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Tanaka’s equation on the circle and stochastic flows

April 20, 2013

HaTEM HAJRIM AND OLIVIER RAIMOND(?)

Abstract

We define a Tanaka’s equation on an oriented graph with two edges and two vertices. This
graph will be embedded in the unit circle. Extending this equation to flows of kernels, we show
that the laws of the flows of kernels K solutions of Tanaka’s equation can be classified by pairs
of probability measures (m™,m™) on [0, 1], with mean 1/2. What happens at the first vertex is
governed by m™, and at the second by m™. For each vertex P, we construct a sequence of stopping
times along which the image of the whole circle by K is reduced to P. We also prove that the
supports of these flows contain a finite number of points, and that except for some particular cases

this number of points can be arbitrarily large.
1 Introduction
Consider Tanaka’s equation

t
pst(x) =2 —|—/ sgn(ps u(x))dW,, s<t, zeR, (1)

where (W})ier is a Brownian motion on R (that is (W;);>0 and (W_;)¢>0 are two independent standard
Brownian motions) and ¢ = (¢s+; s < t) is a stochastic flow of mappings on R. We refer to [5] for
a precise definition. Roughly, ¢, and ¢o;—s are equal in law, for any sequence {[s;,¢;],1 < i < n}

of non-overlapping intervals the mappings ¢, ;, are independent, and we have the flow property: for
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all z € R, s <t <wu, as. @su(x) = @ruo psi(z). In [6], (1) is extended (1) to flows of kernels. A
stochastic flow of kernels K = (K,;; s < t) is the same as a stochastic flow of mappings, but the
mappings are replaced by kernels, and the flow property being now that for all z € R, s < ¢t < u,
a.s. Ksyu(x) = KKy (x) (with the usual composition of kernels). For z € R and s < ¢, K (x) is
a probability measure on R which describes the transport by the flow of a Dirac measure at z from

time s to time ¢. A simple example of flow of kernels is K ¢(x) = 9, where ¢ is a stochastic flow

@s,t(T)>
of mappings.
By applying Ito’s formula, it is easy to see that (¢, W) solves (1) if and only if, setting K = 4,

we have for all s <t, z € R and f € CZ(R) (f is C* on R and f’, f” are bounded), a.s.

K f(x) = f(z) + / K, (f'sgn)(z)dW, + % / K of"(z)du. (2)

Now, if K is a stochastic flow of kernels and W is a Brownian motion on R, we will say that (K, W)
solves Tanaka’s equation if and only if (2) holds for all s < ¢, z € R and f € CZ(R). To give an
intuitive meaning of this SDE, the transport by a solution K is governed by W on |0,00[ and by
—W on | — 00, 0], but with possible splitting at 0. We will also be interested in diffusive solutions of
Tanaka’s equation, i.e. solutions K that cannot be written in the form d,. The main result of [6] is a
one-to-one correspondence between probability measures m on [0, 1] with mean % and laws of solutions

to (2). Denote by P™, the law of the solution (K, W) associated to m. Then

Kst(#) = dossgnow. Lesroo + sy, + (1= Us)0 s N eor o)

where Wy = Wy — Wy, Wi =W, — inf W, =W, — inf Wy,

u€|s,t] u€ls,t]

Tsw = inf{t > s: Wi = —|z[}

and where Uy ; is independent of W, with law m. In particular, when m = 9 1 then Us; = % and K
is o(W)-measurable; this is also the unique o(W)-measurable solution of (2). For m = (5 + 1),
we recover the unique flow of mappings solving (1) which was firstly introduced in [8]. In [2], a
more general Tanaka’s equation has been defined on a graph related to Walsh’s Brownian motion. In
this work, we deal with another simple oriented graph with two edges and two vertices that will be
embedded in the unit circle € = {z € C: |z| = 1}.

A function f defined on % is said to be derivable in zg € € if

F(z0) = lim L20") = T ()

h—0 h




exists. Let C%(%) be the space of all functions f defined on % having first and second continuous
derivatives f’ and f”. Let P(%) be the space of all probability measures on ¢ and (f,)nen be a
sequence of functions dense in {f € C(%),||f|lcc < 1}. We equip P(%) with the following distance d

and its associated Borel o-field:

d(p,v) = <Z 9" ( / Frdp — / fndy>2>é with p, v € P(%). (3)

In the following, arg(z) € [0,2x] denotes the argument of z € C and in all the paper [ is a fixed

parameter in |0, 7|. Define for z € €,

6(2) = 1{arg(z)€[0,l}} - 1{arg(z)€]l,27r[}

and denote by % (or simply by % since [ will not vary) the graph embedded in € with two vertices
1 and e and two edges € = {z € € : arg(z) €)0,1[} and €~ = € \ €T with orientation given by &

(see Figure 1 below).

Figure 1: The graph %.

Definition 1. On a probability space (2, A,P), let W be a Brownian motion on R and K be a
stochastic flow of kernels on €. We say that (K, W) solves Tanaka’s equation on € denoted (Ty) if
foralls <t, f € C*(€) and v €€, as.

Ko f(x) = f(x) +/ K u(ef')(z)dWy, + %/ Ko f" (z)du. (4)

If (K, W) is a solution of (Ty) and K = 6, with ¢ a stochastic flow of mappings, we simply say that
(¢, W) solves (Tig).

If (K, W) is a solution of (7% ), then following Lemma 3.1 of [6], we have o(W) C o(K) (see Lemma

3 (ii) below). So we will simply say that K solves (Ty).



In this paper, given two probability measures on [0,1], m™* and m~ with mean %, we construct a
flow K™ ™ solution of (Ty). Let (K+,K~,W) be such that given W, the flows K+ and K~
are independent and (K*,£W) has for law P™*. The flows K+ and K~ provide the additional
randomness when K™ ™~ passes through 1 or €. Away from these two points, K m*,m” just follows

W on €1 and —W on ¥—. We now state our first result.

Theorem 1. (1) Let m™ and m™ be two probability measures on [0,1] satisfying

/Oluer(du):/Olum_(du):%. (5)

There exist a stochastic flow of kernels (unique in law) K™ and a Brownian motion W on R

such that (K™ ™ W) solves (Tiy) and such that if W}, = W, — iI[lf | Wy, W, = sup Wy, —W;
’ u€(s,t ’ u€ls,t
and
ps = inf{t > s, sup(W,, W) =1},

s,t) s,t

then conditionally to {s <t < ps}, a.s.

m+,m_
Ks,t (1) = U::t(sexp(iW:t) + (1 - Us—t_t)(sexp(—iW::t)’
mtm™ /il _ - -
K, (") = Us,t(sexp(i(l-i-W;t)) +(1- U&t)(sexp(i(l—W;t))

and conditionally to {s <t < ps}, (U

o1:Usy) is independent of W and has for law m* @ m™ .

(2) For all flow K solution of (Ty), there exists a unique pair of probability measures (m™,m™)

law

satisfying (5) such that K %" Km"m™

Contrary to Tanaka’s equation, where flows are concentrated on at most two points, flows associated to
(Ts) have nontrivial supports. The version (K™ ™ W) defined in Theorem 1 (1), and constructed
in Section 2, satisfies Proposition 1 and Proposition 2 below. Proposition 1 shows the existence of
some times at which the support of K mtm” g only concentrated on a single point. For all —oco < s <
t < o0, let

fx{:U(Wuma SSUSvgt). (6)

Proposition 1. (1) There ezists an increasing sequence (Sg)g>1 of (fovz)tzo—stoppmg times such

that a.s. limy_o0 Sy, = +00 and KJ's™ (2) = 8,u for all z € € and all k > 1.

(2) There exists an increasing sequence (Ty)g>1 of (fg};)tzo—stoppmg times such that a.s. limg_,oo T}, =

+00 and K(T;k’m_ (2) =01 for all z € € and all k > 1.

4



The next proposition shows that the support of K m¥,m” may contain an arbitrary large number

of points with positive probability (more informations can be found in Section 5).

Proposition 2. Assume that m™ and m~ are both distinct from %(50 + 01). Then there exists a

sequence of events (Cp)n>0 and a sequence of (fovz)tzo—stoppmg times (0 )n>0 such that for alln >0,

(i) P(Cyn) >0,

0,0n

(ii) Card supp <Km+’m_(1)> =n+1 as on C,.

We also mention that all the sequences of stopping times discussed in the previous two propositions
will be constructed independently of (m™,m™). They take values in {p,,n € N} where py = 0 and

pni1 = inf{t > p,, sup(W,' W, ) =1} forn > 0. Set, for z € ¢,n € N,

Pnst?
z mtm~
X7Z = supp (Ko,pn’ (z))

where m* and m ™~ are distinct from £ (69 +61). Then (X?),, is a strong Markov chain on E' = Uy>1%*.
Proposition 1 asserts that {1} and {e’} are recurrent for this chain. Proposition 2 asserts that for
all n > 0, both {1} and {e’} (by analogy) communicate with €"*!. So one can deduce the following

immediate

Corollary 1. For all z € €,n >0, €™ is a recurrent set for X* (i.e. a.s. ¥n >0, X7 € €™ for

infinitely many k).

Even that the supports of the flows K m*,m> may be concentrated on arbitrarily many points at

some times, these random sets are always finite in the following sense: a.s.
Vze €, t>0, Cardsupp <K5i§+’m_ (z)> < 0.

Let us describe the organization of this paper. In Section 2, we prove the first part of Theorem 1.
The proof of the second part will be the subject of Section 3. In Section 4, we prove Proposition 1.

Section 5 gives some informations about the support of K m"m” and proves Proposition 2.

2 Construction of flows associated to (7%)

Fix two probability measures m™ and m™ on [0, 1] with mean %



2.1 Coupling flows associated with two Tanaka’s equations on R.

In this section, we follow [6]. By Kolmogorov extension theorem, there exists a probability space
(92, A,P) on which one can construct a process (g Exts St,USt,USt,W t)—oo<s<t<oo taking values in

{—1,1}? x [0,1]% x R such that (i), (ii), (iii), (iv) and (v) are satisfied, where
(i) Wy =W, — W for all s <t and W is a Brownian motion on R.
(ii) Given W, (e}, U},)s<t and (e, U;;)s<t are independent.
(iii) For fixed s < t, (£ t Ui) is independent of W and
(e, UL) "2 (udy (dz) + (1 — u)d_ (dx))m™=(du).
In particular P(eE st = 1|Usit) Uict.
(iv) Define for all s <t
mj:t = inf{Wy;u € [s,t]} and m ;, =sup{Wy;u € [s,]}.
Then for all s <t and u < v, then

P(Ei = th = ui,v‘mit =m, )=1 (7)

s,t u , U u,v

(v) Foralls <t and {(s;,;);1 < i < n} with s; < t;, the law of (¢= 5t Ut ) knowing (e f b Usf,ti)lﬁiﬁn

and W is given by
(udy (dz) + (1 — u)d_y (dx))m™ (du)

when ms & {m 1 <i < n} and is otherwise given by

st7

5i +

Sz t; 7[]3z t;

on the event {In;t,t = mi,ti} with 1 <i <mn.

Note that (i)-(v) uniquely define the law of

(ef ., UF U er L UF s Us W)

51,617 7 s1,t10 51t17 st 0 Csptn Ysnotn Esntnd Ysnotn

for all s; < t;, 1 < ¢ < n. This family of laws is consistent by construction. Note in particular that,

when (iv) is satisfied for (s;,t;) and (sj,t;) with 1 < 4,5 < n, then (v) properly defines the law of



U:l:

(ef Uft) knowing (e£ it

s, Syt

Ji<i<n and W, and we have that (iv) also holds for (s,t¢) and (s;,t;)
with 1 < j < n.
For s <t, x € R, define

Tsi(x) =inf{r > s: Wy, = F|z|}
and set

(p;tt(x) = (z+£ Sgn(x)WS,t)l{tSTSi(x)} + ggl:,tWSj,:t]‘{t>Tsi({L')}7

K5(®) = Oersgn@Wa,ljcrt )y T (Ufﬁwgt + (1= Usj,tt)flwgt)l{ty}(x)}-
Recall the following

Theorem 2. (/6])
(i) (T, W) and (o=, —W) solve Tanaka’s equation (1).
(i) (KT, W) and (K~,—W) solve Tanaka’s equation (2).

(i1i) For all x € R, all s <t and all bounded continuous function f, a.s.
K3 () = Blf (95, (2)) K7

2.2 Modification of flows.

For our later needs, we will construct modifications of ¢* and of K* which are measurable with

respect to (s,t,z,w). On a set of probability 1, define for all s < ¢, (sp,t,) = (M, %n*l)

- and

~ 71N _ /1 + . +
(587“ USJ) = (limsup €5t o LI SUD Usn,tn)'
n—oo n—0o0

Then, we have the following

Lemma 1. (i) For all s <t, a.s. Ezft = Eit, U;tt = U;Et.

(ii) Consider the random sets
7T ={(s,t) e R* s < t, mzt < min(Ws, W)},

7 ={(s,t) e R% 5 < t, mg, > maz(Ws, Wy)}.

Then a.s. for all (s,t) and (u,v) in 9T,

+ + ~ 77t ~ 77t
ms,t = mu,v = (es,t? Us,t) = (6 Uu,v)'

u,v?



Proof. (i) By (7), a.s. for all s < t,u < v such that (s,t,u,v) € Q%, we have

+ + + + +
ms,t = mu,v = (es,t’ Us,t) ( €u U9 Uu )

Fix s < t. With probability 1, mf;t is attained in |s, ¢[ and thus a.s. there exists ng such that

m;t,t = m;tmtn = m;tn07tn0 for all n > ny. (8)
Taking the limit, we get (€ st,Usit) (5sn0,tn0 ioino) a.s. From (7) and (8), we also have that

(%,ta U:,Et) = (et UX , Yas. and (i

Sng 7tn0 77 Sng 7tn0

(ii) With probability 1, for all (s,t¢

is proved.

and (u,v) in 9%, if mzft =

~

then Ing : m>* =

u vy Snsln
mffmvn for all n > ng, which implies that
Ing : (Eztn,tn7U§EL,tn) = (eF €t om s Uicn v,,) for all n > ng
and thus that &= st = =&t » and that Usit = Ulfv. 0

We may now consider the following modifications of ¢ and K+ defined for all s < t,z € R by

@t,t(x) = (z £ sgn(z)Wyy)1 (t<rE @)} T &5 th A {t>rE (D))
o+ rrt
Ks,t(x) = 5:B:I:Sgn(I)Ws,t1{t§T§t(a:)} + (USJ(SW;; + (1 B USJ)(S—W;’[ ) {t>’rS (z)}-

Then Theorem 2 holds also for g%, K= (because (i), (ii), (iii) and (iv) stated at the begining of Section
2.1 are satisfied by (£, U%, W)).

Lemma 2. (i) The mapping

(5,1,2,w) > (G (2, w), K3y (2, 0))
is measurable from {(s,t,z,w),s < t,z € R,w € Q} into R x P(R).
(ii) For all s,t,x, a.s.
(Pit(m) = &it(x) and Ké'ft(x) = I?;Et(m)

Proof. (i) Clearly, the mapping

(5’ t W) — (gd:t(w)’ ﬁsj,:t(w)’ Ws,t(w))

s7
is measurable. For all t > s, we have
{rd (@) >t} = { inf Wi, +a[ >0}
s<r<t

which shows that (s,z,w) — 7 (z,w) is measurable and a fortiori (s,z,w) — 7, (z,w) is also

measurable. (ii) is a consequence of Lemma 1 (i). O



To simplify the notation, throughout the rest of the paper, we will denote &% U, Sit, cp&t,K ; simply

+
by 85 t?Us t7¢8t7Kst

2.3 The construction of K™ ™",

In this paragraph, we construct a stochastic flow of kernels K m*m™ and a stochastic flow of mappings

¢ respectively from (K+, K~) and from (o™, ¢ 7). Let

ps = inf{r > s, sup(W;, W) =1}. 9)

s,

We first define (@s.4)s<i<p,. For t € [s, pg], set

pst(1) = exp(iv],(0)),
psi(e") = exp(i(l + ¢;,(0)))

and for z € €\ {1,€e"} and t € [s, p,], set

@s,t(z) = Zeie(z)Ws,t 1{t§7's(z)}
+ <903,t(1)1{Zei€(Z)WsyTS(Z):1} + Sps’t(eil)1{Z6i6(2)ws,rs(z):eil}) 1{t>7's(z)}a

where

7o(2) = inf{r > s, 2" “GWer =1 or €'},

Note that on {7(z) < ps} N{ze"Wsrs=) = 1}, we have W:TS(Z) = 0 and consequently ¢, - (;)(1) = 1.
Also, on {74(2) < ps} N {zeGWsrse) = ¢il} | we have W, . = 0and so Pz (€)= €.

Since (s,w) — ps(w) and (s, z,w) — 75(z,w) are measurable, it follows from Lemma 2 that

(Sa i, 2, W) — st,t('z’ w)l{sﬁtﬁps (w)}

is measurable from {(s,t,z,w),s <t,z € €,w € Q} into ¥. Now we consider the sequence of stopping
times (p¥)>0 such that p? = s and pF+! = pp for k > 0.

Define for all s < t,

Dot = D Lipkcye i1y Ppk © D=t g © 7" © Py
k>0
Then (s,t,z,w) — s (2, w) is measurable from {(s,t,z,w),s < t,z € €,w € Q} into €. By the

same way, we define (K$+,m—)8§t§ps for ¢ € [s, ps)

mt,m~
Ks7t (1) = USJ,rt(sexp(iW::t) + (1 B U;rt)(sexp(_iwsft)’
mtm™ /il _ — -
Ko™ (e") = Us,t5exp(i(z+wsjt)) +(1- Us,t)(;exp(i(l—wsjt))



and for z € €\ {1,¢} and t € [s, ps]

oo
K::; 1 (Z) = 6zeie(2)ws,t]‘{t§7—5 (Z)}

mt,m~

+7 - il
+ (KZE " (1)1{Z6i6(2)WS,TS(z):1} + Ks,t (ez )1{2616(2)‘”5,73@):61'1}) 1{t>rs(z)}-
Define now for all s <,

+ - + o= + m— + om—
m-,mo mtm= mT,m mT,m
K3™ = Lpraiepty Ko, Kt Bpea™ -

k>0

s s

Then (s,t,z,w) —> K;n;’m_(z,w) is measurable from {(s,?,2z,w),s <t,z € ¥,w € Q} into P(F).

For every choice 51 < t1 < -+ < s, < tp, (st Km+’m7) is o(ef y,e0 0, Ul oy Ui s W,

i) 7084t w,v Cu,vr Yu Yuwr YWu,v

i <u<wv<
t;) measurable and these o-fields are independent for 1 < i < n by construction. This implies the

independence of the family {(ps, ;. K mtm

Siyti

), 1 <i < n}. Itis also clear that the laws of ¢, and

Kgff’mi only depend on ¢ — s.

2.4 The flow property for K™ ™ and .

To prove the flow property for both ¢ and K m+7m_, we start by the following

Proposition 3. Let S and T be two finite (fwoom)reR—stopping times such that S < T < pg. Then

a.s. for allu € [T, pg|,z € €, we have
Psulz) = @10 psr(2)
and

KIm () = ng;vm* K;;j:’m’ (2).

)

Proof. Define

+ + + + +
Q) = {weQ: V(s1,t1),(s2,t2) € D™, Mg 4y = Mgy 1y = €5,y = 652@}
Q = {we: m;Tﬂ, <Wr <mgprp,, mESH <Wg<mgg,, for all r > 0}.

Then P(Q;) =1 (see Lemma 1 (ii)). It is also known that P(£22) = 1 (see [3] page 94). We will prove

the proposition on the set of probability 1: Q = Q1 N Qs and we first prove the result for ¢. From now

10



on, we fix w € Q. Define

Egy = {(u,z): T<u<ps,u<rs(z)},

Euy = {(u,2): T <7s(2) <u<ps},
By = {(u,2): 75(2) <T << pg,u < mr(psr(2))}
Eiy = {(u,2): 75(2) <T < 1r(psr(z) <u < ps}

Then E;) U By U Egiiy U By = [T, ps] x €. For all z € €, set Z = pgr(2) and 0 = arg(2).
(i) Let (2,u) € E;). Then as T' < 75(z), we have 0 ¢ {0,1}, 2 = ze')Wsr and

r(Z) = inf{r >T, Ze“Wrr =1 or &}

= inf{r>T, ze!EWsr+e(Z)Wr.r) — 1 op el = 15(2)

since €(z) = €(Z). Therefore u < 77(Z) and @1, 0 ps1(2) = ZeAIWru = zeic@Wsu = g (2).

(ii) Let (z,u) € E). Then, we still have 77(Z) = 75(2) and ¢1.7,.(2)(Z) = ¢5,74(-)(2). Recall that

psu(2) = S057“(1)1{9"Sws<z)(z):1} + S057“(6“)1{sos,rs(z)(2)=e“}

and

pru(2) = eru(Dler o (2)=1) + SDTv“(ed)l{goT,fﬂm(Z)=e“}'

W+

Suppose for example pg - (.)(2) = P1,7,(2)(Z) = 1, then Wit S (2)

_ _ + +
Torn(2) = =0 and so WT’T = WS’T

(and a fortiori m}’r = m:qL,T) for all » > 7p(Z)(= 75(z)). From the definition,

wsu(z) = psu(l) = exp(z'gogfvu(O)) and ¢7,(2) = pru(l) = exp(z’gp}rvu(O)).
If Wi, =Wd, =0, then pg.(2) = ¢ru(Z) = 1. Suppose that W;, = Wd > 0, then W, > m}
and W, > mgfu. Since w € o, we have

Wp > m;u and Wg > m;u.

In other words, (T,u) and (S, u) are in 27 so that & = et and @14, (Z) = @su(2).
(0)

(iii) Let (z,u) € E(;). Assume for example that ¢gr.)(2) = 1, then Z = pg7(1) = 2570 gince

T < pg and

pru(Z) = exp(i(pgr(0) +e(Z2)Wry))

= exp(i(E—SF,TW;T + e(Z)Wr)).

11



As T < u < 7p(2), it follows that Z ¢ {1,e"} (if Z € {1,€"}, then 71(Z) = T), e(Z) = €&, and
s0 o1u(Z) = Zexplicl 7 Wr,y) = explies (W, — m 7). As Z # 1, we necessarily have W, > 0.
Thus if 6§T =1,

r(Z) =inf{r>T: W, — mg’T =0or [}

and if agT =—1,
mr(Z)=inf{r >T: W, — mgf’T =0or 27 —1[}.
Since u < 7r(Z), we have m:{u = quiT and ¢o7,(Z) = exp(z’ej{TW;’u). On the other hand, since
u < pg,
wsu(z) = exp(igpg’u(O)) = exp(z’eg’uW;u).
But (S,7) € 2% (from W;T > 0), (S,u) € 2% (from u < 7p(Z) which entails that W;u > 0).

l

Consequently €&, = €&, and s0 ¢1,4(Z) = @su(2). The case @g,,(;)(z) = €' can be done similarly.

(iv) Let (2,u) € E(;). Assume for example that g - (.y(2) = 1 so that w = 0. Consider the

S,75(%)
vt
first case: 6§LT = 1. Then Z = Vs and

m(Z) =inf{r >T: W, — mjs’:T € {0,1}}.

U W, (2 — mgf’T =1, then u = 77(Z) = ps and ¢g.(2) = pru.(Z) = €.

U Wz — mg’,T =0, then @72 (Z) =1 and o1 (Z) = o1u(1).

Since ¢g 74(2)(2) = 1, we have ¢5.,(2) = ¢su(1). Moreover W;TT(Z) = W;TT(Z) = 0, which implies
Wi, =W, (since u > 77(2)).

Now, if u satisfies W;{u = W;u =0, then @71 ,(Z) = ¢s.(2) = 1. If not, m;u = m:{u and (T, u), (S,u)
are in 2. This implies e, = 4 and o1..(Z) = ps.u(2) exactly as in (ii).

Assume now that €§T = —1, then 77 (Z) satisfies W, () — m;zT = 0 (recall that 70(Z) < pg) and
oru(Z) = psu(z) as before.

The result for K™ ™ can be proved by replacing pgr(2) by eiW;vT in Eg;) and E(;,. However, the

proof remains similar. O
Corollary 2. Let S < T be two finite (ffvoom)re]g—stoppmg times. Then, with probability 1, for all
u>T,z€%€, we have

Psu(z) = ¢ru 0 Ps7(2)

and

Kg:7m7 (Z) — Kg?;7m7 K;:b:,m7 (Z)

12



Proof. Fix k € N and define the family of (FV_ )rer-stopping times (T%)i>0 by T? = (T V pk) A pk+1
and T% = ppi—1 fori > 1. Asr — p, is increasing, we have pk'H <Ti < pk+’+1 for all ¢ > 0. Applying

successively Proposition 3, we have a.s. for all z € ¢, i > 0 and all u € [p kT

SDS,U(Z) = SDPI;-H’U 0 S07“7"*17;)2‘"1. ©---0 ¢T07p2‘+1 ° Sppg.,TO © @S,pg(’z)

and for all u € [T, p@““],

P5(2) = @i © Pyt i © O Pro i1 © Pk 70 0 Pk (2).

On {ph < T < pkH} we have T = pi. for all i > 0 whence a.s. on {pf < T < pk+1} forall z € @

and all 7 > 0,

o
psu(z) = Pl gy © P izt i O O P hp1 O ps1(z) for all u € [pt", ph]

and

SDS;LL(Z) = (ppgﬂu [e) (‘Opk+i,pi O++-+-0 @T,pk-’_l o QOS,T(Z) for all © € [p p/g'-i-z-f—l]

Now define the family (5%);>1 of (F,, . )rer-stopping times by S = (T'Vv pk“) A pr and ST = pg
for i > 1. Then for all i > 0, pi. < SZJrl < pép ! Applying again Proposition 3, we get a.s. for all
z€%,i>0and all u € [ph, ST,

eru(Ps1(2)) = pi 0 © Psi i © 0 Pg1 1 0 o151 (psr(2))

and for all u € [S¥H1, pif],

er.ulpsr(2)) = pgit1y © Ppi,,gi+1 O O Pg1 pl O o151 (ps,7(2))-

On {ph <T < pk+1} we have S = pgﬂ for all i > 1. Consequently a.s. on {pk <T < pkH} for all

€%, i>0and all ue [ph, it

Prulps1(2)) = i © Pyisri i © 1 0Pt 1 0 P it (057(2))

and for all u € [pfT T, pitt).

eru(psr(2)) = Pplitits o O Ppi phtit1 O 1020 ka1 1 O (PTWIEH((PS,T(Z))-
We have thus shown that a.s. for all z € ¥ and all u > T,

Lok <repittyPTu © ps,r(z) = 1{p1§§T<p‘g“}SDS,u(Z)-

By summing over k, we get that a.s. Vz € €, Vu > T, o1, 0 ps1(2) = ¢su(z). The flow property for

K™5m holds by the same reasoning. U

13



2.5 K™ can be obtained by filtering .

For all —oco < s <t < +o0, let
fs[,]:’U_’W = U(UJ,quZqum; s<u<v<t)= U(KJU,KQZU; s<u<wv<t).
Corollary 2 entails the following
Proposition 4. For all z € €, all s < t and all continuous function f, a.s.
K2 f(2) = B [flpa(2) [F20 ]

Proof. Fix s <t,z € € and f € C(%¢). Properties (ii) and (iii) of Section 2.1 imply that a.s.

mtm~ U~
Kg,’ f(Z)l{sgtgps} =FE {f(@&t(z)) ‘fﬁﬁ v ’W] Lis<t<ps} -

Define
.7-";:’5_’U+’U_’W = a(aiv, Uifv, Wy, s<u<v<t)= a(cpiv,KiU; s<u<wv<t).
If Z is a random variable independent of ]:si ’87’U+’U7’W, then a.s.
KI5 (D) ssizpy = B [Feaal 2D [FL Y [ 1ciz (10)

Forn>1and i€ [0,n], let t = s+ @, Api = A{t} <pw  }and for n > 1let A, =N Ay ;. Note

. . + e U+ U-
that A,; € fﬁ/l,tn and A, € .7-";/}{. Then since K* and ¢* are stochastic flows, F;,° UHUmW

87
T e Ut U- W By

n £ -,
vizl Ft” tm

i—1771

Corollary 2, a.s.

K™5m (2) = K™™K ()

s,t 5t}

and
<Ps,t(2’) =@ Q0 @s,t?(z)-

g are independent. Then, using (10), we get that a.s.

Recall that the o-fields <]—"€+’57’U+7U7W>
=174 1<i<n

mt,m™ + U—
KI5 f@)a, = B [Fena@) |F Y 14,
and therefore a.s.
mtm~ +U— m¥.m— 4 orr—
KI5 £(2) = B [ o) [FL Y 1a, + (KI5 1) = B [Floaa() |F520]) 1ag.

14



To finish the proof, it remains to prove that P(A%) — 0 as n — oo. Write
LA < DOPUG) = DR > o, —ti) =P (7> ).
1= 1=

Let p* =inf{r >0: Wojfr =1}. Then

P(A;) Sn(P (FTS >p+> +IP<7§_TS >,0>> = 2nP <t_TS >p+>.

We have p* faw inf{r >0: |W,| =1}. Let T} = inf{r > 0: W, =}, then

“+o00 l l2

c t—s
P(A7) < 4nP <T > Tl> =4n /t__s Woms: exp(%)dx

n

(see [3] page 80). By the change of variable v = nz, the right hand side converges to 0 as n — oo

which finishes the proof. O

2.6 The L? continuity.

To conclude that K™ ™" and © are two stochastic flows, it remains to prove the following

Proposition 5. For allt >0, 6 € [0,27[ and f € C(¥), we have

_ Lo\2 . M- N2
im, 2 | (o2 = Feon(e))’| = tim, & | (55 1) = 130 e)°| =o.
z—e’ z—e’

Proof. By Jensen’s inequality and Proposition 4, it suffices to prove the result only for ¢ and by the
proof of Lemma 1.11 [5] (see also Lemma 1 [2]), this amounts to show that

lim, P (d(o,(2), 9o0.(c)) > n) =0. (11)

z—et?

wheret > 0,7 > 0 and 6 € [0, 27| are fixed from now on. For each z € €, let A, = {d(p0.+(2), po+(e?)) >
n} and denote 1(z) and ¢g; simply by 7(2) and ;.
First case : § = 0. For a €]0,1[, we have 7(e!®) = inf{t > 0:a + W; =0 or [} and

P(Auie) < P(t < 7(e)) + P (Agia N1 {@ iy (69) = Lt 2 7(e)}) + Blipygim (¢i) = €.

If t > 7(e’) and @T(eia)(em) = 1, then ¢ (e"Y) = ¢4(1), thus in the right-hand side, the second term
equals 0. Since lim, o1 7(e'*) = 0 and P(@T(eia)(eio‘) =ell) = P(a + Wi (eiay = 1), it is clear that
P(Agia) — 0 as @ — 0+ and similarly P(A.ia) — 0 as @ — (27)—. Thus (11) holds for # = 0 and by

15



the same way for 6 = [.

Second case : 6 €]l,2n[. For all « €], 27[, we have
P(Apa) < P(Aem N {@T(em)(eia) = @T(ew)(ew) = 1})
+ ]P)(Aem N {‘p’r(em)(eia) = (Pr(eie)(ew) - eil}) T+ €a0

where

€a,0 = IP)(prr(e”“")(eia) =1, @T(eie)(eie) = eil) + IP)(907'(62'0‘)(61'0[) = eil’ @T(ew)(ew) = 1)
which converges to 0 as o — 6. Let us prove that

lim P(B,) = 0 where B, = A ia N {@T(eia)(em) = (pT(eiG)(eiG) =1}

a—0

For | < a < 6, write
P(B,) = P(Ba N {t < 7(e?)}) + P(By N {7(e?) < t < 7(e'*)}) + P(Bo N {t > 7(e*)}).

Since ¢.(e') and .(e?) move parallely until one of them hits 1 or €, it comes that

a—0—

lim <P(Ba N{t <7(e)}) +P(By N {r(e?) < t < T(Gm)})> = 0.
Now

P(Bo N{t > 7(e')}) = P(BaN{1(e") <t A prieioy}) +P(Ba N {py(eioy < 7(e) < t})

< P(Byn{r(e"®) <tA Pr(eioy}) + P(py (i) < ().

Obviously limy—g P(p,(ioy < 7(e')) = P(pr(eioy < () =0. Set Y = wT(eie)(em), then a.s. on B, N
{7(e"*) <t A preioy}, we have () = ¢, (ioy,(Y) by Corollary 2 and 7, (.i0)(Y) = 7(e'*) < py(cin).
Recall that ¢ o) ((Y) := @r(ein) 5(1) for all s € [1.(zi0)(Y), pr(civ)] and consequently ¢, (cio) ((Y) =
Pr(eit),s(1) for all s > 7.0y (Y') (by the definition of ¢). This shows that a.s. on BoN{71(e") <t A Pr(ei®) }s
we have

d(pr(e”), 01(€")) = d(r (i) £(1), Py a0y (1)) = 0.

Finally lim,_,¢_ P(B,) = 0 and by interchanging the roles of 6 and «, we have lim, 9+ P(B,) = 0.
Similarly

. 0\ _ . i il _
él_)Hé]P’ <Aeia N {‘pq—(ew)(e ) = cpT(eza)(e ) =e }) =0

so that (11) is satisfied for all 6 €]l,2x[. By the same way, it is also satisfied for all 6 €]0,]. O
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2.7 The flows ¢ and K™ ™ solve (Ty).

In this paragraph we prove the following
Proposition 6. Both ¢ and K™ ™ solve (Ty).

Proof. First we check the result for . We will denote gpit(O) simply by gpit and the mapping z —
cp;'ft(z) by (cp;tt(z)) »c¢ to avoid any confusion. An important consequence of the modifications defined
in Section 2.2 which is the key argument here is that Lp§ 5. is a Brownian motion for any finite (.7:0‘/}_/ )-
stopping time S. To justify this, consider a finite (}"g}./)—stopping time S and for ¢ > 1 and ¢t > 0,

set

lgS] +1
q

Let t > 0, then a.s. (5,5 +t) € 2 and for ¢ large enough, we have (S;, S,¢) € 2" and m;Cq Spu =

2
S, =  Sqe=S8— o+t

mE,Sth' Lemma 1 (ii) implies that a.s. for ¢ large enough 6:{5“ = 6§q,sq,t' Thus a.s.

+ 1 +
PS54t = qlggo PSS (12)
Let 0 < t; < --- < t,, and take a family (f;)1<i<n of bounded continuous functions from R into R.

Using the independence of increments and the stationarity of o™, we have

n
Hfi(wgq,sq,ti)]
i=1
[ n
L (ot
_ q}ggOZE }:Ilfz(@%’%+ti)1{};§5<h;rl}]
[ n
h h+1
o (ot S SS < ——
Jz&ZE_H”W,%“)]N )

[ h h+1
= lim > E Hfi(tpg_t__g)] P (— <8< L)
i=1 e q q

E

Hfi(%sﬂi)] = lim E

q—00
i=1

s

Since goaf_ is a Brownian motion, the same holds for gpg s4.- Now the rest of the proof will be divided

into three steps.
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First step. Let S be a finite (fé/}{)—stopping time. Then for all z € ¢, f € C*(%), a.s. Vt € [0, ps — 5],

flps,s+i(2) = f(2) +/0 (f'e)(@s,54u(2))dWs 514 +%/0 [ (0s,51u(2))du.

We first prove this for z = 1. By It6’s formula, for all f € C%(¥) a.s. Vt > 0,

t 1 t
flesplicts ) = F + [ Flexplich s )detson+y [ 7/ enlists. )i

Tanaka’s formula for local time yields a.s. Vt € [0, ps — 5],

t
“PE,SH‘ = /0 Sgn(¢§,s+u)d‘?§,s+u + Ly

where L; is the local time in 0 of gpg’s+_. By construction, |30?S‘L,S+t| = W;SH for all t. So we can

deduce from the previous line that a.s. V¢ € [0, ps — 5],

t
/0 S5 540008 540 T Lt = Weg e

Thus by unicity of the Doob-Meyer decomposition, a.s. V¢ € [0, ps — 5],

t
/0 Sgn(¢§,s+u)d@§,s+u = W 54t-

Since sgn (¢ ¢,,) = €4 gy a5, we get a.s. Vt € [0, p5 — 5],
t

t
VS s = /0 €5 51ud@Ws,51u = /0 €(ps,5+u(1))dWs 54y

Recall that ¢gg4+(1) = ¢i955+1 for all t € [0, ps — 5], thus the first step holds for z = 1. The first step
is similarly satisfied for z = € and for all z € €\ {1,¢"'} by distinguishing the cases t < 7¢(z) — S
and t > 7g(z) — S.
Second step. Let S be a finite (Fgf_/)—stopping time, G; = o(pou(2),2 € €,0 <u <t),t>0. Then
0 (¢, (S4uyrps (2); 2 € €, u > 0) is independent of Gs.
Clearly

(93, (S+uynps (2); 2 € €,u > 0) C 0(30§75+u,u >0)V 0(30§75+u,u >0).
Fix 0 < u; < -+ < uy, then as. (S,8 +uy),---,(S,S + u,) are in T N 2. Take a family

{f1,91," ", fn,gn} of bounded continuous functions from R into R and let A € Gg. By (12), we have

n n
E|[1fi(ehs1u)9i(s54u)1a| = lim E|[] filed, 5., )9i(#5, 5, )1al-
1 q—0o0 1 (2 7

1= 1=
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For ¢ large enough (% < uyp), we have

n
E [ 11 fi(cpgq,sw )9i(25,.5, .. )u]

i=1
n
= 32 8| T APt 40Pt s oV anzcscmsny

m>0 =1
with AN{T <5 < mT'H} € ng-H C a(@d,(2), 0np(2),2 € €,0 <u < v < T+1) Now using the
independence of increments and the stationarity of (¢™,¢ ™), the second step easily holds.
Third step. ¢ solves (Ty).
Denote p§ simply by p¥. Then a.s. for all k € Nand z € €, u — Pk (%) is continuous on [p*, pF ).
Consequently for all 2 € €, a.s. u+—— g u(z) is continuous on [0, +-oc[ and in particular, ¢ (2) is

G,» measurable. Now fix f € C?(€),t >0,z € € and define for all y € €,

tA(p*—p")
Hipn(y) = flep pryene—o ) — fy) — /0 (F' ) @pr @) AW 1 14,
1 [tA*—p") Y
- 5/0 / (Sppl,pl-i—u(y))du'
Then a.s. y — Hsy(y) is measurable from ¢ into R. Moreover H(y is 0(@p1 (o1 4upnp2(2), 0 >
0,z € ¢)-measurable and H(s;(y) = 0 a.s. for all y € ¢ by the first step. The second step yields

Hp1) (00,1 (2)) = 0 a.s. and we may replace y by ¢ ,1(2) directly in the stochastic integral so that,
using the flow property, we get

tA(p*—p") )
f(‘PO,pqut/\(prpl)(z)) = f((PO,pl (Z)) +/0 (f 6)(‘P0,p1+u(z))de1,pl+u

1 [the*=p") Y
+ 5/0 f (@O,pl—i—u(z))du

LA (p?—pt)
= @+ [ (D 5 ) ) du

By induction, we have a.s. Vk € N,

PFAHA(pP T —pF) )
f(‘pO,kart/\(pk‘prk)(Z)) - f(Z) +/0 (f 6)(900,11(2))qu

1 /p’“ +A (PP —p")

+ 3 F(p0.u(2))du
0

This implies that ¢ solves (Ti). The fact that K™ ™ solves (T) is similar to Proposition 4.1 (ii)

in [6] using Proposition 4. O

19



3 Flows solutions of (7)

From now on (K, W) is a solution of (Ty) defined on a probability space (€2, .4,P). Fix s € R and
z € ¢, then (K (2))t>s can be modified such that, a.s. the mapping ¢t — K ;(2) is continuous from

[s, 400 into P(¥). It is the version we consider henceforth for all fixed s and z.
Lemma 3. (i) For all z € € and s € R, denote 74(z) = inf{r > s, ze"Wer =1 or e}, Then a.s.
KSJ(Z) = 5zei€(z)ws’“ lf S S t § TS(Z).

(11) (W) C o(K).

Proof. (i) We follow Lemma 3.1 [6]. Define
¢t ={z€% arg(z) €0,l]} and ¢ =€\E". (13)

Fix z € €T and let

T, = inf{t >0: Kou(2,¢) > 0} )

Let f € C?(%) such that f(y) = arg(y) if y € €*. By applying f in (T%), we have for ¢t < 7.,

Xgarg(y)Koi(z,dy) = arg(z) + W,. (14)

By applying f2 in (Ti) and using (14), we also have for ¢t < 7.,

¢
Ko,th(z) = fz(z)—i—Q/O fgarg(y)Ko,u(z,dy)qu—i-t
¢

= )+ [ (arg) + W, +o
0

~ (arg(e) + W)
Thus that for ¢ < 7,
lg(arg(y) —arg(z) — Wt)ZKO,t(z, dy) = K07tf2(z) — 2(arg(z) + W) Kot f(2) + (arg(z) + I/Vt)2 =0.

By continuity a.s.

Ko(2) = 0, ic=yw, for all ¢ € [0, 7.].

The fact that 79(2) = 7, easily follows.
(ii) Let (fn)n>1 be a sequence in C?(%) such that f/(z) — €(z) as n — oo for all z € €\ {1,¢€"}.

Applying f,, in (Ty), we get

t 1 t
| KoaleF)aWs = Koufu(0) = (0 = 5 [ Koudi(t)du.
0 0
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It is easy to check that fot Ko (ef})(1)dW,, converges towards W; in L*(P) as n — oo whence in L?(P)

1 t
Wo= tim (Koafal) = £a(1) = 5 [ Kouf(0)iu)

which proves (ii). O

3.1 Unicity of the Wiener solution.

Our aim in this section is to prove that (T ) admits only one Wiener solution (i.e. such that o(W) C
o(K)). This solution is K™ ™ with m* =m~ =§ 1. For this, we will essentially follow the general
idea of [4]: the Wiener solution is unique because its Wiener chaos decomposition can be given (see
(15) and (16) below). Let p be semigroup of the standard Brownian motion on R. Then the semigroup

of the Brownian motion on 4 writes

Pi(e', e) = Zpt(x,y +2km), x,y € [0,27].
keZ

For all f € CY(%), we easily check that P,f € CY(%) and (P.f) = P.f'. Let Af = 1f", f € C*(%)

be the generator of P.

Proposition 7. Equation (Ti) has at most one Wiener solution: If (K, W) is a solution such that
o(W) Co(K), then¥Vt >0, f € C®(%) and all z € C,

Koif(2) = Bif(z +ZJt”f in L*(P) (15)

where
Ji'f(z) = / Py (D(Psy—sy -+ - D(Pt—snf)))(z)dW0751 ~dWo s, (16)
0<s1< <8<t

no longer depends on K and Df(z) = e(z) f'(2).

Proof. Let (K, W) be a solution of (T ) (not necessarily a Wiener flow). Our first aim is to establish

the following

Lemma 4. Fiz f € C*(¢) and z € €. Then

Kouf(2) = Pif (= / Kou(D(Prof))(2)dW.
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Proof. Let f € C*(¥),z € ¢ and denote Ky, simply by K;. Note that the stochastic integral in the
right-hand side is well defined:

/E D(P— uf))(Z)]QdUS/O Pu((D(Ptuf))2)(Z)du§/o 1(Pi—uf)'||5du

and the right-hand side is smaller than #||f’||%,. Now

n—1
Kif () = PE) ~ [ KuDPuf )W = S (Kipin P, f — K P ()
p=0
(p+1)t _ (p+1)t

—Z ” D((Pt-u = P,_@ine) f Z/ uD(F,_ w0 f)(2)dWe.

For all p € {0,..,n — 1}, set fp, = P @inf € C*°(¥) and so by replacing f by fp, in (T ), we get

(p+1)t (p+1)t
KD EAW, = Kipsi fyn(2) = Kt fyn2) = [ KAL) ()
" (p+1)t
:Kpr,n(z)_K%fp,n(z)_ n %(Afpn)( z) _[)t (Ku_K%)(Afp,n)(Z)du-

Then we can write

Kif(z) — Pif(z) — /0 Ky(D(Pe—uf))(2)dWy = A1(n) + Az(n) + As(n),

where
n—1 "
Ai(n) = =) Ku[P pf~P_qrvef ——AP,_ @0 f](2),
pZO n n n n
n—1 (p+1)t
M) = =3 [T KD((Pe = By o) D)AWL
p=0Y "% "
n—1 (p+1)t
Ag(n) = / (Ku — Kpft)APti (p+1)t f(z)du
pt n n
p=0" n

Using || K490 < ||9]|so for g a bounded measurable function, we see that |A;(n)| is less than

- Pif—f
ZO .

<n 7
Since f € C*°(%), this shows that A;(n) converges to 0 as n — oo. Note that Aa(n) is the sum of

— Af

s [Pef — f = —Af]‘

P f — f——AfH

‘ [e%e) n o]

orthogonal terms in L?(P). Consequently

(p+1)t

A2 ()32 p) = Z

p=0

((Pt u Ptf(?HTl)t)f)(Z)qu

=t

n

L2(P)
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By applying Jensen’s inequality, we arrive at
— (p+1)t

142(m)|IZ2 ) < Z P,V (z)du

pt
p=0""n

where Vi, = (Pi—yu f)' = (P,_ et f)' = P—uf' = P,_ @+ f'. For all u € [%t, (p+—nl)t], we have

2
PV (@) < VallBe = ||P s (Piose ' = £)|| < I1Pwsne_ ' = £

Consequently

(p+1)t t
1 45(m) ey < Z / e T MY e
and one can deduce that Ag(n) tends to 0 as n — +oo in L*(P). Now

(p+1)t
n

[ A3(n)||r2p) < Z

Set hyppn = AP, v f. Then hy,, € C°(%) for all p € [0,n — 1]. By the Cauchy-Schwarz inequality

(Ky — Kt )AP, @ine f(2)du

pt
n L2(P)

t

NI

p+1)t

Bl — Ko )hya(2)))du

n—1 (
sl < VIS |
p=0""n

El((Ky — K%)hp,n(Z))Q] < BlKp (Kot hypn = hip,)? ()]
< BlKp(Kn wPon — 2hp Kot hpon + he o) (2)]
< Pu <Pu_%th§7n = 2P, st + hf,,n> (2)
< Pty = 2hpn Py pthpn + by ol
< 2th7nHOOHPu—P—;hp,n - hpmHoo + Hpu_%thz%,n - h;Q),nHoo-

Therefore |[Az(n)||z2@) < V(2Cy (n) + Cg(n))%, where

(p+1)t
n
Znhpnnoo L7 IRt = Bl
n
and
_ (p+1)t
" 2 2
3y AR

bt
p=0"%"n
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From |[hpnlloo < [[Aflleo and [|[P,_pthp s — hpplleo < HPU_P_tAf — Afl[oo; we get

n—1 (p+1)t t
Cn) < Afle Y [, " IPuw AT = ATl < 11Afl| [ 1P5AS = Afllcs.
p=0""n

As Af € C®(%), C1(n) tends to 0 obviously. On the other hand, 2, € C*°(¢) and so

n—1 n—1 El
1 t 1 t o
Colm) = -3 :/ P21~ B2 llcds < = 3 :/ </ HAh;nuwdu> ds.
= Jo =Jo \Jo

Now we easily verify that hy,,,, b, ,, k!, are uniformly bounded with respect to n and 0 < p <n — 1.

™ pmo Tpn

As a result C3(n) tends to 0 as n — oo. This establishes Lemma 4. O

Assume that (K, W) is a Wiener solution of (Ty) and for t > 0,f € C*(%) and z € €, let
Kouf(2) = Pif(2) + Y00, Jf(2) be the decomposition in Wiener chaos of Ko¢f(z) in L? sense. By

iterating the identity of Lemma 4, we see that for all n > 1, J f(z) is given by (16). O

Consequences: Let K" be the unique Wiener solution of (Ty). Since o(W) C o(K), we can define
K* the stochastic flow obtained by filtering K with respect to o(W) (Lemma 3-2 (ii) in [5]). Then,
for all s <t and all z € €, a.s.

K4(2) = E[Ks1(2)|o(W)].

As a result, (K*, W) solves also (T%) and by the last proposition, for all s <t and all z € €, a.s.

E[Ks4(2)lo(W)] = K (2). (17)

3.2 Proof of Theorem 1 (2).

Using the flow property and the independence of increments satisfied by K, it is easily seen that the
law of (Koy,,---, Koy, ) for all (t1,--- ,t,) € (Ry)™ and therefore the law of K is uniquely determined
by the knowledge of the law of Ky, for all ¢ > 0. In the sequel, we will show the existence of two

law

probability measures m* and m~ on [0, 1] with mean & such that for all £ > 0, K(T:’m_ = Ko+ which

2
will imply Part (2) of Theorem 1.

3.2.1 A stochastic flow of mappings associated to K.

Let P*=F [KS%T] be the consistent family of Feller semigroups associated to K. By Theorem 4.1 [5],

a consistent family of coalescent Markovian semigroups (P™),> is associated to (P"),>1. The Feller

24



process associated to P™ (resp. to P™€) will be called the n-point motion of P™ (resp. to P™¢). The

consistent family (P™¢),>1 will be such that

(i) The n-point motion of P™ up to its entrance time in A, is distributed as the n-point motion

of P™ up to its entrance time in A, where A,, = {x € €"; Ji # j, x; = z;}.
(ii) The n-point motion (X*!,..., X™) of P™¢ is such that if X} = Xg then for all £ > 0, X/ = X/.

A possible construction of such a family is the following. Fix (z!',---,2") € €™ and let X =

(X',...,X") be the n point motion started at (z!,--- ,2™) associated to P". Let
Ty =inf{t > 0,3 #j, X! = X/}.

For t € [0,T1], define Y; := X;. Let 1 <3 < --- < i < n be such that {Yif; 1§j§k}:{Yi1; 1<

i <n} and where k = Card{inl; 1 <i < n}. Then define the process
Zy =Xy fort>T and when Yy, =Y.

Now set

Ty =inf{t > T1,3j #1, 27 = Z1'}.

For t € [Ty, T»], we define Y; = Z; and so on.
In this way, we construct a Markov process Y. It is the n point motion of the family of semigroup

P™¢. Note that such a construction does not insure that these semigroups are fellerian.

Lemma 5. (P™°),>1 is a consistent family of coalescent Feller semigroups associated with a flow of

mappings p°.

Proof. For each (x,y) € €2, let (XF,Y,”)i>0 be the two point motion started at (z,y) associated with
P? constructed as in Section 2.6 [5] on an extension (2 x ', &,Q) of (2, .A,P) such that the law of
(X7, YY) given w € Qis Ko (z) ® Kot(y). Define

T%Y .= inf{t >0: X7 =Y/}
By Theorem 4.1 [5], we only need to check that: for all ¢ > 0,e > 0 and x € ¥,

lim QT > 1} N {d(X?, YY) > ) =0 (O).
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Fix t > 0 and ¢ > 0.

First case z = 1. Recall that for all s € [0, p] where p = pg, we have

1
K(S/Z(l) - 5(5eiwt+ + 567th+)'

This shows that when t < p, Ky(1) is supported on {eth+,e_th+} and so X} = Wi or emiWi'.

Moreover, by Lemma 3 (i), if y ¢ {1, ¢}, then X¢ = ye®*®Ws for all s € [0, 7(y)] where 7(y) = 10(y) .
Let A= {T" >t} n{d(X},Y) > e} with y close to 1 such that y # 1 and write

Q(A) =QAN{t <7(y)}) + QAN {t > 7(y)}).
Since 7(y) tends to 0 as y goes to 1, we have lim,_,; Q(A N {t < 7(y)}) = 0. Moreover
QAN{t>7(y)}) <QB) + QXY =e").
where B = AN {t > 7(y), X!, = 1}. Obviously

Q(B) <QBN{r(y) <p}) +Q(r(y) > p)

with lim,,1 Q(7(y) > p) = 0. On BN {7(y) < p}, we have X! = = XV

() Ly = 1 and thus T < 7(y).

As a result

QBN{r(y) <p}) Q< T < 7(y)).

Since the right-hand side converges to 0 as y — 1, (C) is satisfied for x = 1.

Second case r # 1. By analogy (C) is satisfied for 2 = . Let 2 ¢ {1,¢e"} and y be close to z, then
X? and XY move parallely until one of them reaches 1 or e say at time 7. Since P? is Feller, the
strong Markov property at time 7" and the established result for = € {1,¢"} allows to deduce (C) for
x. U

Consequences: By the proof of Theorem 4.2 [5], there exists a joint realization (K!, K?) on a
probability space (Q, A, I@) where K'! and K? are two stochastic flows of kernels satisfying K* faw dpe s
K?2'™ K and such that:

(i) Keu(z,y) = Kl (x) @ K2,(y) is a stochastic flow of kernels on €2,

(ii) For all s <t,z € ¢, as. K2,(z) = E[K} ()| K?].
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To simplify notations, we will denote (K, K?) by (dye, K). Recall that (i) and (ii) are also satisfied

by the pair (0, Km+’m7) constructed in Section 2.3. Now (ii) rewrites, for all s <,z € €,
K(z) = E[(S(p;t(z)\l(] a.s. (18)
and using (17), we obtain, for all s <t,z € €,
KZ[;(Z) = E[éwg’t(z)\a(W)] a.s. (19)

with K" being the Wiener solution.

3.2.2 The law of K.

Recall the definitions of ¢ and ¢~ from (13) and set for all s < t,
Ul =Ko (1,6") and Uy, = K 4(e",67).
Proposition 8. Recall the definition of ps from (9). Then

(i) There exist two probability measures m™* and m~ on [0,1] with mean % such that for all s < t,
conditionally to {s < t < ps}, Usi,t is independent of W and has for law m™. Moreover, for all

seER,z€C, as. VtE [s,psl,
Ksi(2) = 0_iccow, Li<r(2)}
il
+ <Ks,t(1)1{ze¢e(z>ws,Ts<z):1} + Ksu(ef )1{Zeie<z>ws,75<z>:eu}) Litsry(2)}
where
Ksi(1) = U:t(seXp(iW;t) +(1- U:t)éeXp(*iW:t)’
., B B
Ks,t(el ) = Us,t(sexp(z(l+WSTt)) + (1 - Us,t)éexp(i(lfWS_’t))'
(11) For all s <t, conditionally to {ps > t}, U:t, Ust and W are independent.

The proof of (i) essentially follows [6] and will be deduced after establishing the lemmas 6,7,8,9 and
10 below.
For all —o0 < s <t < +o0, define ]:sl,(t = 0(Kyyp,s < u < v <t)and recall the definition of ]—"X‘;

from (6). When s = 0, we denote K07t,ap87t,.7-"({(t,]-"gz,U5ft simply by Kt,cpf,fg(,ftw,Uti. We will
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always consider the usual augmentations of these o-fields which include all P-negligible sets and are
right-continuous. For each each z € €, recall that ¢t — Ky(z) is continuous from [0, +oo[ into P(%).
Denote by P, the law of K.(z) which is a probability measure on C'(R,,P (%)), then since K.(z) is a

Feller process (see Lemma 2.2 [5]) the following strong Markov property holds

Lemma 6. Let 21,22 € € and T be a finite (F{X)i>0-stopping time. On {Kr(z1) = d.,}, the law of

Kr.(21) knowing FX is given by P,,.

Let
pt=inf{r >0: W, =1} and L =sup{re|0,p"]: W} =0}

Thanks to (19), on the event {0 <t < p*t}, as.
B85y lo (W) = %(eiW? bWy,
By the continuity of ¢¢(1), this shows that a.s.
vee 0,07 wi(1) € (T e, (20)

Let h € O(%) such that Vo € [~1,1], h(e"®) = |z|. Using (18), the fact that (W) C o(K) and the
continuity of t — K;(1), we have a.s. Vg € Cy(R),Vt € [0,pT],

Ki(goh)(1) = g(W;").
Thus a.s. Vt € [0,pT], K;h(1) = W, and p* can be expressed as
pt =inf{t > 0: K;h(1) =1}. (21)
Define the o-fields:
Fr— =o0(Xr,X is a bounded .7-"8/,[_/ — previsible process),

Fr+ =o0(Xp, X is a bounded ]:g,[_/ — progressive process).

By Lemma 4.11 in [6], we have F. = Fr_. Let f : R — R be a bounded continuous function and

set

Xi = E[f(UN)o(W)]1jo<i<pty-

By (18), the process U™ is constant on the excursions of W out of 0 before p*.
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Lemma 7. There exists an F"V -progressive version of X denoted Y that is constant on the excursions

of W out of 0 before p* and satisfies Y, = Y,+ a.s.

Proof. We closely follow Lemma 4.12 [6] and correct an error at the end of the proof there. By
induction, for all integers k£ and n, define the sequence of stopping times Sy, , and T}, ,, by the relations:

To, =0 and for k > 1,

Sk,n = inf{t > Th—1n: WtJr =2""},

Tk,n - inf{t > Sk,n . WtJr - O}

In the following U, will denote U;k . Forall t >0, on {t € [Skp, Tgnl,t < p*}, we have U =0l
as. Let Xy, := E[f(Uljn)]W]l{Sk L<pty- Since o(Ws, | w+s, ., u > 0) is independent of .7-";2 ., we have

Xin = E[f(Uk,n)u-g,jn]l{Sk,ngpﬂ which is ]:gzn measurable. Set I, = (U}~ [Sk.n, Tkn[ and define

Xim i t € [Sgn, Thn| (for some k) and ¢ < pt,
X' =1<f0) iftercn|o,ptl,
0 if t > pt.
Then X" is FW-progressive. For all t > 0, set X, = lim SUD,,_y00 X4 5 then X is FW_progressive and
for all t > 0, X; = X; a.s. Indeed, fix t > 0 and on the event {pt > t}, choose ko and ng such
that ¢ € [Skynos Thomol, then X;"° = Xp no. For all n > ng, there exists an integer [, such that
t €[S, Tlnl- Thus X7 = X, = Xigne since Siyn, and S, , belong to the same excursion

interval of W containing also . Now set Yy = f(0) and Y; = limsup,,_,, X, 1 for all £ > 0. Then Y
is a modification of X which is F"-progressive and constant on the excursions of W+ out of 0 before

pT. Moreover Y, = Y,+ as. O
We take for X this F"-progressive version. Then X+ = E[f(U;;)|J(W)] is Fr+ measurable.
Lemma 8. E[X +|F | = E[f(U;Cr)].

Proof. Let S be an FW-stopping time and dg = inf{t > S : W, = 0}. We have {S < L} = {ds < p*}
(up to some negligible set) and so {S < L} € fc‘g. Let H=dgAp" and K =inf{r > 0: Ky ,h(1) =
[}, then

E[X +1iag<pry] = EIf (U, ) Ldg<pt K (1)=61}]-
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Note that on {dg < p*}, we have H + K = p' a.s. Applying Lemma 6 at time H and using (21), we
get

E[X,+ 1{a,<py) = E[f (U EL g <pr ey (1)=513) = E[f(U))]P(ds < p*).

Since the o-field Fr_ is generated by the events {S < L} for all stopping time S (see [7] page 344),
the lemma holds. O

The previous lemma implies that Upt is independent of o(W) (Lemma 4.14 [6]) and the same
holds if we replace pT by inf{t > 0 : W;" = a} where 0 < a < I. For n such that 27" < [, define

inductively TJ , = 0and for £ > 1:

Sfoo= imf{t>TF, W =2""}

T inf{t > S - W," =0}

Set V,:n = U;:n. Then, we have the following

Lemma 9. For all ¢ > 1, conditionally to {S;, < p*}, an,-- Vb, Ware independent and
Vf,Lm e ,V;;Ln have the same law (which depends on n but no longer depends on q).

Proof. We prove the result by induction on g. For ¢ = 1, this has been justified. Suppose the result
holds for ¢ —1 and let (f;) be an approximation of € as in the proof of Lemma 3 (ii). For a fixed ¢t > 0,
in L?(PP), we have

. [t
Wit oyt = lim < T, fJ( ) — T;Lnfj(l) - 5/0 Ku+T;1’an,'/(1)du>'

q—1,n’ g—1,n J—00

On {S}, <p™}, we have K;v (1) = 01 and therefore, in L*(P(.|S;], < p™)),

qln

Wpe it = hm< LT 1) / K+ )du> (22)

q—1,n’ q—1,n J—00 qln

As27" <1, {S), <p"} = {T(;L_Ln < p*T}as. Choose a family {g1,- - ,gq, g, h} of bounded continuous
functions on R. For any A € A, we will use the notation E4 to denote the expectation under P(-|A).

Set Ay = {S;,, < p*}, then using (22) and Lemma 6 at time T we get

—1,n

q
Ex,., H gz‘(U;} )Q(Wt/\T; ) n)h(WT; LT n)]
i=1 "
q—1
= By ([[0:0 oW | EWOVIIE |, U5, )]
i=1 "
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Since Ay_1,, C Agn, we have by the induction hypothesis

q—1

Eagn =FEa, ., [H gi(UL )
i=1 o

) Ea, ., [Q(Wt/\T;ll,n )] ’

qg—1,n

q—1
H gi(U;+ )Q(Wt/\T"‘
i=1 o

In conclusion

EAq,n

q
H gz‘(Ulc,-t}n)g(vvt/\thLn)h(VVT’F T, )]
i=1 ’

q—1,n> q—

EAq,n |:g(Wt/\T;17n )h(WT+

q—1,n>

q—1
=FEa, 1, [H gi(U§+ ) t+thln)] E [gq(U;} )} .
i=1 i ' "

The last identity remains satisfied if we replace g(W, -+ ) V(W s )
q—Ln g—1,n’
P .
ITi-y gz(thth1 n)hl(WT+

qg—1,n>

' +T¢;;1,n) by a finite product

t¢+T;1’n)' As a result, for all bounded continuous ¢ : C(R4,R) — R,

q—1

EAq,n = EAq—l,n [H gl(U;—‘F )
i=1 o

Eag W)L E (U, )]

[T9:(Ug- ow)
i=1 "

Iterating this relation, yields

[[sws >g<w>] 117 sy,

1,n

Ey

q,n

)| By a0V
In particular, for all i € [1,q],
Eags 003 )] = 2 |0y, )]
This completes the proof. O

Let m,” be the law of fon and m™ be the law of U;” under P(.|[p" > 1). Then, we have the

Lemma 10. The sequence (m;}),>1 converges weakly towards m™. For all t > 0, under P(-|p™ > t),

U and W are independent and the law of U, is given by m™.

Proof. For each bounded continuous function f: R — R,

E[f(Ut+)’W]1{0<t<p+} = JH&,ZEP{te[s,jn,T,jn[}f(Van)’W] 1{0<1t<p+}
: notk,
k

= [1{0<t<P+}nlem/fdm:]

Consequently
1
: + +
nlggo/fdmn = WE[f(Ut Mot >a]-
The left-hand side no longer depends on ¢, which completes the proof. ]
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By analogy, we define the measure m™ such that if p~ = inf{t > 0 : W~ = [}, then for all ¢ > 0,
under P(-|p~ > t), U, and W are independent and U, "% 1= Recall the definition po = inf(p™, p7),
then for all t > 0, the law of U," (respectively U; ) knowing {po > t} is given by m* (respectively
m”).

Now take s = 0 and fix z € €. Similarly to (20), we can deduce from (19) that a.s. for all ¢ € [0, po],
0i(z) = 2O (1) € {M e} and pf(e) € {1, WY

Note that ¢° is constructed such that for all z,y € € as. ¢°(x) and ¢°(y) collide whenever they meet.

So a.s. for all t € [0, pol,
wi2) = 2 Mgy
c cr il
+ (@t(l)l{zeiﬁ(z)wfo(z)zl} + ¢ (6 )1{zeie(z)W70(2):eil}) 1{t>7—0(z)}a

By (18), the second claim of Proposition 8 (i) holds.

Proof of Proposition 8 (ii) We first prove the following statements: For all 0 < s < ¢, we have

(a) Conditionally to {s < pg,t < ps}, U;rt, Up.s» W are independent and U;rt (resp. U(Is) has for law

m™ (resp. m™).

(b) Let
g = sup{u € [0,t] : WX = 0}.
Then, conditionally to {g; < s < g;",s < po}, Uowa Up» W are independent and the law of UO—’,—t
(resp. Uy,) is m™ (resp. m™).
(c) Conditionally to {g; < g;",t < po}, U(ft, Up» W are independent.

(d) Conditionally to {t < po}, Uowa Uy» W are independent.

(a) Note that {s < po} € FY, {t < ps} € Fi'\ o and FV\ = FV VY, with FV ¢ FE, RV C
]:({(Jroo. Now (a) holds from Proposition 8 (i) and using the independence of X and FE, .

(b) By (a), it suffices to show that on A = {g; < s < g;", s < po} (which is a subset of {s < po,t <
Ps}), a.s. Uot = Uy, and UOJtt = U;rt. The first equality is clear since » — U, is constant on the
excursions of W~ on [0, p] and on A, s and ¢ belong to the same excursion of W~. Moreover, on A,

we have Z := (1) € {ein,e*in} and so P(-|A4) a.s.
TS(Z):inf{rZs:Wr—m[{S:O}:inf{rZssz:0}§g£".
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Clearly cpgst(Z)(Z) = <p§7TS(Z)(1) = 1 and therefore ¢§,.(Z) = 5, (1) for all r > 7,(Z) (using the
coalescence property of ¢° and the independence of increments). On A, 75(Z) < gtJr < t and by the
flow property of ¢, a.s.

Pi(1) = @5(y) = 5 (1)-
Using (18), we get P(-|A) a.s. UO—’,—t = U/,
(c) For all n > 0, let D,, = {2%, k € N} and D = UpenD,,. Define for 0 < u < v,

n(u,v) = inf{n € N: D,Nu,v[# 0} and f(u,v) = inf(Dy, (0 N]u, v]).
Then by writing

{o7 <gf t<poy =l <s<g' t<pos=Fflg .95}
seD

and using that f(g;,g;r)l{gt_ <gi} 18 o(W)-measurable, (c) easily holds from (b).

(d) By analogy with (c), conditionally to {g;” < g; ,* < po}, U(;ft, Uy, W are independent. Now (d)
holds after remarking that as. {t < po} = {g; < g;,t < po} U{g; < g; .t < po}-

Finally Proposition 8 (ii) holds for s = 0 and thus for all s using the stationarity of K.

Now the proof of Proposition 8 is completed. U

law

Proposition 9. We have K 2" K™ ™"

Proof. Like in Section 2.3, extending the probability space, we can construct a flow K’ such that
(K', W) has the same law as (K™ ™ | W). By Proposition 8, for all t > s, K o K¢, conditionally
to {ps > t}. Fort > 0and n > 1, let t? = £,j € [0,n] and define A,; = {t < per  } € flﬁilﬂ,

A, =N, A,;. Then by the independence of increments of K and K,

law

(Kogp, - Kin_ 1) = (K(’M?,--- 7Kt,271,t) on A,.

Recall that P(AS) — 0 as n — oo (see the proof of Proposition 4). Letting n — oo and using the flow

law

property for both K and K, we deduce that Ko; = K. O

law ¢

Remark 1. Let ¢ be the coalescing flow constructed in Section 2, then o = . As before this

remains to show that conditionally to {ps > t}, ws: is distributed as p5,. However the situation is

more easy here and we do not need the lemmas 6,7,8,9 and 10. For example
=1 —1 -
Msit = Mo (Dedt} — Het ,(De?—}
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is independent of o (|5 ,(1)],s < u < ps) conditionally to {ps >t} where | -| is the distance to 1 since
cp;,(l) is a Brownian motion on €. Following Proposition 9, we check that ¢ law ©°. In particular o°

solves (Ty).

4 Proof of Proposition 1

In this section, we use the same notations as in Section 2. For r > 0, we denote Woir simply by W;E.

For all a € R,b > 0 define

T, = inf{r > 0: W, = a} and ~ =inf{r >0: WE =b}.
We will further need the following
Lemma 11. For all a > 0,b > 0 and ¢ <0, we have P(T, <y, ANT.) > 0.

Proof. Fix n €]0, % A (—c)[ and let k > 1 such that kn > a. Now define the sequence of stopping times
(R;)i>o such that Ry = 0 and for i > 0,

Ri+1 = inf{r Z R@ : |Wr - WR7,| = 77}

Let A =N} {Wg, = Wg,_, +n}. Then on A, sup,<p, Wr = kn > a and for all i € [0,k — 1],u €
[Ri, Rit],
-

u

=supW, — W, = sup (Wy—W,) <2n<bh.

r<u R;<s<u

Moreover info<,<r, Wy > —n > c. Since A C {I, < 4, AT.} and P(A) = 5, this proves the

2k

lemma. O

Let a > 0. Since {1, < v, NT_4} C {T, < 75}, we deduce that P(T, < 7, ) > 0. Obviously
N < T,. Since W% —W, we have P(v} < 77) = P(y; < 4F) = 1. Remark also that

vE AN, =inf{r >0: W, +W,” =a}.

This shows that on {7} < v, }, we have Wyj = 0 and similarly on {v, <.}, we have W;C =0.

4.1 The case [ =T.

This is the more easy case.
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Lemma 12. With probability 1, for all z € €, we have

Pot(2)=—1, K" (2) =6

and

+ —
Y057 (z)=1, K(T%_’m (2) = or.

Proof. This lemma is a consequence of the facts that (<p0’ﬁ(1),thL;’m_(1)) = (—1,0_1) and that

+ m— . . . .
(gpo,ﬁ(—l),Kgf%’m (=1)) = (1,61). Let us just explain why ¢, +(1) = —1 implies ¢, _+(z) = —1
for all z € €. Fix z € ¥. To simplify, assume arg(z) € [0,7]. It holds that pg = v A v, and that
70(2) < po. Then 90,0 (2) = $0,p(—1) on the event {arg(2) + Wi(e) = 1} and g, (2) = @0, (1) on
the event {arg(z) + Wy .y = 0}. Now, if py = 7 < 7, , then Po.+ (1) = ¢y +(=1) = —1 (this thus
implies that ¢, _+(z) = —1). And if pg =7, < v, then g, (1) = ¢, - (=1) =1 (this thus implies
that ¢, -(z) =1). To conclude in this case, we use the flow property ¢, _+(2) = ¢ - _+(p, - (2)) =

¢, ,+(1). It remains to remark that ¢ - _+(1) = ¢, +(1) = —1. O
To prove Proposition 1, consider the sequences of stopping times given by S; = pt and for k > 1,

Ty = inf{u>S,: W , =},

Sk+1 - 1nf{uZTk Wiu:ﬂ'}

Then Lemma 12 implies that (Sk)g>1 (resp. (Tk)r>1) satisfies (1) (resp. (2)) of Proposition 1.

4.2 The case [ # 7.

The key argument to prove Proposition 1 in this case is to find some conditions on the path of W
under which the image of the whole circle by ¢ at some specific time is reduced to e.
We fix § > 0 such that 0 <-4 <!+ 6 < 7. For any (]—"&{)—ﬁni‘ce stopping time S and a € R
define
Tsq=inf{r > S: Wg, = a}

and

Vg5 = inf{r > S: Wg =4}
Let

As ={Ts2(x1) <756}
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The event Ag is the event "for all ¢ € [S,T59(r—y)] we have sup Wg < Wg, + 67, Setting T' =
s€[S,t]

T’ 2(x—1), this event can be represented by the following figure (Figure 2). On the event Ag, W; <0

W + 2(7w — 1)

W, + 461

sup W,

T YN
i

W

Ws

Figure 2: The path of W after S.

for all ¢ € [S,T] and Wsr = 27 — 2I. Thus on this event, we have pgr(e?) = pgr(e™") = ¢! and a

fortiori pg7(2) = e for any intermediate point z such that arg(z) € [I,2m — I]. In other words,
Ag C {gpg.(e_il) reaches e’ before 1 and before that g057.(eil) hits '(+9) or ei(l_‘s)}.

Note that Ag is independent of ]:g}fg and that P(Ag) > 0 and does not depend on S.

When S = inf{t > 0; WOJ; = [}, which is also the first time ¢ when
sup Wos — inf Wy =1
5€[0,d] s€[0,t]
Then at time S, we have arg(yo s(2)) € [l,2m — ] for all z € €. Applying the flow property, we see
that on Ag, por(2) = el for all z € €. Now the rest of the proof will only require an application of
the Borel-Cantelli Lemma. We give the details in the following.
Define the sequence (oy)r>0 of (.Fgf;)tzo—stopping times by o9 = 0 and for k > 0,041 = Tp,, 2(x-1)

(note that 2(7 — 1) = arg(e~") — arg(e)). Then set, for k > 0,

{ O'kp l}mAPo—k'

Note that the events {W, = [} and AP% are independent. The following proposition describes

Uk Poy,

what happens on Cj.
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Proposition 10. With probability 1, for all k > 0, on Ci, we have for all z € €,
(i) arg(Pay o, (2)) € [1,2m —1].

(it) If arg(z) € [I,2m — 1], then @,, o, ,(2) = el

(i) gookpk“(z) =etl,

(iv) 00,01, (2) = ¢l and K™m” (2) = it

0,041
Proof. We take k = 0 (the proof is similar for all k). Denote py simply by p and pfj by p™.
(i) Fix z € €. If 70(z) < p, then ¢o,(2) € {p0,(1),p0,(c)}. On Cy, we have Wy =1 and so
W, =0 (see the lines after Lemma 11). Consequently wo,p(e) = € and g ,(1) € {eil, e}

Suppose p < 19(2), then necessarily arg(z) €]l,2n[ and using that W, =1 + O<inf< W, we have
<u<p

po,0(2) = exp(i(arg(z) — Wy)) = exp(i(arg(z) — I — onf W)

Since p < 70(2), we have arg(z) — Osigfs;) W, < 2m and therefore arg(yo ,(2)) < 2m —[. It is also clear
that arg(yo,,(2)) > [ which proves the first statement.

(ii) Let z € € with arg(z) € [I,2m — []. Then ¢,.(e~) arrives to e before 1 and this happens at
time o1. Thus ¢,,.(2) reaches el before o1. Let n be the greatest integer such that p:}(: Pt <oy,
Then ¢,0,(2) = @15, (Z) where Z = @, n1(z). Clearly 7,n11(Z) = 7,(2) < 01. Therefore
Opor(2) = gopn+1701(e“). But =W, +2(r — 1) > W, for all u € [p,01] and so W, = 0. As
P> p, we get W i1 ,, = 0. That is Ppon (2) = €.

(iii) and (iv) are immediate from the flow property (Corollary 2) and (i), (ii). The result for K™ "

can be proved by following the same steps with minor modifications. O

Since for all k > 0, o, is an (.7-"(% )e>0-stopping time, the sequence (Cj)i>o is independent. We also
have P(Cy) = P(Cy) = P(Ag) x P(W,f = 1) for all k > 0. By Lemma 11, 37, P(Cx) = oo and the
Borel-Cantelli lemma yields P(limCy) = 1. We deduce that with probability 1,

00,0, (€) = el and Km+’m_ (¢) = d,a for infinitely many k.

0,0%

To deduce Proposition 1, we only need to extract from (oy)x a subsequence (o},) with the preceding

property satisfied for all k& and not just for infinitely many k. This is the subject of the following
Lemma 13. Let (ky)n>0 be the sequence of random integers defined by ko(w) = 0 and for n > 0,
kpt1(w) = inf{k > k,(w) : w € Ci}.
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Seto! = oy ,n>1. Then (0))n>1 is a sequence of (FIV, +>0-stopping times such that a.s. lim, o, o), =
n n n/n= 0,t/t= n

+00, o1 (€) =€ and Kén;,’m_ (€) = 0pu for all n > 1.
Proof. Remark that C), € .FXZH for all £ > 0. For all n > 1 and ¢ > 0, we have
{ok, <t} =Up>1{ox <t k, = k}.

It remains to prove that {k, = k} € FV

Ok41°

clear since {k; =1} = C; and for k > 2,

We will prove this by induction on n. For n = 1, this is

{ki=k}=C{n---NC{_; NC.
Suppose the result holds for n. Then for all k£ > 2,
{knt1 =k} = Ui ({kn =i} NCE N Ci_1 N C)
and the desired result holds for n + 1 using the induction hypothesis. O

We have proved Part (1) of Proposition 1 (for both ¢ and K™ ™). Part (2) can be deduced by

analogy.

5 The support of K™ (Proof of Proposition 2)

In this section plg and K™ ™ will be denoted simply by pF and K.

5.1 The case | = .

When m* and m~ are both different from %(50 + 61), a precise description of supp(Ko (1)) can be
given as follows. Recall the definitions of the sequences (Si)r>1 and (T%)r>1 from Section 4.1 and set

To = 0. Then for all k € N,t € [Tk, Sg+1],

iW —iW
Tk,t, e Tk,t}

supp(Ko+(1)) = {e
and for all k > 1,t € [Sk, Tk],
supp(Ko (1)) = {e' ™ Wsit) /T Wsp )y

In fact, for all s <,

Supp(KS,t(l)) = {eiXs’t7 e_iXs,t }’
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with X, being the unique reflecting Brownian motion on [0, 7] (see [1]) solution of

Xep =W+ L2, — LT, t>s,

s,t)

and
1 t
LY, = lim —/ Xy u—a|<eydu, ©=0,m.
S

If m™ =m™ =41, then K is a Wiener flow such that K (1) = £(6,ix,, + 0,-ix,,) for all s <t.
2

5.2 The case [ # 7.

From the definition of K, K ,(2) is carried by at most two points for all k > 0, t € [p", pET1] and

z € €. Using the flow property and the fact that limy_,. p* = 0o a.s., it is therefore clear that a.s.
Vt >0, z € ¢, Card supp Ko (z) < oo.

We assume in this section that m™* and m™ are both distinct from %(50 + 01) (for the other case, see
Remark 2 below).

Fix a decreasing positive sequence (ay)>1 such that oy < inf(l,2(w—1)). Now define A; = { WJpl =1}
and for k£ > 1,

Aoy = {Wp_ri—l p2k = [, ag < sup Wp2k—17u < iok—1}
’ p2h—1<y<p2k

= {Wp_%_l, g2k = [, =1+ ag, < Wp2k717p2k < —=l+ 042k71}7
A = (W} =1, —ag < inf w < -
2k+1 { p2k p2k+1 ) 2k 2k <y 2k 02k u 2k+1}

= {W;;hp%ﬂ =1, | — g < W prer <1 — agpyr}
We are going to prove the following
Proposition 11. Let Cy = and C, =N} A; for alln > 1. Then for all n >0,
(1) P(Cn) >0,
(it) Card supp (Ko (1)) =n+1 a.s. on C,,.

Moreover a.s. for all k > 0,
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(’i’i]} On Cgk,
supp (Ko 2 (1)) = {P?* 1 <i<2k+1},

with arg(P?*) < arg(P2F)) for alli € [1,2k],
P =1, P = 2l gpg PQQ,fH — Wk on)
(Note that arg(Piy, ;) < 21 — agy.)

(1i2) On Coyi1, we have
supp (K07p2k+1(1)) = (P21 1 <4 <2k 42},
with arg(PF1) < arg(Pﬁ“‘frl) for alli € [1,2k + 1],
PRl — il p2ktl AWz o) g Pglfjg —e
(Note that arg(PHF*) > 1+ agpys.)
To prove this proposition, let us first establish the following

Lemma 14. Fiz 0 < o < 8 <[ and define

E={W, =1 a< sup W, <p}
0<u<p
where p = inf{r > 0 :sup(W,", W) =1}. Then P(E) > 0.
Proof. Recall the definition of T, from the begining of Section 4. Consider the event
F ={T, < Ts_; < Tz} N{after Ts_;, W reaches o — [ before g — [ + a}.

Using the Markov property at time T3_;, we have P(F) > 0. Note that p can be expressed as

p=inf{t >0: sup W, — inf W, =1}

0<u<t O0<u<t
On F, we have Tg_; < p <T,_; and so a < sup W, < . Moreover, on F'

0<u<p

+ s _ _ _
W,y =W, ogifgtWU<ﬁ l+a—(a—1)<l.

In other words W,” = [ which proves the inclusion F' C E and allows to deduce the lemma.
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Proof of Proposition 11 (i) The sequence (A4;);>1 is independent and therefore we only need to
check that P(A4,,) > 0 for all n > 1. But this is immediate from Lemma 14 for n even. By replacing
W with —W, it is also immediate for n odd.

(ii) We denote the properties (iil) and (ii2) respectively by Paj and Pori1. Let prove all the (P;)i>o
by induction. First Py and Py are clearly satisfied since Ko (1) = 61 and supp Ko 1 (1) = {e’, e}
on C1. Suppose that all the P; hold for all 0 < i < 2k — 1 where k > 1. On Coq, szk_1,t(e_il) %0

for all t € [p?*~1, p?*] since for all ¢ €]p?*~1, p?¥], we have
—Wka—li < Wp_%_l,t <.
Moreover, on Cyy, we have

inf 20— W o2 o1 — Wan— =1—Woro2 ox1—Wyn1 o6 > L.
p2k—1<t<p2k( ph=2, p2k=1 p? 1,t) pk=2,p2k=1 p2k=1,p2

Thus for all t € [p**~1, p?¥], we have

Kp2k71 t(ngfl) = ez(zl_wp%_Q,p%_l_Wp%_l,t) 75 el

2k+1

so that Poi holds. Similarly, on Copyi, K p2k7,(€2il) cannot reach d,. before p since for all t €

[p?*, p?F ],

Wka,t < W;k,t <.

Moreover, on Cojy1,

sup (271' — - Wp2k—1 p2h — szk u) =27 — (Wp2k71 p2k T Wp% p2k+1) < 2m.
p2k <u<p2k+1 ' ' ’ ’

Thus, on Copy1, Kp2k,t(P22]f+1) # 01 for all t € [p?*, p? 1] and Popy1 easily holds.
Remark 2. When m™ #m~,m~ = %(50 +01), by considering
Eoyi 1 = Ay 1 and FE9 = A9y N {KPQi—17p2i(€il) =00} for i>1,
and then F,, = Mi<i<n By, we similarly show that supp(Kos(1)) may be sufficiently large with positive
probability.
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