed Lemma 10.13 for the

last inequality. Putting all these bounds together and since ‖∆fC‖∞ 6
1−e−λ

λ by Lemma 10.13, we
get the desired conclusion.

So, to conclude the proof, it remains to show that (10.124) holds true. Let us first assume that
k > a+ 2. We then have

f(k) = f(a) +

k−1∑

j=a

∆f(j) = f(a) + ∆f(a)(k − a) +

k−1∑

j=a

(∆f(j)−∆f(a))

= f(a) + ∆f(a)(k − a) +
k−1∑

j=a

j−1∑

l=a

∆2f(l) = f(a) + ∆f(a)(k − a) +
k−2∑

l=a

∆2f(l)(k − l − 1),

so that

|f(k)− f(a)−∆f(a)(k − a)| 6 ‖∆2f‖∞
k−2∑

l=a

(k − l − 1) =
1

2
‖∆2f‖∞(k − a)(k − a− 1),

that is, (10.124) holds true in this case. When k = a or k = a + 1, (10.124) is obviously true.
Finally, consider the case k 6 a− 1. We have

f(k) = f(a)−
a−1∑

j=k

∆f(j) = f(a) + ∆f(a)(k − a) +

a−1∑

j=k

(∆f(a)−∆f(j))

= f(a) + ∆f(a)(k − a) +

a−1∑

j=k

a−1∑

l=j

∆2f(l) = f(a) + ∆f(a)(k − a) +

a−1∑

l=k

∆2f(l)(l − k + 1),

so that

|f(k)− f(a)−∆f(a)(k − a)| 6 ‖∆2f‖∞
a−1∑

l=k

(l − k + 1) =
1

2
‖∆2f‖∞(a− k)(a− k + 1),

that is, (10.124) holds true in this case as well. The proof of Theorem 10.12 is done.

To go further. A multivariate extension of Theorem 10.11 can be found in [45]. The reference
[41] contains several explicit applications of the tools developed in this section.
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11 Fourth Moment Theorem and free probability

To conclude this survey, we shall explain how the Fourth Moment Theorem 1.3 extends in the
theory of free probability, which provides a convenient framework for investigating limits of random
matrices.

We start with a short introduction to free probability; we refer to [20] for a systematic
presentation.

Random matrices. Let (Bij)i,j>1 be a sequence of independent standard Brownian motions,
all defined on the same probability space (Ω,F , P ). Set

An(t) =

(
Bij(t)√

n

)

16i,j6n

and Mn(t) =
1√
2

(
An(t) +An(t)

T
)
, (11.125)

where ·T stands for the usual transpose operator. For each t, An(t) and Mn(t) both belong to An,
the set of random matrices with entries in L∞−(Ω) = ∩p>1L

p(Ω), that is, with all moments. On
An, let us consider the linear form ϕn : An → R defined by

ϕn(M) = E

[
1

n
Tr(M)

]
, (11.126)

where E denotes the mathematical expectation associated to P , whereas Tr(·) stands for the usual
trace operator. The space (An, ϕn) is the prototype of a free tracial probability space (also called
non-commutative probability space).

Let tk > . . . > t1 > t0 = 0. A celebrated theorem by Voiculescu [53] asserts that the increments
Mn(t1),Mn(t2)−Mn(t1), . . . ,Mn(tk)−Mn(tk−1) are asymptotically free, meaning that

ϕn (Q1(Mn(ti1)−Mn(ti1−1)) . . . Qm(Mn(tim)−Mn(tim−1))) → 0 as n→ ∞,

for all m > 2, all i1, . . . , im ∈ {1, . . . , k} with i1 6= i2, i2 6= i3, . . ., im−1 6= im, and all real-valued
polynomials Q1, . . . , Qm such that ϕn(Ql(Mn(til)−Mn(til−1))) → 0 as n→ ∞ for each l = 1, . . . ,m.

Let t > 0. The no less famous Wigner theorem [54] can be formulated as follows: as n → ∞,
Mn(t) converges in law to the semicircular law of variance t, that is, for any real-valued polynomial
Q,

ϕn(Q(Mn(t))) →
1

2πt

∫ 2
√
t

−2
√
t
Q(x)

√
4t− x2dx.

In the same way as calculus provides a nice setting for studying limits of sums and classical
Brownian motion provides a nice setting for studying limits of random walks, free probability
provides a convenient framework for investigating limits of random matrices. In the limit, free
independence replaces independence, increments have a semicircular marginal law and thus, free
Brownian motion which has these properties, can be used to study random matrices Mn(t) for large
n.

Free tracial probability space. A free tracial probability space is a von Neumann algebra A

(that is, an algebra of operators on a complex separable Hilbert space, closed under adjoint and
convergence in the weak operator topology) equipped with a trace ϕ, that is, a unital linear functional
(meaning preserving the identity) which is weakly continuous, positive (meaning ϕ(X) ≥ 0 whenever
X is a non-negative element of A ; i.e. whenever X = Y Y ∗ for some Y ∈ A ), faithful (meaning
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that if ϕ(Y Y ∗) = 0 then Y = 0), and tracial (meaning that ϕ(XY ) = ϕ(Y X) for all X,Y ∈ A ,
even though in general XY 6= Y X).

Random variables. In a free tracial probability space, we refer to the self-adjoint elements of
the algebra as random variables. Any random variable X has a law: this is the unique probability
measure µ on R with the same moments as X; in other words, µ is such that

∫

R

Q(x)dµ(x) = ϕ(Q(X)), (11.127)

for any real polynomial Q. (The existence and uniqueness of µ follow from the positivity of ϕ, see
[20, Proposition 3.13].) Thus ϕ acts as an expectation. The ϕn in (11.126), for example, play the
role of ϕ.

Convergence in law. We say that a sequence (X1,n, . . . ,Xk,n), n > 1, of random vectors
converges in law to a random vector (X1,∞, . . . ,Xk,∞), and we write

(X1,n, . . . ,Xk,n)
law→ (X1,∞, . . . ,Xk,∞),

to indicate the convergence in the sense of (joint) moments, that is,

lim
n→∞

ϕ (Q(X1,n, . . . ,Xk,n)) = ϕ (Q(X1,∞, . . . ,Xk,∞)) , (11.128)

for any real-valued polynomial Q in k non-commuting variables.
We say that a sequence (Fn) of non-commutative stochastic processes (that is, each Fn is a

one-parameter family of self-adjoint operators Fn(t) in the free tracial probability space (A , ϕ))
converges in the sense of finite-dimensional distributions to a non-commutative stochastic process
F∞, and we write

Fn
f.d.d.→ F∞,

to indicate that, for any k > 1 and any t1, . . . , tk > 0,

(Fn(t1), . . . , Fn(tk))
law→ (F∞(t1), . . . , F∞(tk)).

Free independence. In the free probability setting, the notion of independence (introduced
by Voiculescu in [52]) goes as follows. Let A1, . . . ,Ap be unital subalgebras of A . Let X1, . . . ,Xm

be elements chosen from among the Ai’s such that, for 1 ≤ j < m, two consecutive elements Xj

and Xj+1 do not come from the same Ai and are such that ϕ(Xj) = 0 for each j. The subalgebras
A1, . . . ,Ap are said to be free or freely independent if, in this circumstance,

ϕ(X1X2 · · ·Xm) = 0. (11.129)

Random variables are called freely independent if the unital algebras they generate are freely
independent. Freeness is in general much more complicated than classical independence. For
example, if X,Y are free and m,n > 1, then by (11.129),

ϕ
(
(Xm − ϕ(Xm)1)(Y n − ϕ(Y n)1)

)
= 0.

By expanding (and using the linear property of ϕ), we get

ϕ(XmY n) = ϕ(Xm)ϕ(Y n), (11.130)
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which is what we would expect under classical independence. But, by setting X1 = X3 = X−ϕ(X)1
and X2 = X4 = Y − ϕ(Y ) in (11.129), we also have

ϕ
(
(X − ϕ(X)1)(Y − ϕ(Y )1)(X − ϕ(X)1)(Y − ϕ(Y )1)

)
= 0.

By expanding, using (11.130) and the tracial property of ϕ (for instance ϕ(XY X) = ϕ(X2Y )) we
get

ϕ(XY XY ) = ϕ(Y )2ϕ(X2) + ϕ(X)2ϕ(Y 2)− ϕ(X)2ϕ(Y )2,

which is different from ϕ(X2)ϕ(Y 2), which is what one would have obtained if X and Y were
classical independent random variables. Nevertheless, if X,Y are freely independent, then their
joint moments are determined by the moments of X and Y separately, exactly as in the classical
case.

Semicircular distribution. The semicircular distribution S(m,σ2) with mean m ∈ R and
variance σ2 > 0 is the probability distribution

S(m,σ2)(dx) = 1

2πσ2

√
4σ2 − (x−m)2 1{|x−m|≤2σ} dx. (11.131)

If m = 0, this distribution is symmetric around 0, and therefore its odd moments are all 0. A
simple calculation shows that the even centered moments are given by (scaled) Catalan numbers:
for non-negative integers k,

∫ m+2σ

m−2σ
(x−m)2kS(m,σ2)(dx) = Ckσ

2k,

where Ck = 1
k+1

(
2k
k

)
(see, e.g., [20, Lecture 2]). In particular, the variance is σ2 while the centered

fourth moment is 2σ4. The semicircular distribution plays here the role of the Gaussian distribution.
It has the following similar properties:

1. If S ∼ S(m,σ2) and a, b ∈ R, then aS + b ∼ S(am+ b, a2σ2).

2. If S1 ∼ S(m1, σ
2
1) and S2 ∼ S(m2, σ

2
2) are freely independent, then S1+S2 ∼ S(m1+m2, σ

2
1+

σ22).

Free Brownian Motion. A free Brownian motion S = {S(t)}t>0 is a non-commutative
stochastic process with the following defining characteristics:

(1) S(0) = 0.

(2) For t2 > t1 > 0, the law of S(t2)−S(t1) is the semicircular distribution of mean 0 and variance
t2 − t1.

(3) For all n and tn > · · · > t2 > t1 > 0, the increments S(t1), S(t2)−S(t1), . . . , S(tn)−S(tn−1)
are freely independent.

If we rephrase Wigner and Voiculescu theorems in our new language, we get that Mn
f.d.d.→ S as

n→ ∞, where Mn is given by (11.125) and S is a free Brownian motion. So, we may think of free
Brownian motion as ‘infinite-dimensional matrix-valued Brownian motion’.
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Wigner integral. Let S = {S(t)}t>0 be a free Brownian motion. Let us quickly sketch out the
construction of the Wigner integral of f with respect to S. For an indicator function f = 1[u,v], the
Wigner integral of f is defined by

∫ ∞

0
1[u,v](x)dS(x) = S(v)− S(u).

We then extend this definition by linearity to simple functions of the form f =
∑k

i=1 αi1[ui,vi], where
[ui, vi] are disjoint intervals of R+. Simple computations show that

ϕ

(∫ ∞

0
f(x)dS(x)

)
= 0 (11.132)

ϕ

(∫ ∞

0
f(x)dS(x)×

∫ ∞

0
g(x)dS(x)

)
= 〈f, g〉L2(R+). (11.133)

By isometry, the definition of
∫∞
0 f(x)dS(x) is extended to all f ∈ L2(R+), and (11.132)-(11.133)

continue to hold in this more general setting.

Multiple Wigner integral. Let S = {S(t)}t>0 be a free Brownian motion, and let q > 1 be
an integer. When f ∈ L2(Rq

+) is real-valued, we write f∗ to indicate the function of L2(Rq
+) given

by f∗(t1, . . . , tq) = f(tq, . . . , t1).
Following [2], let us quickly sketch out the construction of the multiple Wigner integral of f with

respect to S. Let Dq ⊂ R
q
+ be the collection of all diagonals, i.e.

Dq = {(t1, . . . , tq) ∈ R
q
+ : ti = tj for some i 6= j}. (11.134)

For an indicator function f = 1A, where A ⊂ R
q
+ has the form A = [u1, v1] × . . . × [uq, vq] with

A ∩Dq = ∅, the qth multiple Wigner integral of f is defined by

Iq(f) = (S(v1)− S(u1)) . . . (S(vq)− S(uq)).

We then extend this definition by linearity to simple functions of the form f =
∑k

i=1 αi1Ai , where
Ai = [ui1, v

i
1] × . . . × [uiq, v

i
q] are disjoint q-dimensional rectangles as above which do not meet the

diagonals. Simple computations show that

ϕ(Iq(f)) = 0 (11.135)

ϕ(Iq(f)Iq(g)) = 〈f, g∗〉L2(Rq
+). (11.136)

By isometry, the definition of Iq(f) is extended to all f ∈ L2(Rq
+), and (11.135)-(11.136) continue

to hold in this more general setting. If one wants Iq(f) to be a random variable, it is necessary for
f to be mirror symmetric, that is, f = f∗ (see [16]). Observe that I1(f) =

∫∞
0 f(x)dS(x) when

q = 1. We have moreover

ϕ(Ip(f)Iq(g)) = 0 when p 6= q, f ∈ L2(Rp
+) and g ∈ L2(Rq

+). (11.137)

When r ∈ {1, . . . , p ∧ q}, f ∈ L2(Rp
+) and g ∈ L2(Rq

+), let us write f
r
⌢ g to indicate the rth

contraction of f and g, defined as being the element of L2(Rp+q−2r
+ ) given by

f
r
⌢ g(t1, . . . , tp+q−2r) (11.138)

=

∫

Rr
+

f(t1, . . . , tp−r, x1, . . . , xr)g(xr , . . . , x1, tp−r+1, . . . , tp+q−2r)dx1 . . . dxr.
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By convention, set f
0
⌢ g = f ⊗ g as being the tensor product of f and g. Since f and g are

not necessarily symmetric functions, the position of the identified variables x1, . . . , xr in (11.138) is
important, in contrast to what happens in classical probability. Observe moreover that

‖f r
⌢ g‖L2(Rp+q−2r

+ ) 6 ‖f‖L2(Rp
+)‖g‖L2(Rq

+) (11.139)

by Cauchy-Schwarz, and also that f
q
⌢ g = 〈f, g∗〉L2(Rq

+) when p = q.

We have the following product formula (see [2, Proposition 5.3.3]), valid for any f ∈ L2(Rp
+) and

g ∈ L2(Rq
+):

Ip(f)Iq(g) =

p∧q∑

r=0

Ip+q−2r(f
r
⌢ g). (11.140)

We deduce (by a straightforward induction) that, for any e ∈ L2(R+) and any q > 1,

Uq

(∫ ∞

0
e(x)dSx

)
= Iq(e

⊗q), (11.141)

where U0 = 1, U1 = X, U2 = X2−1, U3 = X3−2X, . . ., is the sequence of Tchebycheff polynomials
of second kind (determined by the recursion XUk = Uk+1 + Uk−1),

∫∞
0 e(x)dS(x) is understood as

a Wigner integral, and e⊗q is the qth tensor product of e. This is the exact analogue of (1.10) in
our context.

We are now in a position to offer a free analogue of the Fourth Moment Theorem 5.5, which
reads as follows.

Theorem 11.1 (Kemp, Nourdin, Peccati, Speicher, 2011; see [16]) Fix an integer q > 2
and let {St}t>0 be a free Brownian motion. Whenever f ∈ L2(Rq

+), set Iq(f) to denote the qth
multiple Wigner integrals of f with respect to S. Let {Fn}n>1 be a sequence of Wigner multiple
integrals of the form

Fn = Iq(fn),

where each fn ∈ L2(R+) is mirror-symmetric, that is, is such that fn = f∗n. Suppose moreover that
ϕ(F 2

n) → 1 as n→ ∞. Then, as n→ ∞, the following two assertions are equivalent:

(i) Fn
Law→ S1 ∼ S(0, 1);

(ii) ϕ(F 4
n ) → 2 = ϕ(S4

1).

Proof (following [22]). Without loss of generality and for sake of simplicity, we suppose that
ϕ(F 2

n) = 1 for all n (instead of ϕ(F 2
n) → 1 as n → ∞). The proof of the implication (i) ⇒ (ii)

being trivial by the very definition of the convergence in law in a free tracial probability space, we
only concentrate on the proof of (ii) ⇒ (i).

Fix k > 3. By iterating the product formula (11.140), we can write

F k
n = Iq(fn)

k =
∑

(r1,...,rk−1)∈Ak,q

Ikq−2r1−...−2rk−1

(
(. . . ((fn

r1⌢ fn)
r2⌢ fn) . . .)

rk−1
⌢ fn

)
,
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where

Ak,q =
{
(r1, . . . , rk−1) ∈ {0, 1, . . . , q}k−1 : r2 6 2q − 2r1, r3 6 3q − 2r1 − 2r2, . . . ,

rk−1 6 (k − 1)q − 2r1 − . . . − 2rk−2

}
.

By taking the ϕ-trace in the previous expression and taking into account that (11.135) holds, we
deduce that

ϕ(F k
n ) = ϕ(Iq(fn)

k) =
∑

(r1,...,rk−1)∈Bk,q

(. . . ((fn
r1⌢ fn)

r2⌢ fn) . . .)
rk−1
⌢ fn, (11.142)

with

Bk,q =
{
(r1, . . . , rk−1) ∈ Ak,q : 2r1 + . . .+ 2rk−1 = kq

}
.

Let us decompose Bk,q into Ck,q ∪ Ek,q, with Ck,q = Bk,q ∩ {0, q}k−1 and Ek,q = Bk,q \ Ck,q. We
then have

ϕ(F k
n ) =

∑

(r1,...,rk−1)∈Ck,q

(
(. . . ((fn

r1⌢ fn)
r2⌢ fn) . . .)

rk−1
⌢ fn

)

+
∑

(r1,...,rk−1)∈Ek,q

(
(. . . ((fn

r1⌢ fn)
r2⌢ fn) . . .)

rk−1
⌢ fn

)
.

Using the two relationships fn
0
⌢ fn = fn ⊗ fn and

fn
q
⌢ fn =

∫

R
q
+

fn(t1, . . . , tq)fn(tq, . . . , t1)dt1 . . . dtq = ‖fn‖2L2(Rq
+) = 1,

it is evident that (. . . ((fn
r1⌢ fn)

r2⌢ fn) . . .)
rk−1
⌢ fn = 1 for all (r1, . . . , rk−1) ∈ Ck,q. We deduce

that

ϕ(F k
n ) = #Ck,q +

∑

(r1,...,rk−1)∈Ek,q

(
(. . . ((fn

r1⌢ fn)
r2⌢ fn) . . .)

rk−1
⌢ fn

)
.

On the other hand, by applying (11.142) with q = 1, we get that

ϕ(Sk
1 ) = ϕ(I1(1[0,1])

k) =
∑

(r1,...,rk−1)∈Bk,1

(. . . ((1[0,1]
r1⌢ 1[0,1])

r2⌢ 1[0,1]) . . .)
rk−1
⌢ 1[0,1]

=
∑

(r1,...,rk−1)∈Bk,1

1 = #Bk,1.

But it is clear that Ck,q is in bijection with Bk,1 (by dividing all the ri’s in Ck,q by q). Consequently,

ϕ(F k
n ) = ϕ(Sk

1 ) +
∑

(r1,...,rk−1)∈Ek,q

(
(. . . ((fn

r1⌢ fn)
r2⌢ fn) . . .)

rk−1
⌢ fn

)
. (11.143)

Now, assume that ϕ(F 4
n ) → ϕ(S4

1) = 2 and let us show that ϕ(F k
n ) → ϕ(Sk

1 ) for all k > 3. Using
that fn = f∗n, observe that

fn
r
⌢ fn(t1, . . . , t2q−2r)

=

∫

Rr
+

fn(t1, . . . , tq−r, s1, . . . , sr)fn(sr, . . . , s1, tq−r+1, . . . , t2q−2r)ds1 . . . dsr

=

∫

Rr
+

fn(sr, . . . , s1, tq−r, . . . , t1)fn(t2q−2r, . . . , tq−r+1, s1, . . . , sr)ds1 . . . dsr

= fn
r
⌢ fn(t2q−2r, . . . , t1) = (fn

r
⌢ fn)

∗(t1, . . . , t2q−2r),
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that is, fn
r
⌢ fn = (fn

r
⌢ fn)

∗. On the other hand, the product formula (11.140) leads to
F 2
n =

∑q
r=0 I2q−2r(fn

r
⌢ fn). Since two multiple integrals of different orders are orthogonal (see

(11.137)), we deduce that

ϕ(F 4
n ) = ‖fn ⊗ fn‖2L2(R2q

+ )
+
(
‖fn‖2L2(Rq

+)

)2
+

q−1∑

r=1

〈fn r
⌢ fn, (fn

r
⌢ fn)

∗〉
L2(R2q−2r

+ )

= 2‖fn‖4L2([0,1]q) +

q−1∑

r=1

‖fn r
⌢ fn‖2L2(R2q−2r

+ )
= 2 +

q−1∑

r=1

‖fn r
⌢ fn‖2L2(R2q−2r

+ )
. (11.144)

Using that ϕ(F 4
n) → 2, we deduce that

‖fn r
⌢ fn‖2L2(R2q−2r

+ )
→ 0 for all r = 1, . . . , q − 1. (11.145)

Fix (r1, . . . , rk−1) ∈ Ek,q and let j ∈ {1, . . . , k − 1} be the smallest integer such that rj ∈
{1, . . . , q − 1}. Then:

∣∣(. . . ((fn r1⌢ fn)
r2⌢ fn) . . .)

rk−1
⌢ fn

∣∣

=
∣∣(. . . ((fn r1⌢ fn)

r2⌢ fn) . . .
rj−1
⌢ fn)

rj
⌢ fn)

rj+1
⌢ fn) . . .)

rk−1
⌢ fn

∣∣

=
∣∣(. . . ((fn ⊗ . . . ⊗ fn)

rj
⌢ fn)

rj+1
⌢ fn) . . .)

rk−1
⌢ fn

∣∣ (since fn
q
⌢ fn = 1)

=
∣∣(. . . ((fn ⊗ . . . ⊗ fn)⊗ (fn

rj
⌢ fn))

rj+1
⌢ fn) . . .)

rk−1
⌢ fn

∣∣

6 ‖(fn ⊗ . . .⊗ fn)⊗ (fn
rj
⌢ fn)‖‖fn‖k−j−1 (Cauchy-Schwarz)

= ‖fn
rj
⌢ fn‖ (since ‖fn‖2 = 1)

→ 0 as n→ ∞ by (11.145).

Therefore, we deduce from (11.143) that ϕ(F k
n ) → ϕ(Sk

1 ), which is the desired conclusion and
concludes the proof of the theorem.

During the proof of Theorem 11.1, we actually showed (see indeed (11.144)) that the two
assertions (i)-(ii) are both equivalent to a third one, namely

(iii): ‖fn r
⌢ fn‖2L2(R2q−2r

+ )
→ 0 for all r = 1, . . . , q − 1.

Combining (iii) with Corollary 5.5, we immediately deduce an interesting transfer principle for
translating results between the classical and free chaoses.

Corollary 11.2 Fix an integer q > 2, let {Bt}t>0 be a standard Brownian motion and let {St}t>0

be a free Brownian motion. Whenever f ∈ L2(Rq
+), we write IBq (f) (resp. ISq (f)) to indicate the

qth multiple Wiener integrals of f with respect to B (resp. S). Let {fn}n>1 ⊂ L2(Rq
+) be a sequence

of symmetric functions and let σ > 0 be a finite constant. Then, as n → ∞, the following two
assertions hold true.

(i) E[IBq (fn)] → q!σ2 if and only if ϕ(ISq (fn)
2) → σ2.

(ii) If the asymptotic relations in (i) are verified, then IBq (fn)
law→ N (0, q!σ2) if and only if

ISq (fn)
law→ S(0, σ2).
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To go further. A multivariate version of Theorem 11.1 (free counterpart of Theorem 6.2) can
be found in [33]. In [28] (resp. [11]), one exhibits a version of Theorem 11.1 in which the semicircular
law in the limit is replaced by the free Poisson law (resp. the so-called tetilla law). An extension
of Theorem 11.1 in the context of the q-Brownian motion (which is an interpolation between the
standard Brownian motion corresponding to q = 1 and the free Brownian motion corresponding to
q = 0) is given in [13].
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