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Abstract

In this paper we present a method for reconstructing diffusion-weighted MRI
data on regular grids from scattered data. The proposed method has the
advantage that no specific diffusion model needs to be assumed. Previous
work assume the tensor model, but this is not suitable under certain condi-
tions like intravoxel orientational heterogeneity (IVOH). Data reconstruction
is particularly important when studying the fetal brain in utero, since reg-
istration methods applied for movement and distortion correction produce
scattered data in spatial and diffusion domains. We propose the use of a
groupwise registration method, and a dual spatio-angular interpolation by
using radial basis functions (RBF). Leave-one-out experiments performed on
adult data showed a high accuracy of the method. The application to fetal
data showed an improvement in the quality of the sequences according to
objective criteria based on fractional anisotropy (FA) maps, and differences
in the tractography results.

Keywords: diffusion magnetic resonance imaging, fetal brain, distortion
correction, image reconstruction, image registration, radial basis functions

1. Introduction

Diffusion Magnetic Resonance Imaging (dMRI) is an imaging modality
that has been used for studying the normal (Dubois et al., 2008; Mukherjee
et al., 2002; Prayer and Prayer, 2003) and pathological (Anjari et al., 2007)
development of the brain in pediatrics. Advances in pulse sequences (Kim
et al., 2008; Turner et al., 1990), parallel imaging (Bammer et al., 2001),
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Figure 1: Example of a fetal brain dMRI sequence. From left to right the image of reference
(T epi

2 ) and the first 7 DW images.

and coil design have reduced the acquisition problems associated to fetal
motion and mother’s breathing, which allowed the study of the brain in
utero (Baldoli et al., 2002; Bui et al., 2006; Kim et al., 2008; Righini et al.,
2003). Because of the limited sensitivity of fetal ultrasound to detect and
depict the maturational processes of the developing white matter, dMRI
can be considered as one of the most promising modalities for studying in
vivo the natural course of human white matter development. A dMRI study
consists of the acquisition of a reference image with no sensitivity to diffusion
and a set of diffusion-weighted (DW) images in non-collinear directions that
allow the estimation of the local diffusion properties according to a specific
diffusion model. In the simplest case, the local diffusion is modeled as a
rank-2 tensor (Minati and Weglarz, 2007), which requires at least 6 DW
images besides the reference. The methods for diffusion estimation from
dMRI sequences assume that the gathered diffusion-sensitized signals come
from the same physical point, but this condition is difficult to accomplish in
practice. Figure 1 shows an example of the sequences used in this paper.

In adults, eddy current-induced image distortions and rigid patient mo-
tion during prolonged acquisitions cause image misalignment in dMRI se-
quences, invalidating the assumption of a consistent relationship between
image space and anatomy. Several methods have been developed to correct
such distortions directly during image acquisition (Andersson et al., 2003;
Chen and Wyrwicz, 2001; Roemer and Hickey, 1988) or by applying im-
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age registration techniques (Andersson and Skare, 2002; Jezzard et al., 1998;
Nielsen et al., 2004; Rohde et al., 2004). However, such methods may fail
when applied to fetal dMRI, requiring the development of specific image
processing methods. Unpredictable fetal movements coupled to the mother’s
breathing result in a set of slices of variable orientation in the space, which
hinders the use of 2D affine transformations for modeling distortions. If the
image acquisition is fast enough, the fetal motion can be neglected for each
slice, and the transformations can be considered as affine for each slice in-
dependently (Rousseau et al., 2006; Jiang et al., 2009; Kim et al., 2010).
Besides this increase in the complexity of the transform, image registration
methods encounter problems related primarily to echo-planar imaging with
inherently low resolution and noisy sequences that can be sensitive to subject
motion.

After registration, the corrected sequence is usually obtained by using
resulting transformations to interpolate diffusion-sensitized values on a reg-
ular spatial grid. However, this approach disregards changes in gradient
directions associated to spatial transformations, which introduce a bias in
diffusion measurements and fiber orientation estimates (Leemans and Jones,
2009). Recently, Jiang et al. (2009) have presented a reconstruction method
from scattered data assuming that the local diffusion properties can be rep-
resented by a rank-2 tensor model. The main drawback of this method is
that such diffusion model cannot describe voxels containing multiple fibers
with different orientations, a condition found in a considerable number of
points in the normal brain and referred to as intravoxel orientational het-
erogeneity (IVOH) (Tuch et al., 2002). The fitting of a rank-2 tensor model
to measurements coming from regions presenting fiber crossing results in
oblate-shaped ellipsoids, whose principal eigenvector provides no accurate
information about orientation and their derived anisotropy indexes are no
longer valid indicators of the axonal density.

In this paper, we present a reconstruction method of dMRI sequences
from scattered data independent of the diffusion model, which can be used
with more complex diffusion models like Gaussian mixture models or high-
order diffusion tensors. After observing that standard registration methods
may fail when applied for distortion correction of fetal dMRI sequences, we
have developed a novel registration technique that first registers jointly the
DW images and then uses a derived image for registration with the T2-
weighted reference image. The application of the resulting transformations
to the original sequence results in scattered data in the spatial and gradient
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domains, and a dual RBF-based interpolation was used to reconstruct the
entire sequence on regular grids. The method was validated by using adult
data acquired under controlled motion conditions and a set of four fetal dMRI
sequences.

2. Method

2.1. Origin of scattered data

Typically, a dMRI sequence consists of a set of N + 1 regularly sam-
pled images S = {S0, S1, · · ·SN} where S0 is the image obtained without
diffusion weighting, and Si=1:N are diffusion-weighted (DW) images obtained
with diffusion-sensitizing gradients Gi of direction Ui and strength b. Under
ideal conditions, S0 and Si at the same spatial point X are related by the
Stejskal-Tanner equation (Stejskal and Tanner, 1965):

ln

(

Si(X)

S0(X)

)

= −γ2Diδ
2(∆−

δ

3
) ‖ Gi ‖ (1)

where γ is the gyromagnetic ratio of proton, Di is the diffusion in direction Ui,
δ is the gradient duration, and ∆ is the time between two pulses. However,
distortions caused by eddy currents and fetal motion invalidate this relation-
ship since voxels with the same image coordinates may not correspond to the
same physical point.

Image registration techniques can be applied to restore the lost spatial
correspondence between S0 and Si. As explained later, in our case, each slice
is transformed with a specific affine transformation. When applying this
transformation to the original data, we obtain a set of slices with different
spatial positions, orientations, and associated diffusion directions (Figure 3).
The resulting measurements we have about water diffusion direction and
strength are then scattered over the fetal anatomy, both with respect to
their intended location and their intended orientation. Thus, unlike a non-
motion corrupted study where we have measurements of different diffusion
directions at the same spatial location, we now have different directional
measurements acquired from inconsistent spatial locations. In addition, the
specific directions in which diffusion is being measured are also rotationally
scattered from their intended regular angular distribution by the motion
of the fetus. The origin of scattered data can also be explained in terms of
sampling grids. Under the assumption of constant b values, a dMRI sequence
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(a) (b)

Figure 2: Examples of spherical grids used in this paper. (a) 20-directions Ωsph (b) 30-
directions Ωsph.

results from the sampling of diffusion-sensitized signals over a regular spatial
(Ωspa) and spherical (Ωsph) grid. Ωsph provides the directions for diffusion
sampling, and usually consists of a set of equally spaced points in the unit
sphere (Jones et al., 1999). Figure 2 shows two examples of the spherical
grids used in this paper. Making use of sampling grids, the original sequence
can be written as

S = {(X,Θ, S(X,Θ)) : (X,Θ) ∈ Ωspa × Ωsph} (2)

After correction, S becomes

S ′ = {(X ′,Θ′, S(X ′,Θ′)) : (X ′,Θ′) ∈ Ω′} (3)

where X ′ and Θ′ are the transformed physical points and gradient directions
respectively, and Ω′ is a transformation of the domain Ωspa × Ωsph. As the
transformed coordinates (X ′,Θ′) are no longer elements of a regular grid, S ′

results scattered. This is illustrated in figure 3.

2.2. Registration approach

Distortion correction methods relying on the registration of Si to S0 may
fail when applied to fetal dMRI, even when good results are obtained with
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Figure 3: Scattered data resulting from the registration process. Data in spatial and gradi-
ent spaces before (a) and after (b) registration. Multiple gradient directions are generated
for each original direction since the transformation is different for each component slice
(and the corrected gradient direction depends on the transformation).
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Figure 4: Groupwise registration method. Initially all images Si are registered to an
arbitrary DW image S∗ taken as reference. Then, all images are resampled and averaged

to obtain a first average S
(1)

, which becomes the new reference. At iteration k, the images

Si are registered to the mean S
(k)

to obtain the transforms A
(k)
i . After convergence, S

(k)

is registered to T epi
2 , and the composition of transformations T ◦ Az

i
(k) is applied to map

all images Si into the coordinate system of T epi
2 .

adult data (Jiang et al., 2009). This can be understood by comparing the
joint histograms built from S0 and S1 by using sequences where these im-
ages were considerably aligned. Figure 5 shows that for the fetal sequence,
the intensities of S0 and S1 are very independent and the relation between
intensities cannot be guaranteed. This could explain the misregistration ob-
tained even when using information-theoretic similarity measures, since the
dependency of intensities is necessary for intensity-based image registration.
Figure 5 also shows that there exists a correlation between DW-images of
the fetal sequence, which could make possible the registration of these im-
ages. Based on the previous observations, we have implemented a method
that takes advantage of the intensity dependence between DW images to
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(a) (b) (c) (d)

Figure 5: Dependence of intensities between components of a dMRI sequence illustrated
by means of joint histograms between (a) S0 and S1, adult; (b) S0 and S1, fetus; (c) S1

and S1, adult; (d) S1 and S1, fetus.

first obtain their joint alignment (Figure 4). To this end, we first register the
images Si to an arbitrary chosen reference (Sr) by using a transformation
model (Az) consisting of a set of full affine transformations applied to each
slice independently (denoted by the superscript z), and mutual information
(MI) (Maes et al., 1997; Wells et al., 1996) as similarity metric. The spatial
transformation Azri from Si to Sr is defined as

Azri(X) =M(X) ·X +O(X) (4)

whereM(X) is a 3×3 matrix and O(X) is the offset. Differently from a global
affine transform, M and O depend on the spatial position X , more specifi-
cally on the k-component of the corresponding image coordinates. Then, a

new reference S
(1)

is computed by averaging the transformed images Si and

the process is repeated until the mean squared error (MSE) between S
(k−1)

and S
(k)

for consecutive iterations k − 1 and k is lower than a given thresh-

old ǫ. Finally, S
(k)

is registered to S0 and the resulting transformation A0r

is composed with Azri to obtain the final transformation between Si and S0:

Az0i(X) = (A0r ◦ A
z
ri)(X) (5)

The image S
(k)

is characterized by a higher signal-to-noise ratio (SNR)
than images Si, and provides a better depiction of the anatomical structure
of the brain (Figure 6). These properties allow an accurate registration to
S0, necessary to map all the sequence in its space of coordinates. In order to
find the optimum value of Az0i(X), we have used an iterative gradient ascent
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(a) (b) (c)

Figure 6: Average DW image S
(k)

(a) compared to S1 (b) and S0 (c).

method, and the optimization of parameters was performed independently
for each slice. If the parameters of Az0i(X) are represented by

P = {P 0, P 1, · · · , PZ} (6)

where P z is a vector containing the transformation parameters for the slice
z, and Z is the number of slices in the volume, the estimate of P z is updated
at iteration k as

P z(k) = P z(k−1) + λ∇MI(P z(k−1)) (7)

The initial value of λ was set experimentally to 0.2 and reduced by a 0.8
factor when MI(P z(k−1)) < MI(P z(k)).

2.3. Scattered interpolation

To interpolate values on a regular grid from scattered data, we have
used radial basis functions (RBF) since it is one of the most widely used
general methods for interpolation of scattered data in multidimensions (Press
et al., 2007). RBFs have already been applied for interpolation on spherical
geodesic grids in the context of numerical weather prediction, outperforming
linear interpolation strategies (Carfora, 2007). In dMRI, the complexity is
increased since an interpolation in the spatial domain is also required. The
idea behind RBF interpolation is that every point has an influence on a
neighborhood according to some functional φ(r), where r is the distance
from such point. Then, the value of the function at a general point P is
given by a linear combination of the φ’s centered at points Pi as:

y(P ) =

N−1
∑

i=0

wiφ(‖P − Pi‖) (8)

9



where the weights wi are calculated by solving a linear system of equations
for the function to agree with the observations at points Pi.

In this paper, we have used a Gaussian function as RBF, which is one
of the most commonly used functions for RBF-based interpolation. As this
function tends to zero for high r, and the influence of points Pi distant from
P can be neglected. This allows considering only points in a neighborhood
N (P ) of P for interpolation, which reduces the computational complexity of
the method. N (P ) was formed by points Pi falling inside the support region
of the Gaussian function, defined in the context of this paper as the interval
[−sφ,+sφ] so that φ(sφ) = 0.01× φ(0).

In our case, each point contains spatial and angular coordinates that
must be considered separately because of the difference in scale between both
types of coordinates. This situation is different from the problem addressed
in Carfora (2007) where only an interpolation in the sphere is required. To
take into account these differences, we propose to modify Equation 8 by
replacing the single RBF with the product of a spatial (φ) and an angular
(ψ) RBF:

y((X,Θ)) =
N−1
∑

i=0

wiφ(|X −X
′
i|)ψ(|Θ−Θ′

i|) (9)

where X = (x, y, z) are the spatial coordinates, and Θ = (φ, θ) the spher-
ical coordinates of the sampling vector Ui. Differently from Equation 8,
Equation 9 allows a dual interpolation in two different unrelated spaces. In
Equation 9, |X −X ′

i| represents the Euclidean distance, whereas |Θ−Θ′
i| is

the geodesic distance over the unit sphere:

|Θ−Θ′
i| = arccos(sin(θ)sin(θi)cos(φ− φi) + cos(θ)cos(θi)) (10)

Note that both distances are not mixed directly, but through functions φ(·)
and ψ(·), which are different for euclidean and geodesic distances. The do-
main of definition of these functions is not the same, but the codomains (i.e.
the set of output values) are comparable.

3. Materials and experiments

3.1. Image data

Fetal MRI was performed on a 1.5 T Siemens Avanto MRI Scanner
(SIEMENS, Erlangen, Germany) at the Hautepierre Hospital (Strasbourg,
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France) using an 6-channel phased array coil combined to the spine array
positioned around the mother abdomen. An axial spin echo single-shot
echo-planar sequence was acquired in free breathing along 30 non-collinear
diffusion gradient encoding directions with a b value of 700s/mm2. The
following pulse sequence parameters were used: TR=6800 ms; TE=99 ms;
FOV=250× 250 mm2; matrix = 128× 128; 41 contiguous axial slices of 3.5
mm thickness covering the whole fetal brain; no gap; number of excitations
= 2. The total imaging time was 7.2 minutes. Pregnant women were briefed
before the exam and signed informed consent. To reduce motion artifacts,
fetal sedation was obtained with 1 mg of flunitrazepam given orally to the
mother 30 mi before the exam. The study was approved by the local ethics
committee.

For validation purposes, three dMRI sequences of the brain were acquired
for an adult healthy subject in the following conditions: (i) static in supine
position (Sref , the reference), (ii) static with the head rotated by a fixed
angle with respect to the reference (Srot), and (iii) dynamic with subject
motion during the acquisition (Smov).

3.2. Slice-to-volume registration accuracy

Initially we want to explore the ability to recover slice to volume align-
ment for typical but known motion, on typical anatomical structures. Fetal
data are not suitable for assessing accuracy since motion artifacts are always
present to some degree. Therefore, only the adult dataset Sref was used to
this aim. The fetal motion was simulated by applying a random motion to
each slice, and then we applied the method described in section 2.2 to re-
cover this simulated motion. The displacements were chosen from a uniform
distribution with a varying range of [−8,+8]mm for translations in each di-
rection, and between [−10,+10]◦ for each rotation. These ranges of variation
represent movements observed in real fetal data, and they are similar to those
used in the context of anatomical reconstruction of the fetal brain (Rousseau
et al., 2006; Gholipour-Baboli et al., 2010; Kim et al., 2010).

The accuracy was assessed by computing a registration error measured on
a set of 4 points Pi within every slices as follows: RMS = ( 1

N

∑N

i=1 TREi)
1

2 ,

where TRE is the target registration error defined as TRE = ‖Pi−T̂−1(T ∗(Pi))‖2.
T ∗ denotes the known applied motion transformation, and T̂ is the estimated
geometric transformation. Pi are the corners of the intersection between the
bounding box containing the brain, and each slice. The error previously de-
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fined provides thus a maximum bound of the registration error for the region
of interest.

3.3. Evaluation of RBF interpolation

3.3.1. Leave-one-out test

A leave-one-out test by using the adult data Sref was performed for evalu-
ating the capability of recovering non-acquired DW images from the available
measurements. This test estimates the image Srefj at a point (Xj,Θj) from

Sref\Srefj and N (Xj)\Xj, which in terms of RBF interpolation can be ex-
pressed as:

Ŝref (Xj,Θj) =
N−1
∑

i=0,i 6=j

wiφ(|Xj −Xi|)ψ(|Θj −Θi|) (11)

We have then computed the RMS error between Ŝref (Xj,Θj) and Sref (Xj,Θj)
for a set of spatial points distributed randomly over the brain according to
an uniform probability density function.

3.3.2. Estimation from rotated sequences

In this experiment, Sref was estimated from Srot. For the same physical
point, the diffusion measurements should be the same since the diffusion
properties of the tissue do not change with the patient orientation. However,
the diffusion signals are gathered for different points and directions in the
patient’s local coordinate system, since the gradient directions are fixed in
the coordinate system of the scanner. Therefore, the estimation of Sref

from Srot requires an interpolation in the space and in the sphere, and the
resulting sequence Ŝref should be ideally equal to Srot. The error is thus
an index of performance of the reconstruction method. Differently from the
leave-one-out experiment, here all DW images of Srot at all spatial positions
are employed for estimation.

3.3.3. Estimation in presence of motion

We have increased the complexity of the estimation problem by adding
the influence of the patient’s motion. The idea here was to explore if fiber
bundles could be missed in sequences spoiled by severe motion artifacts, and
to what extend they could be recovered by using the reconstructed sequence.
To this end, an estimation (Ŝref ) of Sref from Smov was computed. A visual
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comparison was then performed between the tractographies for Sref , Ŝref ,
and Smov .

3.4. Diffusion descriptors

To evaluate the performance of the registration method, we have also
considered three criteria for quality assessment.

3.4.1. Mean FA in the CSF

One of the most widely used indexes of anisotropy is the fractional anisotropy
(FA), defined as

FA =

√

(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

2(λ21 + λ22 + λ23)
(12)

where λ1, λ2, and λ3 are the eigenvalues of the diffusion tensor. The mean
value of FA over the cerebrospinal fluid (CSF) is expected to be close to zero
because of the isotropic diffusion properties of the CSF. Registration errors
may induce an increase of this measure, since voxels belonging to the CSF
in some DW images may be matched with voxels belonging to the gray or
white matter in others.

3.4.2. Entropy of FA in the brain

The second considered criterion was the entropy of the FA image (HFA)
over the brain. At level of the tensor estimation method, the effect of a
misalignment between DW images is perceived as noisy measurements of
the diffusion signal. This perturbs the parameters of the estimated tensors
in a random fashion, producing noisy FA measurements characterized by
higher HFA values. Nielsen et al. (2004) have compared polynomial and
affine distortion correction, and observed a reduction in erroneous regions of
FA maps along with a more spiky FA distribution in favor of the polynomial
registration. Netsch and van Muiswinkel (2004) have reported an increase
in the sharpness of FA maps after distortion correction. In both cases, the
observations are in agreement with the lower HFA values expected.

3.4.3. Standard deviation of the diffusion signal

The third considered criterion was the normalized standard deviation of
the diffusion signal over the CSF. For the same reasons explained in the
previous paragraph, this value is also expected to be lower after applying
distortion correction methods.
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Figure 7: (a) Slice-to-volume registration accuracy. This figure shows the RMS error

before and after registration for Sref
0 (◦) and S

ref
1 (+). Each point corresponds to a

specific applied transformation. (b) Estimation of Sref from Srot. The figure shows the
normalized RMS error for different support regions of the RBF functions φ and ψ.

4. Results

The test for assessing the slice-to-volume registration accuracy described
in Section 3.2 was applied to Sref0 and Sref1 . RMS values higher than 0.2mm
were considered as registration failures, and discarded for analysis. Under
this criterion, successful registrations were obtained in 95% of the applied
transformations. The obtained RMS errors were 0.162± 0.004mm for Sref0 ,
and 0.105 ± 0.011 mm for Sref1 , which means that the registration method
provides results with subvoxel accuracy for adult data. Figure 7 (a) shows
the distribution of this error.

The RMS error between the original sequence Sref and its leave-one-
out estimation Ŝref was lower than 0.001 for sφ ∈ [2.0, 4.5] mm, and sψ ∈
[0.6, 0.9] rad. The minimum error value was obtained for sφ 4.0mm (twice
the inter-plane resolution for the adult data), suggesting that the inclusion of
points from adjacent slices is important for interpolation purposes. Higher
values of sφ make the interpolated value dependent of distant points that
could present quite different diffusion properties, and the error starts in-
creasing. No dependence of sψ was found in this experiment. This could owe
to the fact that the gradient table remains unchanged in this experiment,
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Figure 8: Original sampling vectors for sequence Sref (white circles) and corrected vectors
of Srot (black circles) after registration to Sref . Black circles are not equidistant from
white circles because of the rotation introduced by the registration.

and after a threshold value (0.54 rad for adult data) all the 5 nearest gradi-
ent directions are included in the interpolation. Further increases sψ in the
considered range does not modify the included directions.

Figure 7 (b) shows the results when estimating Sref from Srot. Differently
from the leave-one-out experiment, in this case the error does depends on sψ,
being lower for higher sψ values. In this experiment, the gradient table is
changed to take into account the spatial rotations resulting from registration,
and the gradient directions used for interpolation are not equidistant from the
interpolated direction (Figure 8). Now, as sψ increases, gradient directions
are incorporated gradually and the error decreases in the same manner. After
a given value (0.72 in our case) the error starts increasing again, because of
the influence of distant gradient directions.

Figure 9 shows the results of the experiment described with sequences
acquired in presence of motion (section 3.3.3). This figure shows that a
sequence spoiled by severe motion artifacts needs to be reconstructed before
applying diffusion estimation methods, and that the interpolation method
presented in this paper enables estimates approaching the quality of the gold
standard.

Table 1 compares the diffusion descriptors defined in section 3.4 and com-
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(a) (b) (c)

Figure 9: Tractographies of the splenium of the corpus callosum in an adult subject for
(a) Sref , (b) Ŝref , the estimation of Sref from Smov, and (c) Smov

puted for the original and post-processed sequences. Besides the reconstruc-
tion method presented in this paper, we have applied the method for correc-
tion of distortions produced by eddy currents and patient motion available
in FSL1, a library widely used for the analysis of DTI brain imaging data. In
all cases, the diffusion descriptors obtained after application of the proposed
method are lower than those corresponding to the original sequences. These
results are in agreement with the underlying idea that the proposed indexes
effectively quantify the quality of the reconstructed sequences. However, ta-
ble 1 shows that in some cases the FSL provides the lowest (i.e. better) values
even when visual quality is diminished with respect to the original (motion
increased). This could be explained by considering the tensor estimation
from randomly distributed diffusion signals, which provides no preferential
diffusion directions and low FA values. In cases of severe misregistration, the
standard deviation of the diffusion signal is not affected in the same way as
FA-based indexes, since its value will also tend to increase in these cases.

To perform the tractography, an expert radiologist traced regions con-
taining the splenium and genu of the corpus callosum (CC), and both pyra-
midal tracts (PR and PL) on the T se2 images. These regions were used for
seeding the tractography after propagation to the T epi2 image by using affine
registration, and to assess the presence/absence of these specific bundles
in the analyzed cases. Tensors were estimated by using a standard least
squares method, and the tractography was performed by applying a stream-

1http://www.fmrib.ox.ac.uk/fsl
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Table 1: Diffusion descriptors used to quantify the goodness of the correction methods.
None means that any method was applied. FSL is the eddy current correction method
provided by this library (S0 was used as reference). RBF is the reconstruction method
presented in this paper. Hfa = Entropy of FA over the brain, FAcsf = mean FA over the
CSF, and σcsf = normalized standard deviation of the diffusion signal over the CSF.
Method Fetus #1 Fetus #2 Fetus #3 Fetus#4

Hfa FAcsf σcsf Hfa FAcsf σcsf Hfa FAcsf σcsf Hfa FAcsf σcsf
None 1.52 0.18 0.12 1.35 0.25 0.15 1.43 0.27 0.17 1.40 0.22 0.18
FSL 1.59 0.14 0.14 1.19 0.19 0.15 1.18 0.19 0.16 1.20 0.20 0.17
RBF 1.46 0.13 0.12 1.21 0.20 0.13 1.25 0.20 0.15 1.19 0.20 0.14

line method. In both cases we have used the algorithms implemented in
Slicer2. In all the analyzed fetuses the three bundles (CC, PR, and PL) were
identified, with shape and localization consistent with previous anatomical
knowledge as assessed by the expert radiologist. Figure 11 shows an example
of the obtained results.

5. Discussion

In this paper, we have presented a novel method for reconstructing fetal
dMRI sequences from scattered data. The advantage over previously pro-
posed methods (Jiang et al., 2009) is the independence of the diffusion model,
which allows its use for studying diffusion patterns even in IVOH conditions.
The method consists of a groupwise registration method for correction of mo-
tion and eddy-current distortions, followed by a spatio-angular interpolation
based on RBFs used to estimate signal values on regular sampling grids.

Even when in adults the image registration of DW images with T epi2 pro-
vide acceptable results for distortion correction, its application to fetal images
may fail. Based on this observation, we adopted a registration strategy that
takes advantage of the correlation between DW images and that provides
good visual results. The final mapping to T epi2 was performed by registering
this image with the averaged diffusion signal. At the b-values used in this
paper (b = 700) the SNR of DW images is relatively high. However, the SNR
degrades for acquisitions at high b-values (Akazawa et al., 2010), and further
experiments should be done to know the effects on the registration accuracy.

In the bibliography, distortions caused by eddy currents are assumed to
occur in the image plane along the diffusion encoding direction (Haselgrove

2http://www.slicer.org
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and Moore, 1996; Jezzard et al., 1998), and consist of in-plane magnification,
shear, and translation. This distortion model has been used on adult data by
assuming absence of rotations, and a spatial correspondence of slices between
the T2-weighted image and the DW images (Mangin et al., 2002; Nielsen
et al., 2004). In fetal data, these assumptions are not valid any longer because
of the fetal movement. Another difference of fetal sequences with respect to
adult sequences is that the transformation from image to world coordinates
(IC and WC respectively) is not the identity. This transformation extracted
from the DICOM header provides the mapping from each voxel to the WC
defined with respect to the mother, but the fetus can be in an arbitrary
position with respect to her. Therefore, an in-plane distortion in IC becomes
a spatial distortion in WC as shown in figure 10. As the transformation
defined in 5 is defined in WC, the choice of a full affine transformation allows
to take into account the 3D rotations and distortions. For simplicity, we
have not constrained the shear and scaling in the direction perpendicular to
the image acquisition plane (which should remain constant), and the method
relies on the metric for guiding the registration process accurately.

In the context of reconstruction of fetal anatomical images, a motion
model has been used for regularization (Kim et al., 2010; Rousseau et al.,
2006). This model is based on an interleaved acquisition protocol that as-
sumes that anatomical locations of slices are temporally correlated due to
smooth motion of the fetus in relation to the imaging time. In this paper,
no motion model was employed since image acquisition was performed in a
standard manner, which is a worse case situation in the sense that no as-
sumption is made with respect to the fetal motion and this is considered as
random.

The quantitative assessment of different registration results is difficult
since a gold standard for validation is not available in dMRI. The assess-
ment of improvement is mainly performed by visual comparison of images
before and after correction (Haselgrove and Moore, 1996; Nielsen et al., 2004;
Rohde et al., 2004). Quantitative approaches have been proposed like the
values of the affine transformation parameters as a function of the slice num-
ber (Mangin et al., 2002), and the transformation consistency (Netsch and
van Muiswinkel, 2004). In this paper we have investigated the use of alterna-
tive indexes based on the diffusion signal and the FA maps. Table 1 suggests
that σcsf is the one that best corresponds to the visual inspection, since it is
higher for the original and the FSL-corrected sequences, which present distor-
tions completely removed with the proposed method. FA-based descriptors
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Figure 10: Distortions in WC. At left, a magnification in the phase encoding direction is
represented by arrows parallel to i (arrows are much longer than in real cases for represen-
tation purposes). After transforming the slice into WC, the arrow A has components along
each one of the directions defining the WC system (l = left, p = posterior, s = superior).
Therefore, a magnification along a single direction in IC becomes a magnification along
all directions in WC. The same concept is applicable to shearing and translation.

like Hfa and FAcsf are not robust to situations of severe misregistration and
can provide good values in cases of completely misaligned sequences.

One of the main limitations found during the experimental design was
the impossibility of acquiring fetal sequences under controlled conditions,
constraining the validation to the use of adult data. This is a consequence of
the fetal motion and the respiration artifacts introduced by the mother. Even
when the obtained results cannot be extrapolated directly to fetal sequences,
they help understand the responses of the method to changes in parameters,
which is important to optimize its performance. For example, sψ and sφ
cannot be set to arbitrarily high values, since distant points start influencing
local diffusion properties that are not necessary shared with the intended
location. The previous knowledge of the expected fetal motion plays an
important role for setting these values.

The tractography in fetal dMRI sequences is a challenging task since the
incomplete myelinization necessary for detecting fibers, and the absence of
a ground truth to compare the results. In adults, the correction of distor-
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tions has been shown to have an important influence on the tractography
results (Aksoy et al., 2010; Merhof et al., 2007). This was confirmed by the
results shown in Figure 9, which shows how completely missed tracts in a
sequence corrupted by motion can be recovered after reconstruction. In fe-
tal dMRI, we have also found such differences, but their significances are
unknown. The assessment of significance would require the design of a com-
parative study based on objective measurements, which is out of the scope of
this paper. To our knowledge, the only previous work on fetal tractography
in vivo was carried out by Kasprian et al. (2008), but unfortunately no dis-
tortion correction was performed and therefore no differences in tractography
are shown.

Another interesting aspect to discuss is the intersubject variability with
respect to the extension, shape, and location of the detected tracts. Even
when the images analyzed in Figure 11 correspond all to the third trimester
of GA, there are some differences in the tract features. These differences
could correspond to changes occurring during the normal developing of the
brain (Bui et al., 2006; Kostovic and Vasung, 2009; Prayer et al., 2006).

One additional problem that can occur more frequently in fetal studies
is the presence of dark slices due to within slice motion. Typically, the
slice acquisition time is short enough to gather the diffusion signal without
perturbations, but in situations of fast fetal motion the image is completely
lost. This creates registration problems, and introduces spurious data into
the interpolation. In the sequences analyzed in this paper this artifact was
absent, and therefore it was not considered in the current implementation of
the method. The automatic detection and removal of slices without diffusion
signal is an open problem and constitutes a work in progress.

The reconstruction of fetal dMRI sequences is a key step in the image
processing pipeline necessary for the study of the human brain development,
and influences all the subsequent steps. The method presented in this paper
allows the formation of an estimate of diffusion properties across the fetal
brain, without priors about diffusion properties of the tissue that could bias
the tractography results, and the clinical conclusions extracted from them.

6. Conclusions

In this paper, we have presented a method for reconstructing fetal dMRI
sequences from scattered data. A groupwise registration method based on
slice-by-slice affine transformations was applied to compensate motion and

20



eddy-current distortions, and a dual spatio-angular interpolation based on
RBFs was used to estimate signal values on regular sampling grids. The
advantage over previously proposed methods (Jiang et al., 2009) is the in-
dependence of the diffusion model, which allows its use for studying diffu-
sion patterns even in IVOH. Experiments with adult data showed subvoxel
accuracy for the slice-to-volume registration, and high accuracy for recover-
ing non-acquired DW images from available measurements. In fetuses, the
method improved the quality of the sequences as evidenced by the lower
values of FAcfs, Hfa, and σcsf with respect to the original sequences. The
tractography provided different results for the original and reconstructed se-
quences, but they must be quantified and compared with objective criteria in
order to assess their clinical significance. This is the current line of research.
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Appendix A. Registration method

The algorithm 1 provides the pseudocode corresponding to the registra-
tion method presented in section 2.2.
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Original FSL-corrected Reconstruction

Figure 11: Tractographies performed on the sequences used in this paper, showing the
corpus callosum (blue), the right pyramidal tract (red), and the left pyramidal tract (yel-
low). Each row corresponds to a different fetus, and each column to a different method.
Absent tracts mean that such tracts could not be detected (for example the genu of the
CC in the third fetus).
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