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Tanaka’s equation on the circle and stochastic flows

March 18, 2012

HaTEM HAJRIM AND OLIVIER RAIMOND(?)

Laboratoire Modal’X, Université Paris Ouest Nanterre La Défense.

Abstract

We define a Tanaka’s equation on an oriented graph with two edges and two vertices. This
graph will be embedded in the unit circle. Extending this equation to flows of kernels, we show
that the laws of the flows of kernels K solution of Tanaka’s equation can be classified by pairs
of probability measures (m™,m™) on [0, 1], with mean 1/2. What happens at the first vertex is
governed by m™, and at the second by m™. For each vertex P, we construct a sequence of stopping
times along which the image of the whole circle by K is reduced to P. We also prove that the
supports of these flows contains a finite number of points, and that except for some particular cases

this number of points can be arbitrarily large.

1 Introduction and main results
Consider Tanaka’s equation
t
por) =2+ / sgn (s u(@))dWa, s<t,z€R, (1)
S

where (W})ier is a Brownian motion on R (that is (W;);>0 and (W_;)¢>0 are two independent standard
Brownian motions) and ¢ is a stochastic flow of mappings (see [6] for a precise definition). In [7],

Le Jan and Raimond have extended (1) to kernels: if K is a stochastic flow of kernels (see [6]) and
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W is a Brownian motion on R, then (K, W) is said to solve Tanaka’s equation if and only if for all

s<t,x €R, fe€CZR) (fis C? on R and f/, f” are bounded), a.s.

Koif () = fa) + / Ks,u(f’sgn)(x)quJr% / Ky of"(2)du. (2)

The main result of [7] is a one-to-one correspondence between probability measures m on [0, 1] with
mean 3 and laws of solutions to (2). Denote by P™, the law of the solution (K, W) associated to m.

Then
Ks,t(x) = 5ac-l—sgn(ac)VVs,t1{t§frs7gc} + (Us,t(;W:t + (1 - US,t)(SfWS‘ft)l{t>Ts,x}
where Wy = W, — W, W, =W, — inf W, =W, — inf W,,,

u€|s,t] u€ls,t]

Tox = inf{t > s Ws,t = —|$|}

and where Uy ; is independent of W, with law m. In particular, when m = 9 1 then Us; = % and K
is o(W)-measurable; this is also the unique o(W)-measurable solution of (2). For m = (5 + d1),
we recover the unique flow of mappings solving (1) which was firstly introduced in [9]. In [2], a
more general Tanaka’s equation has been defined on a graph related to Walsh’s Brownian motion. In
this work, we deal with another simple oriented graph with two edges and two vertices that will be
embedded in the unit circle € = {z € C: |z| = 1}.

A function f defined on ¥ is said to be derivable in zy € € if

F(s0) 1= 1im 4 20¢") = T (20)

h—0 h

exists. Let C%(%) be the space of all functions f defined on % having first and second continuous
derivatives f’ and f”. Let P(%) be the space of all probability measures on ¢ and (f,)nen be a
sequence of functions dense in {f € C(%),||f|lcc < 1}. We equip P(%) with the following distance d

and its associated Borel o-field:

d(ju, v) = <Z gn ( / Fadyt — / fndy>2>é with 1, € P(%). (3)

In the following, arg(z) € [0,2x] denotes the argument of z € C and in all the paper [ is a fixed

parameter in |0, 7|. Define for z € €,

6(2) = 1{(17"9(2:)6[0,”} - 1{arg(z)€]l,27r[}

and denote by %; (or simply by % since [ will not vary) the graph embedded in ¢ with two vertices
1 and e and two edges €T = {z € € : arg(z) €]0,1[} and €~ = € \ €T with orientation given by &

(see Figure 1 below).



Figure 1: The graph %.

Definition 1. On a probability space (2, A,P), let W be a Brownian motion on R and K be a
stochastic flow of kernels on €. We say that (K, W) solves Tanaka’s equation on € denoted (Ty) if
foralls <t,f € C*(€),x €€, as.

Kif(x) = f(z)+ / K u(ef')(z)dWy, + % / Ko f" (z)du. (4)

If (K, W) is a solution of (Ty) and K = 6, with ¢ a stochastic flow of mappings, we simply say that
(p, W) solves (T).

If (K, W) is a solution of (T%), then following Lemma 3.1 of [7], we have o(W) C o(K) (see Lemma
3 (ii) below). So we will simply say that K solves (Ty).

In this paper, given two probability measures on [0, 1], m™ and m~ with mean %, we construct a flow
K™ m™ golution of (Ti). Let (K+, K~, W) be such that given W, K* and K~ are independent and
(K*,4+W) has for law P The flows K+ and K~ provide the additional randomness when K™ M~
passes through 1 or e’. Away from these two points, K m¥,m> just follows W on ¢+ and —W on €.

We now state our first result.

Theorem 1. (1) Let m™ and m~ be two probability measures on [0,1] satisfying

/Oluer(du):/Olum_(du):%. (5)

There exists a stochastic flow of kernels (unique in law) K™ and a Brownian motion W on R

such that (K™ ™" W) solves (Tiy) and such that if W}, = Wy — inf W,,W,, = sup W, — W, and
’ t ’

u€ls,t] u€ls,t]

ps = inf{t > s, sup(W,,,W_,) =1},

s,t) s,t



then conditionally to {s <t < ps}, a.s.

m+,m_
Ks,t (1) = U::t(sexp(iW:t) + (1 - Us—’,—t)(sexp(—iW;Lt)’
mt,m™ /il _ — -
K&t (6 ) - Us,t(sexp(i(lJrW;t)) + (1 - U&t)éexp(i(lfW;t))

and conditionally to {s <t < ps}, (U;m Us,) is independent of W and has for law m*™ @m™ .

(2) For all K solution of (T), there exists a unique pair of probability measures (m™*,m™) satisfying

(5) such that K o gemtm=

The version (K™ W) of the solution of (T%) defined in Theorem 1 (1), and constructed in section

2, satisfies Proposition 1 and Proposition 2 below. For all —oco < s <t < 400, let

f‘?{:O'(Wuw, s<u<wv<t). (6)

S

Proposition 1. (1) There exists an increasing sequence (Sk)g>1 of (]:Sfé)tzo—stoppmg times such that

a.s. limy_ o0 Si, = +00 and Ké”;k’mi (2) = 6. for all z € € and all k > 1.
(2) There exists an increasing sequence (Ty)r>1 of (fo‘/g)tzo—stoppmg times such that a.s. limy_ o T} =

+o0 and Kgi;k’mi(z) =61 forall z € € and all k > 1.

The second proposition shows that the support of K m*,m” may contain an arbitrary large number

of points with positive probability (more informations can be found in Section 5).

Proposition 2. Asumme that m™ and m~ are both distinct from %(50 + 01). Then there exists a

sequence of events (Cp)n>0 and a sequence of (fg};)tzo—stoppmg times (0 )n>0 such that for alln >0,
(i) P(Cp) >0,

0,00

(ii) Card supp <Km+’m_(1)> =n+1as onC,.

We also mention that all the sequences of stopping times discussed in the previous two propositions
will be constructed independently of (m™,m™). They take values in {p,,n € N} where py = 0 and

pni1 = inf{t > p,, sup(W,' W, ) =1} for n > 0. Set, for z € ¥,

pPnst?
mt,m~
X,, = supp (Kom (z)>

where m™ and m™ are distinct from £ (69 +61). Then (X,,), is a strong Markov chain on E = Uy>1%™*.
Proposition 1 asserts that {1} and {¢*} are recurrent for this chain. Proposition 2 asserts that for all

n >0, both {1} and {e"} communicate with "*!. So one can deduce the following immediate



Corollary 1. For alln >0, €™ " is a recurrent set for X (i.e. a.s. ¥n >0, X € €™ for infinetly

many k).

The paper is organized as follows. In Section 2, we prove the first part of Theorem 1. The proof
of the second part will be the subject of Section 3. In Section 4, we prove Proposition 1. Section 5

gives some informations about the support of K m"m” and proves Proposition 2.

2 Construction of flows associated to (7%)

Fix two probability measures m™ and m™ on [0, 1] with mean %

2.1 Coupling flows associated with two Tanaka’s equations on R

In this section, we follow [7]. By Kolmogorov extension theorem, there exists a probability space
(92, A,P) on which one can construct a process (e Eqts St,USt,USt,W t)—oo<s<t<oo taking values in

{~1,1}2 x [0,1)2 x R such that (i), (ii), (iii) and (iv) are satisfied, where
(i) Wy =W, — W for all s <t and W is a Brownian motion on R.
(ii) Given W, (e}, U)s<t and (e, Us;)s<t are independent.
(iif) For fixed s < t, (¢X t Ui) is independent of W and
(2, US) "2 (ué(d) + (1 = w)d- (da))m™* (du).
In particular P(eit = 1|Uft) = Uft.
(iv) Define for all s <t
mj:t = inf{Wy;u € [s,t]}, mg, =sup{Wy;u € [s,1]}.

For all s < t and {(s;,t;);1 < i < n} with s; < t;, the law of (e= Esits UE ) knowing (e ;t o Usf,ti)lﬁiﬁn and
W is given by
(ud1(dz) + (1 — w)d_1 (dz))m™ (du)

when m= st & {mE, :1<i<n}and is given by

sltv

n
{mst mslt}
E 0+
=1 Sioti T st Card{Z m = s,t}



otherwise. Note that (i)-(iv) uniquely define the law of

(ef . UL es U, - ef UM, er U W)

s1,t17 7 81,017 T 81,617 7 s1,t1° 1= Snytn? T Snstn? TSnytn? 7 Sn,tn?

for all s; <t;,1<1i<n.

By construction, for all s < t,u < v, if P(m;t’t = miv) > 0, then

I[”(esjE =t Uft = Uifv]mf;t =mt )= 1. (7)

w2 U,V

For s <t,z € R, define
Téft(x) =inf{r > s: W,, = Flz|}
and set

(p;tt(x) = (z+£ Sgn(x)WS,t)l{tSTSi(x)} + ggl:,tWSj,:t]‘{t>Tsi({L')}7

Ké',ﬁt(l“) = 5:v:|:sgn(m)Ws,t1{t§7—§t(:v)} + (Usj,:t(swsﬁ + (1 - Usj,:t)(sfwsj’[t)l{t>q—si(x)}'
Recall the following

Theorem 2. [7] (i) (p*, W) and (o=, —W) solve Tanaka’s equation (1).
(i) (KT, W) and (K~,—W) solve Tanaka’s equation (2).

(7i1) For all x € R, all s <t and all bounded continuous function f, a.s.
K35 f (x) = Elf (p5(2)) K.

2.2 Modification of flows

For our later needs, we will construct modifications of ¢* and of K* which are measurable with

respect to (s,t,z,w). On a set of probability 1, define for all s < ¢, (sp,t,) = (M, %) and

n

~ 71N /1 + . +
(587“ USJ) = (lim sup €5t o LI SUD Usn,tn)'
n—o0 n—oo

Then, we have the following

Lemma 1. (i) For all s <t, a.s. Eift = Eit, Uft = U;Et.

(ii) Consider the random sets
9T ={(s,t) e R*; s < t, m;",t < min(Ws, Wy)},
92~ ={(s,t) e R% s < t, mgy > maz(Ws, Wy)}.

6



Then a.s. for all (s,t) and (u,v) in 9T,

m;tt m :>(st7Usit) quc)

( U/'U7
Proof. (i) By (7), a.s. for all s < t,u < v such that (s,t,u,v) € Q*, we have

+ + + + +
ms,t = mu,v = (6s,t’ Us,t) Uu )

(U'U’

Fix s < t. With probability 1, mf;t is attained in |s, ¢[ and thus a.s. there exists ng such that

+ _ £ - =
ms,t =m tn msnovtno

for all n > ny. (8)

Sn;s

Taking the limit, we get (€ st’Usit) = (et UE ) a.s. From (7) and (8), we also have that

Sng 7tn0 7 8ng ’tnO
(%,ta Us,ct) = (6jE U= ) a.s. and (i) is proved.

Sng 7tn0 77 Sng 7tn0

(ii) With probability 1, for all (s,t) and (u,v) in 2%, if m?;t = then 3ng : mE , =

u , U Snstn
mffmvn for all n > ng, which implies that
dng : (5§tn,tn’U§;,tn) = (eF iy 0m s Ui v,,) for all n. > ng
and thus that gfft u,v and that U, Sit =U, i O

We may now consider the following modifications of o and K* defined for all s < t,z € R by

For(@) = (zEsen(@)Ws)le by + EWailys 2y

)

Ks,:t(x) = 5x:|:sgn(a:)Ws,t1{t§frsi(x)} + (Us,t(SWs:":t + (1 - Usj,:t)(s—ws:":) {t>7‘s (z)}*

Then Theorem 2 holds also for g%, K= (because (i), (ii), (iii) and (iv) stated at the begining of Section
2.1 are satisfied by (£, U%, W)).

Lemma 2. (i) The mapping

(Sa t’ x’w) — (&;l:,t(x’w)’ Ks:l,:t(x’w))

is measurable from {(s,t,z,w),s <t,z € R,w € Q} into R x P(R).
(ii) For all s,t,x, a.s.
‘Psit(m) = &;t,t(x) and K;%t(x) = K:t(m)

Proof. (i) Clearly



is measurable. For all ¢ > s, we have

+ _ .
{7 (@) > 1} = {_inL Wi, +la| > 0)

which shows that (s,z,w) — 7. (2,w) is measurable and a fortiori (s,z,w) — 7, (z,w) is also

measurable. (ii) is a consequence of Lemma 1 (i). O

To simplify notations, throughout the rest of the paper, we will denote §§ft,

+ + + +
63,2&? Us,t’ st,t, Ks,t‘

7+ ~+ ot .
Us,ta st K&t simply by

2.3 The construction of K™ ™~

In this paragraph, we construct a stochastic flow of kernels K m™m” and a stochastic flow of mappings

¢ respectively from (K+, K~) and from (o™, ¢ 7). Let
ps = inf{r > s, Sup(W;;, Wg,) =1} (9)
We first define (¢s)s<i<p,. For t € [s, py], set
pse(1) = exp(iv],(0)),
pse(eh) = exp(i(l + ¢34(0)))
and for z € €\ {1,€e} and t € [s, p,], set
(ps,t(z) = ZeiE(Z)Ws’tl{tﬁTs(z)}
+ <(P57t(1)1{zei€(z)ws,7's(z):1} + wsvt(eil)l{zeie(z)ws"rs(Z):eil}) 1{t>TS(Z)}’

where

75(2) = inf{r > s, ze"@Wer =1 or ¢},

Note that on {7,(z) < ps}N{ze’Wers) = 1}, we have W:TS(Z) = 0 and consequently ¢, - ()(1) = 1.
Also, on {74(2) < ps} N {ZeiE(Z)Ws,Ts(z) = €'}, we have W;TS(Z) =0 and so 305773(2)(627) =¢l.

Since (s,w) — ps(w) and (s, z,w) — 75(2z,w) are measurabe, it follows from Lemma 2 that

(Sa i, 2, W) — st,t('z’ w)l{sﬁtﬁps (w)}

is measurable from {(s,t,z,w),s <t,z € €,w € Q} into €. Now we consider the sequence of stopping

times (p¥)>0 such that p = s and pF+! = ppr for k > 0.

S



Define for all s < ¢,

Poit = D Liphciaph ) Pk © Pkt i © 7 0 P
k>0

Then (s,t,z,w) — @s(2z,w) is measurable from {(s,t,2z,w),s < t,z € €,w € Q} into €. By the

same way, we define (Kﬁ+’m7)s§t§ps for t € [s, ps]
m*,m’
K&t (1) = USJ,rt(Sexp(iW;t) + (1 o Usft)(sexp(fiW;ft)’
m+,m* 7 — —
K5 (@) = Usbopiurwry) + (0= Usdepeawiy)
and for z € €\ {1,€e"} and t € [s, ps]

oo
Kﬁf " (Z) = 6zei6(z)ws,t1{t§7—5(z)}

+.m- +om= il
+ (K;n’t m (1)1{zei€(z)ws’75(z)=1} + K::; m (ez )1{Zei€(z)wsﬂ's(z):eil}> 1{t>7's(z)}'
Define now for all s <,

+om= + m= mT m~ -mtm=
K" o™ = E 1 e K0T K T KT T
st — {pk<t<pst}sps ph=lpk okt

Then (s,t,z,w) —> K$+’m_(z,w) is measurable from {(s,¢,2z,w),s <t,z € €,w € Q} into P(¥).

+ —
For every choice s1 < t1 < -+ < s, < tp, (gosi,ti,KgL’ti’m ) is J(ej;v,elzv, UJU, Upos W, 8i Su < v <
t;) measurable and these o-fields are independent for 1 < i < n by construction. This implies the
independence of the family {(cpsi,ti,Ker’m_), 1 <i < n}. Itis also clear that the laws of ¢4 and

Siyti

Kgff’mi only depend on ¢ — s.

2.4 The flow property for K™ " and o.
To prove the flow property for both ¢ and K mTm” e start by the following

Proposition 3. Let S, T be two finite (me,r)reR—stopping times such that S < T < pg. Then a.s.
for allu € [T, ps|,z € €, we have

Psu(2) = ¢1u 0 @s1(2)
and

KIm (2) = Ks’ﬁ;vm‘ K;’j:’m‘ (2).

)

Proof. Define

+ 4+ + + +
Q) = {weN:V(s1,t1),(s2,t2) €D Mgy 4y = Mgy 1y = €5y 4y = 5527152}
Qy = {we: m;TH < Wr < miTermJSr,SJrr <Ws<mgg,, for all r > 0}.

9



Then P(£2;) =1 (see Lemma 1 (ii)). It is also known that P(22) = 1 (see [4] page 94). We will prove
the proposition on the set of probability 1: Q = Q1 N Qs and we first prove the result for ¢. From now

on, we fix w € Q. Define

Epy = {(u,2):T <u<ps,u<7ts(2)},

Euy = {(u,2): T <7s5(2) <u<psh,
By = {(u,2) :75(2) <T <u < ps,u <7r(psr(2))}
By = {(u,2) :75(2) <T < 7r(psr(2)) <u<ps}t.

Then E(;) U Eiy U Eigy U By = [T, ps] X €. For all z € €, set Z = pg.r(z) and § = arg(2).
(i) Let (z,u) € E(;y. Then as T' < 75(2), we have 0 ¢ {0,1}, 7 = ze€EWs T and
(Z) = inf{r>T, 7€ Z)Wrr _ 1 or eil}
= inf{r>T, e (€W r+e(Z)Wrr) _ 1 op eil} — rg(2)
since €(z) = €(Z). Therefore u < 77(Z) and @1, 0 ps1(2) = Ze AW = zeicG@Wsu = g (2).

(ii) Let (z,u) € E(;). Then, we still have 77(Z) = 75(2) and ¢1.7,.(2)(Z2) = ©5,74(2)(2)-
Recall that
psu(2) = esu(V)ips . (=1} + @s,u(eil)1{%73(2)(2«):@}
and
eru(Z) = eru(Dpr . s (2)=1} + @T,u(eil)l{ng’TT(z)(Z):eil}-

Suppose for example ¢g . (.)(2) = ©7,r.(2)(Z) = 1, then wi 7)) = W

_ + +
. Sirs(z) = 0 and so WT,T = WS,r

(and a fortiori m;ﬂ, = mgr) for all r > 7p(Z)(= 75(2)). From the definition,
psu(2) = psu(l) = exp(ips ,(0)) and ru(Z) = pru(l) = exp(iv] ,(0)).

If W;{u = W;u = 0, then pg,(2) = pru(Z) = 1. Suppose that W;u = W;u > 0, then W,, > m;u

and W, > m}'u Since w € 9, we have
Wp > m;u and Wg > mj(,"u.

In other words, (T,u) and (S, u) are in 2% so that & = ef, and ¢1.4,(Z) = psu(2).
(iii) Let (z,u) € E(y;). Assume for example that ¢g . (.)(2) = 1, then Z = @g7(1) = 57 gince
T < pg and

pru(Z) = exp(i(pgr(0) +e(Z2)Wry))

= exp(i(E—SF,TW;T + e(Z)Wr)).

10



As T < u < 77(2), it follows that Z ¢ {1,e"} (if Z € {1,€"}, then 71(Z) = T), e(Z) = ¥, and
s0 o1u(Z) = Zexplicl 1 Wr,y) = explies (W, — mg 7). As Z # 1, we necessarily have W, > 0.
Thus if 6§T =1,

r(Z)=inf{r>T: W, — mg’T =0or I}

and if agT =—1,
mr(Z)=inf{r >T: W, — mgf’T =0or 27 —1[}.
Since u < 7r(Z), we have m:{u = quiT and p7,(Z) = exp(z’ej{TW;’u). On the other hand, since
u < pg,
wsu(z) = exp(igpg’u(O)) = exp(z’eg’uW;u).
But (5,7) € 2% (from W;T > 0), (S,u) € 2% (from v < 7p(Z) which entails that W;u > 0).

! can be done similarly.

Consequently €&, = €&, and s0 ¢1,4(Z) = @su(2). The case @g () (2) = €
(iv) Let (z,u) € E(;y). Assume for example that g - (.)(2) = 1 so that W;TS(Z) = 0. Consider the

vt
first case: 6§LT = 1. Then Z = ¢Vs.7 and

m(Z) =inf{r >T: W, — mjs’:T € {0,1}}.

U W,z — mgf’T =1, then u = 77(Z) = ps and ¢g.(2) = pru.(Z) = €.

U Wz — mg’,T =0, then @72 (Z) =1 and o1 (Z) = o1u(1).

Since ¢g 74(2)(2) = 1, we have ¢5.,(2) = ¢su(1). Moreover W;TT(Z) = W;TT(Z) = 0, which implies
Wi, =W, (since u > 77(2)).

Now, if u satisfies W;{u = W;u =0, then 71 ,(Z) = ¢s.(2) = 1. If not, m;u = m:{u and (T, u), (S,u)
are in 2. This implies e, = ¢4 and o1.,(2) = ps.u(2) exactly as in (ii).

Assume now that €§T = —1, then 77 (Z) satisfies W, () — m;zT = 0 (recall that 70(Z) < pg) and
eru(Z) = psu(z) as before.

The result for K™ ™ can be proved by replacing pgr(2) by eiW;vT in Eg;;) and E(;,. However, the

proof remains similar. O
Corollary 2. Let S < T be two finite (ffvoom)re]g—stoppmg times. Then, with probability 1, for all
u>T,z€%€, we have

psu(z) = ¢ru 0 PsT(2)

and

Kg:7m7 (Z) — Kg?;7m7 K;:b:,m7 (Z)

11



Proof. Fix k € N and define the family of (FV_ )rer-stopping times (T%)i>0 by T? = (T V pk) A pk+1
and T% = ppi—1 fori > 1. Asr — p, is increasing, we have pgﬂ <Ti < p]gﬂ"“ for all ¢ > 0. Applying

successively Proposition 3, we have a.s. for all z € ¥ and all i > 0,

k
osu(z) = Pt 4y © Prict i O+ © Prro k1 © Pk 70 © Pg ok k(2) for all u € [plt", T]

and

PSu(%) = i © P et i © 0 Prro 1 O Py 10 © Pg e (2) for all w € [T7, plg™ ).
On {ph < T < pkH} we have T = pi. for all i > 0 whence a.s. on {pf < T < pk+1} forall z € @
and all 7 > 0,

o i
psu(z) = Pl gy © izt i O O P kp1 O ps1(z) for all u € [pt", ph]

and
ik 1
Psu(z) =i 4 © Pyt i © 7O P h1 © ps1(2) for all u € [ph, pliti+1.

Now define the family (S%);>1 of (F/_ ,).cr-stopping times by S* = (T'V pk+1) A pr and ST = pg

—0o,T

for ¢ > 1. Then for all ¢ > 0, p?r < St < péﬁrl. Applying again successively Proposition 3, we get a.s.
for all z € € and all i > 0,

erul(psr(z) = Ppiu © Pgipi © 77O PS1pL © ¢r,51(psr(2)) for all u € [, S
and

Si-l—l z+1].

oru(esr(2)) = PSiH1 O Ppi, 41 O O PGl 41 O cpT751(<p5,T(z)) for all u € | oA

On {pf <T < pkH} we have S = p@“ for all i > 1 and consequently a.s. on {pf <T < pkﬂ} for

all z € € and all 1 > 0,
k 1
PLalPST(2)) = Py Pyt . O+ 0 Byt g © Py o (p5i2(2)) for all w € [, P+
and

QOT,u(QOS,T(Z)) = (Pplgﬂ'ﬂ (,0 plritl 0---0 (ppl§+1,p%p o <pT,p1§+1 ((pS,T(Z)) for all u € [pgﬂJrl, p?l].

We have thus shown that a.s. for all z € ¥ and all u > T,
1{pl§§T<p’§+1}SDT,u opsr(z) = 1{pl§§T<p1§+1}SDS,u(Z)-

By summing over k, we get that a.s. Vz € €,YVu > T, p7, 0 9s571(2) = ¢s.u(z). The flow property for

K™5m” holds by the same reasoning. U
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2.5 K™ can be obtained by filtering Y

For all —oco < s <t < 400, let

]:S({:’U_’WZU(U"' U~ Wu,v;sgugvgt)za(lﬁ' K, ,;s<u<wv<t).

w0 U0 w0 R,
Corollary 2 entails the following

Proposition 4. For all z € €, all s < t and all continuous function f, a.s.

K™ £(2) = B [ flpa@)FL .

)

Proof. Fix s <t,z € € and f € C(¥). Properties (ii) and (iii) of Section 2.1 imply that a.s.

mtm~ U~
KLU F sigp = B [FearFL Y [ Lacipy
Define

+ c—UT U~
f;t’e 7U 7U 7W :0'(6:t U:l:

u,v Fu,v

Wawss Su<v<t) =0y, Kiis <u<v<t).

u,v?

7U+7U_ 7W

+ —
If Z is a random variable independent of .7-"; o , then a.s.

mtm= U~
K" f(2) 1 s<i<py = B [f(@s,t(z))|fgt v Lis<t<psl - (10)

For n > 1 and i € [0,n], let ] = s+ (tfs)i,An,i = {t} <pp  }andforn >1let A, =N A, ;. Note

n
+ - UtU-

eT e, UT U W

]:s,t -

that A, ; € ]522/1 m and A, € ]:Svfi. Then since KT and ¢ are stochastic flows,
n et e, UT U~ W
Vici Fyn

n
i—17ti

. By Corollary 2, a.s.

+ - + m- + m-
K7 (2) = K™ - K (2)

and

@st(2) = @m_ 10 0psm(2).

n—1°

Recall that the o-fields <.7:fn+’5;{U+’U7’W are independent. Then, using (10), we get that a.s.

=170 >1§Z§n
+ + 77—
K™ f()1a, = B [f(gos,t(z)) FUSU ,w] "

and therefore a.s.

KI5 £(2) = B [foaseDIFS YW 1, + (K5 1) = B [FloaaIFL YY) 1.

13



To finish the proof, it remains to prove that P(A%) — 0 as n — oo. Write
LA < DOPUG) = DR >, —ti) =P (7> ).
1= 1=

Let p* =inf{r >0: Wojfr =1}. Then

P(A;) Sn(IP (FTS >p+> +IP<75_TS >,0>> = 2nP <t_TS >p+>.

We have p+ ‘% inf{r > 0:|W,|=1}. Let T} = inf{r > 0: W, = [}, then

“+o00 l _l2

c t—s
P(A7) < 4nP <T > Tl> =4dn ﬁs Norosi exp(g)dx

n

(see [4] page 80). By the change of variable v = nz, the right hand side converges to 0 as n — oo
which finishes the proof. O
2.6 The L? continuity

To conclude that K™ ™" and © are two stochastic flows, it remains to prove the following

Proposition 5. For allt >0, 6 € [0,27[ and f € C(¥), we have

lim E [(f(gpo,t(z)) — f(%’t(ew))ﬂ = lim E [(K&w f(z) = Koy f(ei9)>1 —0.

z—vel z—eif
Proof. By Jensen’s inequality and Proposition 4, it suffices to prove the result only for ¢ and by the
proof of Lemma 1.11 [6] (see also Lemma 1 [2]), this amounts to show that for all ¢ > 0,7 > 0 and
6 € [0,2n]:
lim, P (d(p0.4(2). 0.(e)) > ) =0. (11)

Fix n > 0,t > 0 and 6 € [0,2n[. For z € €, set

A, = {d(04(2), por(e”)) > n}.

For simplicity, we will write 7(z) and ¢ instead of 79(z) and g ;.

First case : @ = 0. For a €]0,1[, we have 7(e!®) = inf{t > 0: o+ W; =0 or I} and
P(Agie) < P(t < 7(e)) + P (Agix N {r(eim)(€2) = Lt 2 7(€)}) + Bl(pr(eimy () = ).
If t > 7(e™) and @T(eia)(eio‘) =1, then ¢;(e'®) = ¢;(1). Thus
P (Agio N {pr(eiy(€") = 1, > 7(e'*)}) = 0.

14



From lim, 04 7(€’¥) = 0 a.s. and
P(pr(eie) (") = ") = P(a + Wy(gia) = 1),

we get limg 04 P(Agio) = 0 and similarly, we can prove that lim,_, or)— P(Agie) = 0. Thus (11) holds
for 8 = 0 and by the same way for 0 = [.

Second case : 0 €]l,2n[. For all « €], 27[, we have
P(Ago) < P(Agio N {pr(ein)(€) = @y (eioy(€”) = 1})
+ P(Agia N {pr(ein) (€) = @paioy () = € }) + eqyg
where
€ad = P(Pr(eio) (€)= 1, 05(ei0) (€7) = 1) + P(py(eio () = €, 0,0y () = 1)
which converges to 0 as a — 6. Let us prove that

lim P(Ba) = 0 where Bo = Agia N {@,(eia)(€") = @0y (€”) = 1}.

a—6

For | < o < 0, write
P(Ba) = P(Bo N {t < 7(e")}) + P(Ba N {r(e”) <t <7(e")}) + P(Ba N {t = 7(c"*)}).
Since ¢.(e!) and .(e??) move parallely until one of them hits 1 or ¥, it is easy to see that

lim <P(Ba N{t <7(e)}) +P(By N {r(e?) < t < T(em)})) = 0.

a—0—

Now

P(Bo N{t > 7(e')}) = P(BaN{T(e") <t A prieioy}) + P(Ba N {py(eioy < 7() < t})

< P(Ba N{T(e") St A preioy}) + Plpreiny < 7(€")).

Obviously limg—g P(pr(cioy < 7(el)) = P(pr(einy < () = 0. Set Y = @T(eia)(em), then a.s. on
B N{7(e™) <t A Pr(eio)}, We have o (e') = @ (ei0).(Y) by Corollary 2 and 7.(.i0)(Y) = 7(ef) <
Pr(eivy- We recall that ¢ ioy (V) 1= @ a0y 5(1) for all s € [T (zi0y(Y), pr(eio)] and thus ¢ ey (V) =
Pr(eiv),s(1) forall s > 7 i0y (Y) (by the definition of ¢). This shows that a.s. on BaN{7(e!) <t A Pr(eit) }s
we have

d((pt(eig)a (Pt(eia)) = d((p’r(eie),t(l)a (,07.(62'9)7,5(1)) =0

15



Finally lim, ¢ P(B,) = 0 and by interchanging the roles of # and «, we have lim, 9+ P(B,) = 0.
Similarly

: ) ) 0\ __ ) i\ _ il —
lm P (Agie 0 {r(p)(€7) = r ey (69) = €}) = 0
so that (11) is satisfied for all 6 such that 6 €]l,2x[. By the same way, it is also satisfied for all
6 €]0,1]. O

2.7 The flows ¢ and K™ ™ solve (Ty)

In this paragraph we prove the following
Proposition 6. Both ¢ and K™ ™ solve (Ty).
Proof. First we check the result for ¢. For all ¢ > 1 and ¢t > 0 set

lgS| +1 2

S, = Sqr =Sy =+t

First step. Let S be a finite (]:g}_/)—stopping time. Then for all z € €, f € C%(¥), a.s. ¥t € [0, ps— 5],

flpss+i(2) = f(2) +/0 (f'e)(ps,54u(2))dWs 514 +%/o f(@s,54u(2))du.

We first prove this for z = 1 and first check that (¢} 54¢(0),t > 0) is a Brownian motion. Let ¢ > 0,
then a.s. (5,8 +t) € 21 and for ¢ large enough, we have (Sg, Sg) € 27 and mgmsq’t = mf g,

Lemma 1 (ii) implies that a.s. for ¢ large enough

+ .t
€55+t = €5,,8.¢

Thus a.s.
- — Tm ot
Ps,544(0) = I g . (0). (12)
Let 0 < t; < --- < t,, and take a family (f;)1<i<n of bounded continuous functions from R into R.
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Using the independence of increments and the stationarity of ¢+, we have

E H fz‘(‘Pgmsq’ti (O))]
i=1

Hfi(cpgsm(()))] = lim E

q—00
i=1

— qlL%OZE :ﬁfi(so—:;;l,hq1+ti(0))1{%gs<%}]

— lim S E @li fi((PJf:;rl,hqlthi(O))] P (ﬁ =8< %)
Y ﬁl fi((pgtiz(()))] P (ﬁ <5< M)
— lim E

q q
q—00 Hfl(spatt,—g(o))]
1=1 a

H fz‘(‘Pa—,ti (O))] :

Since gpaL, .(0) is a Brownian motion, the same holds for ¢{ ¢ +.(0). By Ito’s formula, we have for all

feC*E€) as. Vt >0,

(s}

= F

Flexplis s (0)) = F)+ [ Fexpliod s sO)des o0+ [ 1 expliogs, 0

Tanaka’s formula for local time yields a.s. Vt € [0, ps — 5],

t
6t 6,0(0)] = /0 sen(62 g (0)dpt 500 (0) + Lo

where L; is the local time in 0 of g0§5+.(0). Since |go§s+t(0)| = W;SH for all ¢, we have a.s.
vt € [0, ps — 5], t
| st s ), (0) = W

Since sgn(gpg’s+u(0)) = 6;5_% a.s., we get a.s. Vt € [0, ps — 5],

g 5:4(0) = /Ot ed5udWs st = /Ot €(@s.5+u(1))dWs, 5 1u-
Recall that ¢gg+(1) = #5540 for all ¢ € [0, ps — S], thus the first step holds for z = 1. The first
step is similarly satisfied for z = e and for all z € €'\ {1, ¢"} by distinguishing the cases t < 7¢(2) — S
and t > 7g9(2) — S.
Second step. Let S be a finite (.FOV’[_/)—stopping time, G = o(pou(2),2 € €,0 <u <t),t > 0. Then
(P, (S+uyrps (2); 2 € €, u > 0) is independent of Gs.
Clearly

U((PS,(SJru)/\pS (2)7 zZ € cg’u > 0) - U(@§7S+u(0)7u > 0) \ O’((P;SJFU(O),U > O)'
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Fix 0 < u; < -+ < uy, then as. (5,8 +uy),---,(S,S + u,) are in 2T N 2~. Take a family

{f1,91,- ", fn,gn} of bounded continuous functions from R into R and let A € Gg. By (12), we have
n n
B\ TT A5 0095 51, Vs | = Jimn 5| TL 05, ., ODi(65, 5., O)1a]
i=1 i=1

For ¢ large enough (% < up), we have

B\ TL 4,5, 0081065, 5., O)14]
=1

- Z E[Hfl <(p::q+lmql+uz(0)> 9i <(‘O’”“ M+Ui(0)> 1Am{%§5<mq+1}}

m>0 Li=1 ¢’
with AN{% <5 < mTH} € ngH C (o, (2), 0n0(2),2 € 6,0 <u <wv < mTH) Now using the
independence of increments and the stationarity of (¢™,¢ ™), the second step easily holds.
Third step. ¢ solves (Ty).
Denote ph simply by p*. For all k € N, a.s. u+— Pk (%) 18 continuous on [pF, pFH1] for all z € F.

Consequently for all z € ¢, a.s. u — pu(2) is continuous on [0, +oo[ and in particular, ¢g () is

G,» measurable. Now fix f € C?(€),t >0,z € € and define for all y € ¥,

tA(p*—p') )
Hin(y) = flep praenpr—o () — fy) — /0 (F'O) (Pt pr14u (Y)W 1 p1y

1 [tA*—p") Y
- 5/0 / (Sppl,pl-i—u(y))du'

Then a.s. y — H(y (y) is measurable from ¢ into R. Moreover H(y ) is (@1 (p14uynp2, u > 0) mea-
surable and H(;;(y) = 0 as. for all y € € by the first step. The second step yields H s (¢g ,1(2)) =0
a.s. and we may replace y by @ ,1(2) directly in the stochastic integral so that, using the flow property,

we get
tA(p*—p")
f(SDO,pl-i—t/\(pQ—pl)(Z)) = f(QDO,pl(Z)) +/0 (fle)(SDO,pl—l—u(Z))del,pl—I—u

1 [tNeP=pY) ,
7 AT

1

pL+tA(p2—pt) / PN (p*—pt) ,
- s+ | (Foto(Naw+ [ 7"(2o(2))du.

By induction, we have a.s. Vk € N,

PRAHA(pFTE—pF) )
F@opsinsi—p () =f@+A (F'O) (o (2))dWa

1 [PHtA(E T =pb)
5/ £ (Pou(2)du.

18



This implies that ¢ solves (Ti). The fact that K™ ™ solves (T ) is similar to Proposition 4.1 (ii)

in [7] using Proposition 4.

3 Flows solution of (7%)

O

From now on (K, W) is a solution of (Ty) defined on a probability space (2, A,P). Fix s € R,z € €,

then (K ¢(z))t>s can be modified such that, a.s. the mapping t — K ¢(2) is continuous from [s, +00|

into P(¥¢). We will always consider this modification for (K, +(2));>s for all fixed s and 2.

Lemma 3. (i) For all z € € and s € R, denote 74(z) = inf{r > s, 2’ GWsr =1 or ¢}, Then a.s.

Ks,t(z) == 6zei6(2)ws,t? lf S S t S TS(Z).

(i1) o(W) C o(K).

Proof. (i) We follow Lemma 3.1 [7]. Define
¢t ={2e% arg(z) €0,l[}, € =€ \EC".

For z € €, let
To=inf {t > 0: Ko4(2,4) >0} .

Let f € C?(%) such that f(y) = arg(y) if y € € By applying f in (Ty), we have for t < 7,
Kouf(2) = f(2) + Wi

and thus, for t < 75,
[éarg(y)K07t(z,dy) = arg(z) + W,.

By applying f2 in (Ti), we also have for ¢ < 7,
Kouf0) = £+ 2 [ [ ans)o e d)aiy +
Using (14), we obtain that for ¢ < 7,,
[g(arg(y) —arg(z) — Wt)2K07t(z, dy) = 0.

By continuity a.s.

KO,t(Z) = 5zei€(z)wt for all t € [0,7:;;]

19
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The fact that 79(2) = 7, easily follows.
(ii) Let (fu)n>1 be a sequence in C2(%) such that f,(z) — €(z) as n — oo for all z € €\ {1,¢e"}.
Applying f,, in (Ty), we get

t 1 t
| Koalef) @, = Kooful) = 2u0) = 5 [ Koufi(1)du
0 0

It is easy to check that fot Ko u(ef))(1)dW,, converges towards W; in L?*(P) as n — oo whence

1 t
Wi = lim <K07tfn(1) — fa(1) — 5/0 Kovufr’{(l)du> in L*(P)

which proves (ii). O

3.1 Unicity of the Wiener solution.

Our aim in this section is to prove that (T ) admits only one Wiener solution (i.e. such that o(W) C
o(K)). This solution is K™ ™ with m* =m~ =§ 1. For this, we will essentially follow the general
idea of [5]: the Wiener solution is unique because its Wiener chaos decomposition can be given (see
(15) and (16) below). Let p be semigroup of the standard Brownian motion on R. Then the semigroup

of the Brownian motion on 4 writes

Pi(e™ e = Zpt(m,y +2km), x,y € [0,27].
kEZ

For all f € CY(%), we easily check that P f € CY(%) and (P.f) = Pif'. Let Af = 1f", f € C*(%)

be the generator of P.

Proposition 7. Equation (Tiy) has at most one Wiener solution: If (K, W) is a solution such that
o(W) C o(K), thenVt >0, f € C®°(%) and all z € €,

Koif(2) = Pif(z ZJt"f ) in L*(P) (15)

where
Ji'f(z) = / Py (D(Psy—sy -+ D(Pt—snf)))(z)dW0751 ~dWo s, (16)
0<s1 <+ <8<t

no longer depends on K and Df(z) = e(z)f'(2).

Proof. Let (K, W) be a solution of (T) (not necessarily a Wiener flow). Our first aim is to establish

the following
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Lemma 4. Fiz f € C*°(¢) and z € €. Then

Kouf (=) = Pof(2 / Kou(D(Pruf))(2)dW,

Proof. Let f € C®(%),z € ¢ and denote Ky, simply by K;. Note that fot Ky(D(P—yf))(2)dW, is
well defined:

/ E[Ku(D(Pruf))(2)2du < /0 Pu(D(Pruf))?)(2)du < /0 (Pra f)'| 2o

and the right-hand side is smaller than ¢||f’||%,. Now

n—1

Kif(2) - Pf (2 / Ku(D(Puf ) (@AW = S (K e Py_ipesef — K By )(2)
p=0
(17+1)t — (p+1)t
_Z/,, D((Pi—u = P,_@sne) f Z% y D(P,_ @i f)(2)dWa.
For all p € {0,..,n — 1}, set fp, = P @inf€ C*°(¥) and so by replacing f by fp in (T ), we get
(p41)t (p+1)t
o Ku(D fpn)(2)dWy = K i fpn(2) — K%t fpn(2) — » Ku(Afpn)(z)du
" (p+1)t
— g fynle) = Kot fpn(2) = K (Afp)() = [ 7 (= Kat) (Afp)(2)do

r
Then we can write

t

Kif(2) = Bif(2) = | Ku(D(Puf))(2)dWy = A1(n) + As(n) + A3(n),

S—

where
n—1
Ai(n) = ZK% nf=P,_ (p+1>tf——APt (p+1>tf]()
p=0
n—1 (p+1)t
M) = =3 [ 7 KuD((Pos = By o) )WL
p=0" n "
n—1 (p+1)t
As(n) = [’t (Ky = Kpt)AP,_ giu f(2)du.
p=0""n "

Using || Ku9||oc < ||gl|so for g a bounded measurable function, we obtain

n—1 " . Pif_f
()] <3 PtW[P%f—f—gAf]H <n P%f—f—EAfH = t||= - Af
p=0 0 ) po -
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Since f € C°(%), this shows that A;(n) converges to 0 as n — oo. Note that Ay(n) is the sum of

orthogonal terms in L?(P). Consequently

(p+1)t 2

1Az (n)| 1325y = Z

D((Preu — P,y ) f)(2)dWV,
p=0 n

pt
n

L2(P)
By applying Jensen’s inequality, we arrive at

— (p+1)t

()l < 3 / PV2(2)du
p=0" n

IS
S

where Vy = (P_of) — (P. iin f) = Pieuf' — P, (psny f'. For all uw € [&, (p+1)t , we have
¢ (Dt ¢— et no

2 / 112
< NPsne_ f' = Il
n

o0

PV < Valle = ||P_ g (Piose_, f' = 1)

Consequently

— (p+1)t

t
As) By < S / 1Pini f = Fl2odu = n /0 1Buf = f|du,

p=

32

and one can deduce that As(n) tends to 0 as n — +oo in L?(P). Now

(17+1)t

= K ) AP, gin f(2)du

1A43(n)]| L2 (py < Z
L2(P)

Set hpn = AP, p+ne f. Then by € COO(%) for all p € [0,n — 1]. By the Cauchy-Schwarz inequality

S

(p+1)t

n—1
sl < VEQ - [ Bl = Ko )hyn(2)Pld
p=0

bt
n

E[(Ku = Ku)hpn(2))’] < ElKu (Kt Jhpn = hpn)*(2)]
< E[Ku (Kt by = 2hpn Ko hpn + 55 ,)(2)]
< Pu (Pseh2, = 2hpnPy thp+ 12, ) (2)
< NPy sthy = 2hpn Py pthpn + i s
< 2th7nHOOHPu—P—7fhp,n - hpmHoo + Hpu_%thz%,n - hzz;,nHoo-

Therefore |[Az(n)|[2@) < V(2C (n) + Cg(n))%, where

(p+1)t

Zuhp,nuoo L7 1Pt =yl

n
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and
n—1 .+t

i [
p=0""n

From [|hpnlleo < [|Af]loo and HPu_%thpvn = hpnlloe < HPU_%Af — Afllos, we get

n—1 (p+1)t

G <1147 Y. [,

t
1P AT = Afllodtu < 1Afll [ 1P5 AF = Afl]cds.
p=0""n

As Af € C®(%), C1(n) tends to 0 obviously. On the other hand, k2, € C*°(¢) and so

n—1 . n—1 . 2
1 1 n
Colm) = -3 :/ P21~ 2 s < = 3 :/ </ HAhf,,nHoodu> ds.
0 —Jo \Jo

Now we easily verify that hy,,, k. ,, k), are uniformly bounded with respect to n and 0 < p <n — 1.

) p7n7 p?n

As a result C2(n) tends to 0 as n — oo. This establishes Lemma 4. O

Assume that (K, W) is a Wiener solution of (T%) and for t > 0,f € C*°(%) and z € €, let
Koif(2) = Pof(2) + 0%, JPf(2) be the decomposition in Wiener chaos of Ko f(z) in L? sense. By

iterating the identity of Lemma 4, we see that for all n > 1, J f(z) is given by (16). O

Consequence: Let K" be the unique Wiener solution of (Ty). Since (W) C o(K), we can define
K* the stochastic flow obtained by filtering K with respect to o(W) (Lemma 3-2 (ii) in [6]). Then,
for all s <t and all z € €, a.s.

K54(2) = E[Ks4(2)|o(W))].

As a result, (K*, W) solves also (T) and by the last proposition, for all s <t and all z € €, a.s.

E[Ksu(2)|lo(W)] = Ky (2). (17)

3.2 Proof of Theorem 1 (2)

Using the flow property and the independence of the increments satisfied by K, it is easily seen that the
law of (Ko, ,- -+, Koy, ) for all (t1,--- ,t,) € (Ry)™ and therefore the law of K is uniquely determined
by the knowledge of the law of Ky, for all ¢ > 0. In the sequel, we will show the existence of two

law

probability measures m™* and m~ on [0, 1] with mean % such that for all ¢ > 0, K(T:’m_ = Ko which

will imply Part (2) of Theorem 1.
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3.2.1 A stochastic flow of mappings associated to K.

Let P" = E[Kgi’f] be the compatible family of Feller semigroups associated to K and let (P™),>1 be

the family of compatible Markov semigroups associated to (P"),>1 by Theorem 41 [6]. Then we have

Lemma 5. (P™°),>1 is a compatible family of Feller semigroups associated with a flow of mappings

C

©w-.

Proof. For each (x,y) € €2, let (XF,Y,”);>0 be the two point motion started at (z,y) associated with
P? constructed as in Section 2.6 [6] on an extension (2 x ', &,Q) of (2, .A,P) such that the law of
(X7, YY) given w € Qis Ko (z) ® Ko(y). Define

T%Y . =inf{t > 0: X7 =Y/}
By Theorem 4.1 [6], we only need to check that: for all £ > 0,e > 0 and x € ¥,
lim Q{T™Y >t} N{d(X}, V") > ey =0 (O).

Fix ¢ > 0 and € > 0.
First case z = 1. Recall that for all 0 <t < p (:= po),

1
ng(l) - 5(5eiwt+ + 567th+)'

This shows that Ky+(1) is supported on {eiwj,e*iwj} and so X} = e or e=iWi when t < p.
Moreover, if y ¢ {1,e"}, then X} = ye®*®Wt when 0 < ¢t < 7(y)(:= 70(y)) by Lemma 3 (i).
Let A= {T" >t} n{d(X},Y) > e} where y is close to 1 and y # 1. Write

QA)=QAN{t <7(y)}) + QAN {t>7(y)}).
Since 7(y) tends to 0 as y tends to 1, we have limy_,1 Q(A N {t < 7(y)}) = 0. Moreover
QAN{t > 7(y)}) < QB) + QXY = ).
where B = AN {t > 7(y), X! = 1}. Obviously

Q(B) <QBN{r(y) <p}) +Q(r(y) > p)

= XV

with limy_,1 Q(7(y) > p) = 0. On BN {7(y) < p}, we have Xi ()

W) =1 and thus 7' < 7(y).

As a result

QBN {r(y) <p}) <Qt <T" < 7(y)).
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Since the right-hand side converges to 0 as y — 1, (C) is satisfied for x = 1.

Second case z # 1. By analogy (C) is satisfied for x = ¢?. Let z ¢ {1,¢e!'} and y be close to ,
then X* and X¥ move parallely until one of the two processes reaches 1 or e say at time T. Since
P? is Feller, the strong Markov property at time 7" and the established result for = € {1, e“} allows
to deduce (C) for z. O

Consequence: By the proof of Theorem 4.2 [6], there exists a joint realization (K', K?) on a prob-
ability space (Q,A,I@’) where K' and K? are two stochastic flows of kernels satisfying K'! faw dpe,
K2'™ K and such that:

(i) Koilz,y) = K!i(x) @ K2,(y) is a stochastic flow of kernels on €2,
(ii) For all s <t,z € ¢, as. K2,(z) = E[K] ()| K?].

To simplify notations, we will denote (K, K?) by (dye, K). Recall that (i) and (ii) are also satisfied

by the pair (0, K™ M7 constructed in Section 2.3. Now (i) rewrites, for all s < ¢,z € €,
K(2) = E[(S(p;t(z)\l(] a.s. (18)

and using (17), we obtain, for all s <t,z € €,

with K" being the Wiener solution.

3.2.2 The law of K.

Recall the definitions of ¢ and ¢~ from (13) and set for all s < ¢,
Ul =Ko (1,67) and Uy, = K (", €7).
Proposition 8. Recall the definition of ps from (9).

(i) There exist two probability measures m™* and m~ on [0,1] with mean % such that for all s < t,
conditionally to {s < t < ps}, Usi,t is independent of W and has for law m™. Moreover, for all

seER,z€C, as. VtE [s,psl,

Ksi(2) = 0_iccows, Lp<r (2)}

+ <K37t(1)1{ze“(z)ws,fs(Z):1} + Ks,t(eil)1{Z6i6(2)WS’7—S(2):eil}) 1{t>TS(Z)}
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where

K&t(l) = U;,Lt(sexp(iW;Lt) + (1 - UsJ,rt)(Sexp(fiW:t)’
Ks,t(eil) = Usit(sexp(i(l+WSTt)) +(1- Usit)(SeXp(i(l*Ws_,t))'
(ii) For all s < t, conditionally to {ps > t}, U;,Lt, Ug, and W are independent.

The proof of (i) essentially follows [7] and will be deduced after establishing the lemmas 6,7,8,9 and
10 below.

For all —oo0 < s <t < +o0, define ]:SKJ = 0(Kyyp,s < u < v <t)and recall the definition of ]:Z’[;
from (6). When s = 0, we denote Ko,t,gpg,t,f(ﬁ,fgz,UOi’t simply by Kt,gof,ff(,]:y/,Uti We will
always consider the usual augmentations of these o-fields which include all P-negligible sets and are
right-continuous. For each each z € €, recall that ¢t — Kj(z) is continuous from [0, +oc[ into P(%).
Denote by P, the law of K.(z) which is a probability measure on C'(R,,P(%)), then since K.(z) is a

Feller process (see Lemma 2.2 [6]) the following strong Markov property holds

Lemma 6. Let 21,22 € € and T be a finite (F[X)i>o-stopping time. On {Kr(z1) = d.,}, the law of

Kri.(21) knowing FX is given by P.,.

Let
pt =inf{r >0: W, =1} and L = sup{r € [0,p"] : W, = 0}.

Thanks to (19), on the event {0 <t < pT}, a.s.
Eldsilo(W)] = 5 (™ + 7).
By the continuity of ¢°(1), this shows that a.s.
vt e [0,pt], @i(1) € (™, e WY, (20)

Let h € O(%) such that Vo € [~1,1], h(e"®) = |z|. Using (18), the fact that (W) C o(K) and the
continuity of t — K;(1), we have a.s. Vg € Cy(R),Vt € [0,p7],

Ki(g o h)(1) = g(W,").
Thus a.s. Vt € [0,pT], K;h(1) = W, and p* can be expressed as
pt =inf{t > 0: K;h(1) =1}. (21)
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Define the o-fields:
Fr— =0o(Xr,X is a bounded ]:OV’[_/ — previsible process),

Fr+ =o0(Xp, X is a bounded ]:g,[_/ — progressive process).

By Lemma 4.11 in [7], we have Fr+ = Fr_ (see also [3]). Let f : R — R be a bounded continuous

function and set
Xi = E[f(UN)]o(W)ljo<i<pty-

By (18), the process U™ is constant on the excursions of W out of 0 before p*.

Lemma 7. There exists an F"V -progressive version of X denoted Y that is constant on the excursions

of W out of 0 before p* and satisfies Y, = Y,+ a.s.

Proof. We closely follow Lemma 4.12 [7] and correct an error at the end of the proof there. By
induction, for all integers £ and n, define the sequence of stopping times Sy, , and T}, ,, by the relations:

To, =0 and for k > 1,

Sk = Inf{t > T 1, : W =2""},

Tem = inf{t > Sk, : W, =0}.

In the following U, will denote Ug;c . Forall t >0, on {t € [Skp, Tgnl,t < p*}, we have U =0t
as. Let Xy, := E[f(U;,)IW]ls, , <p+y- Since o(Ws, , wtS,.,.» > 0) is independent of ]:b{i _, we have

Xipn = E[f(Ukm)]]-"g;n]l{Sk .<p+} Which is ‘ngjn measurable. Set I, = Ukzﬂsk,mTk,n[ and define

Xin it € [Skn, Tkn| (for some k) and ¢t < pT,
XP = f(0) ifte1sn0,pt],

0 if t > pt.
Then X" is FW-progressive. For all ¢ > 0, set X; = limsup,_,., X}*. The process X is F"-
progressive and for all t > 0, X; = X; a.s. Indeed, fix ¢ > 0, then on {p™ > t}, choose ko and ng
such that ¢ € [Skyngs Thonol, then X;° = Xpg n,. For all n > ng, there exists an integer [, such that
t €[S, Tlnl. Thus X7 = X, = Xign, since Skyn, and S, , belong to the same excursion
interval of W™ containing also t. Now set Yy = f(0) and Y; = limsup,,_, . XHl for all ¢ > 0. Then Y’

is a modification of X which is F"-progressive and constant on the excursions of W+ out of 0 before

pT. Moreover Y, = Y,+ as. O
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We take for X this F"-progressive version. Then X+ = E[f (Upt)\a(W)] is Fr4+ measurable.
Lemma 8. E[X,|FL| = E[f(U;;)]

Proof. Let S be an F"-stopping time and dg = inf{t > S : W, = 0}. We have {S < L} = {ds < p*}
(up to some negligible set) and so {S < L} € fc‘g. Let H=dgAp" and K =inf{r > 0: Ky ,h(1) =
[}, then

E[X i Las<pry) = B (Ufiy i) {ds<pt i (1) =611
Note that on {dg < p*}, we have H + K = p* a.s. Applying Lemma 6 at time H and using (21), we
get

E[X,+ 1a,<py] = E[f (U ELag<pr ey (1)=513) = Ef(U))]P(ds < p*).

Since the o-field Fr_ is generated by the events {S < L} for all stopping time S (see [8] page 344),
the lemma holds. O

The previous lemma implies that Upt is independent of o(W) (Lemma 4.14 [7]) and the same
holds if we replace pT by inf{t > 0 : W;" = a} where 0 < a < I. For n such that 27" < [, define

inductively T(f », = 0 and for k > 1:

S,jn = inf{t > Tl;tl o I/VtJr =2""},

T, = mf{t> S W =0}

Set V,:n = U;:n. Then, we have the following

Lemma 9. For all ¢ > 1, conditionally to {S;, < p*}, an,--- ,Vihs Ware independent and
Vlen, e ,V;;Ln have the same law (which depends on n but no longer depends on q).

Proof. We prove the result by induction on q. For ¢ = 1, this has been justified. Suppose the result

holds for ¢ —1 and let (f;) be an approximation of € as in the proof of Lemma 3 (ii). For a fixed ¢t > 0,

: 1 ! " : 2
Wt evre,, = i (Ko, 500~ Kre, 5005 [ Kope | 0du) i 220)
On {S/, < p*}, we have K+ ) (1) = 61 and therefore,
’ q—1,n
1 t
: 1
Woeeort, = i (Ko 50 =500 =5 [ Ky 5] )

in L2(P(.[S}, < ph)). As27" <. {S}, <p'} = {Tq‘tl,,1 < p*} a.s. Choose a family {g1, -+, 94,9, h}

of bounded continuous functions on R. For any A € A, we will use the notation F4 to denote the
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expectation under P(-|A). Set A,, = {S;, < p*}. Using (22), an application of Lemma 6 at time

Tq+_ 1., Shows that

EAq,n

q
H gz(U;}n )g(Wt/\ch_l,n )h(WT;_M,HT;_M )]

i=1

~ Ea,. )| BB E [y, )]

q—1,n

q—1

H gi(U;r+ )Q(Wt/\T+
i=1 o

Since Ay—1,, C Agn, we have by the induction hypothesis

q—1

q—1
EAq,n Hgi(U;_Jr )Q(WmT+ ) = EAq—l,n [H gi(U;_Jr )
i=1 o i=1 o

q—1,n

Ea,., |:g(Wt/\Tq+_1,n )] ’

In conclusion

Ex

q,n

q
Hgi(U;; )g(WtAT+ )h(WT+ t+T " )]

- g—1,n g—1,n> g—1,n
i=1

q—1
= EAqfl,n [H gl(U;—‘f’ )
i=1 e
The last identity remains satisfied if we replace g(W, ATf_l,n)h(WTff_Lmt +Tq+—1,n) by a finite product
P ‘
[T gl(Wti/\thl’n)hz(WTjL

q—1,n’

Eagn [Q(Wt/\TJ_M)h(WT+ t+TF

q—1,n’ q—1,n

) £ aw )]

¢ +th1,n)' As a result, for all bounded continuous ¢ : C(R4,R) — R,

q—1

= EAq—l,n [H gl(U;‘F )
i=1 o

q

H gZ(U;:+n)g(W)

i=1

Ex

q,n

Eag iV E (U, )]
Iterating this relation, we get

EAq,n

In particular, for all i € [1,¢],

EAq,n [QZ(U;+

)| =8 [wwg )]

i,n 1,n

This completes the proof. ]
Let m;; be the law of V}’, and m™ be the law of Uj" under P(.|[p* > 1). Then, we have the

Lemma 10. The sequence (m;}),>1 converges weakly towards m™*. For all t > 0, under P(-|p™ > t),

U and W are independent and the law of U, is given by m™.
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Proof. For each bounded continuous function f: R — R,

k,n’

= Im > Lyt mr g ( / fdmy; >
k

= [1{0<t<p+}nllmm/fdmg]

E[f(Ut+)’W]1{0<t<p+} = nleréOZE[l{te[S+ len[}f(kan)lw] 1{0<1t<p+}
: .

Consequently
1
: + +
nlggo/fdmn = WE[f(Ut Mot >a]-
The left-hand side no longer depends on ¢, which completes the proof. ]

We define the measure m~ by analogy. Let p~ = inf{t > 0 : W, = [}, then for all ¢ > 0,
under P(-|p~ > t), U, and W are independent and the law of U, is m~. Recall the definition

po = inf(p*, p~). Then, for all ¢t > 0, the law of U;" (respectively U;") knowing {po > t} is given by

+

m™ (respectively m™).

Now take s = 0 and fix z € . Similarly to (20), we can deduce from (19) that a.s. for all ¢ € [0, po],
0i(x) = 26O (1) € {7 e} and pf(el) € {l T, WY

Note that ¢° is constructed such that for all z,y € € as. ¢°(x) and ¢°(y) collide whenever they meet.
So a.s. for all t € [0, pol,
i(z) = 2oy
il
+ (@5(1)1{26ie<z>wm<z>:1} + 5 (€’ )1{Zeie<z)wm<z>:eu}) Litsro(2)}s

By (18), the second claim of Proposition 8 (i) holds.

Proof of Proposition 8 (ii) We first prove the following statements: For all 0 < s < ¢, we have

(a) Conditionally to {s < pg,t < ps}, U;t, Up.s» W are independent and U;’t (resp. Uy ) has for law

m™ (resp. m™).

(b) Let
gfc = sup{u € [0,¢] : I/Vui =0}.

Then, conditionally to {g; < s < g;",s < po}, U(ft, Up+» W are independent and the law of U(ft

(vesp. Uy,) is m* (vesp. m™).
(c) Conditionally to {g; < g;",t < po}, U(ft, Up» W are independent.
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(d) Conditionally to {t < po}, Uowa Uys» W are independent.

(a) Note that {s < po} € FVV, {t < ps} € F¥\ o and FV\ = FV' v FYY,

Voo with FYV
FK ‘FOV,[/:{-OO C .7-"({( 0. Now (a) holds from Proposition 8 (i) and using the independence of FX and
FE, o
(b) By (a), it suffices to show that on A = {g; < s < g;7, 5 < po} (which is a subset of {s < po,t < ps}),
a.s. Uy, = U ; and Uo'f . =U ;t. The first equality is clear since r — U, is constant on the excursions
of W~ on [0,p] and on A, s and t belong to the same excursion of W~. Moreover, on A, we have

Z = ¢5(1) € {eiW;r,e_iW:} and so P(:|A) a.s.
TS(Z):inf{rzs:Wr—mafs:()}:inf{rzssz:0}§g;r.

Clearly @E,TS(Z)(Z) = <p§7TS(Z)(1) = 1 and therefore ¢§,.(Z) = 5, (1) for all r > 7,(Z) (using the
coalescence property of ¢¢ and the independence of increments). On A, 74(Z) < g <t and the flow
property of ¢°, yields a.s.

wi(1) = 5(y) = 5 (1)-
Using (18), we get P(-|A) a.s. Uoth = U:t.
(c) For all n > 0, let D, = {£, k € N} and D = U,enD,,. Define for 0 < u < v,

n(u,v) = inf{n € N: D Nju,v[# 0} and d(u,v) = inf(Dy(y,)Nu, v]).
Then by writing
{97 <gf t<poy=Jlor <s<g/ t<po,s=dlg g}

seD

and using that d(g; , g;") y I8 o(W)-measurable, we deduce (c) from (b).

Yor <ot
(d) By analogy with (c), conditionally to {g;” < g; ,t < po}, U(;tho_,tv W are independent. Now (d)
holds after remarking that as. {t < po} = {g; < g;,t < po} U{g < g, ,t < po}

We have proved (ii) of Proposition 8 for s = 0 which allows to deduce (ii) for all s using the stationarity

of K.

Now the proof of Proposition 8 is completed.

Proposition 9. We have K law prmtm=
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Proof. Like in Section 2.3, extending the probability space, we can construct a flow K’ such that
(K’,W) has the same law as (K™ ™ W). By Proposition 8, for all t > s, K, faw K¢, conditionally
to {ps > t}. Fort > 0and n > 1, let t? = £ i € [0,n] and define A,; = {t < per b € ]ﬂ,‘ﬁiptn,

A, =N Ay ;. Then by the independence of increments of K and K,

Koy, Kin

n—1°

l
t) < (K(I),t?’ e ’Kgg_l,t) on An

Recall that P(AS) — 0 as n — oo (see the proof of Proposition 4). Letting n — oo and using the flow

law

property for both K and K, we deduce that Ko; = K. O

Remark 1. Let ¢ be the coalescing flow constructed in Section 2. Then

e (23)
As before this remains to show that s, faw @5+ conditionally to {ps > t}. However the situation is
easier here and we don’t need the lemmas 6,7,8,9 and 10. For example

et = Lige ety = Lige, ()ee—)

is independent of o(|¢§ ,(1)],s < u < ps) conditionally to {ps >t} where |- | is the distance to 1 since
ap;_(l) is a Brownian motion on €. Following Proposition 9, it is easy to check (23). In particular

¢ solves (Ty).

4 Proof of Proposition 1

In this section, we will use the same notations as in Section 2. For r > 0, we denote WOj,:T‘ simply by
W:E. For all a € R define
Tp =inf{r > 0: W, = a}

and for all b > 0, define
pi =inf{r > 0: W =b}.

We will further need the following
Lemma 11. For all a > 0,b > 0 and ¢ <0, we have P(T, < p, NT,) > 0.

Proof. Fix n €]0,2 A (—c)[ and let k > 1 such that kn > a. Now define the sequence of stopping times
(R;)i>o such that Ry = 0 and for i > 0,

Ri+1 = inf{r > Ri : ‘WT — WRZ-‘ = ?7}.
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Let A = N {Wg, = Wg,_, +n}. Then on A, sup,cp, W, = kn > a and for all i € [0,k —1],u €
[Ri, Rit],
o

u

=supW, =W, = sup (Ws—W,) <2n<b.

r<u R;<s<u

Moreover info<,<pr, W, > —n > ¢. Since A C {T, < p, NT.} and P(A) = 2%, this proves the

lemma. O

Let a > 0. Since {T, < p, NT_,} C {Ts < p, }, we deduce that P(T, < p;) > 0. Obviously
pt <T,. Since W "W _1 | we have P(ps < pg) =P(p; < p}) = 1. Remark also that

pr A py =inf{r>0:W," + W, =a}.

This shows that on {p} < p, }, we have ijr = 0 and similarly on {p, < p}}, we have W:_ =0.

4.1 Thecasel=rn

The case [ = 7 is the easier one.

Lemma 12. With probability 1, for all z € €, we have

+ —
Gopt(2) = —1, K1 (2) =04

and

+ -
Popz(2) =1, Kgp#m (2) = b1

Proof. The proof is obvious since (¢, p;(l),KS”:;m_(l)) = (=1,0-1) and (¢, - (—1), Km+’m_(—1)) =
(1,61).

To prove Proposition 1, consider the sequences of stopping times given by S; = pt and for k > 1,

Ty = inf{u>S8:Wg , =},

Sk+1 = mf{uZTk : Wﬂ—j‘;u:ﬂ}

Then Lemma 12 implies that (Sk)g>1 (resp. (Tk)r>1) satisfies (1) (resp. (2)) of Proposition 1.
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4.2 The case |l #m

We fix § > 0 such that 0 <! -9 <1+ ¢ <. For any (fé/}{)—ﬁnite stopping time S and a € R define

Tsq=inf{r > 5: Ws, =a}

and
pgézil’lf{'r > S:WSTT :6}
Let
As = {Ts 21y <Inf(Ts -1, p56)}-
Note that
Ag = {‘PS,-(G_“) reaches €’ before 1 and before that @Sw(eil) arives in ¢'("**) or ei(l_é)}-
Define the sequence (0y)r>0 of (F¢%)i>0-stopping times by oo = 0 and for k > 0,041 = Tp,, 2(n—1)

(note that 2(7 — 1) = arg(e™") — arg(e)). Then set, for k > 0,

Cr={W;

kypo'k

=I}NA

pok °

Note that the events {W(j;w pop = [} and AP% are independent. The following proposition describes

what happens on Cj.

Proposition 10. With probability 1, for all k > 0, on C}, we have for all z € €,
(i) arg(Pay 00, (2)) € [1,2m = 1].

(it) If arg(z) € [I,2m — 1], then @,, o, (2) = el

(i) gookpk“(z) =etl,

(iv) 00,2 (2) = € and K3 ™ (2) = 0,a.

0,041

Proof. We take k = 0 (the proof is similar for all k). Denote pg simply by p and pfj by p".
(i) Fix z € €. If 70(2) < p, then ¢g ,(2) € {po.,(1), po,(e?)}. On Cy, we have W =landso W, =0
(see the lines after Lemma 11). Consequently ¢ ,(e') = e and g ,(1) € {e', e7}.

Suppose p < 19(z), then necessarily arg(z) €|/, 2n[ and using that W, =1+ O<i1r1f< W, we have
<u<p

@o,0(2) = exp(i(arg(z) — Wy)) = exp(i(arg(z) — I — ot W)
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Since p < 70(2), we have arg(z) — Osingp W, < 2m and therefore arg(yo ,(2)) < 2m — . It is also clear
that arg(yo ,(2)) > [ which proves the first statement.

(ii) Let 2 € € with arg(z) € [I,27 —I]. Then ¢,.(e~%) arrives to e before 1 and this happens at
time o1. Thus ¢,,.(z) reaches el before o1. Let n be the greatest integer such that p:}(: Pt <oy,
Then @0, (2) = @15, (Z) where Z = @, ni1(z). Clearly 7,n11(Z) = 7,(2) < 01. Therefore
Opor (2) = gopn+1701(e“). But =W, +2(r — 1) > W, for all u € [p,01] and so W, , = 0. As

P01

l

> pwe get W i1 ,, = 0. That is Ppo (2) = €.

p
(iii) and (iv) are immediate from the flow property (Corollary 2) and (i), (ii). The result for K™ ™"

can be proved by following the same steps with minor modifications. O

Since for all k > 0, o, is an (.7-"(% )t>0-stopping time, the sequence (C)r>0 is independent. We also
have P(Cy) = P(Cp) = P(Ag) x P(W,S = 1) for all k¥ > 0. By Lemma 11, >7, -, P(Cy) = oo and the
Borel-Cantelli lemma yields P(limCy) = 1. We deduce that with probability 1,

00,0, (€) = ¢ and Ké?:)c’m_ (€¢) = d,a for infintely many k.
Lemma 13. Let (ky)n>0 be the sequence of random integers defined by ko(w) =0 and for n > 0,
kpt1(w) = inf{k > k,(w) : w € Ci}.

Seto! = oy, ,n>1. Then (0))n>1 15 a sequence of (FIV,)i>o-stopping times such that a.s. lim,_,~ 0!, =
n n n/nz 0,t/t= n

+00, o, (€) = € and Kén;,’nf (€) = 0pu for alln > 1.
Proof. Remark that C), € .FXZH for all £ > 0. For all n > 1 and ¢t > 0, we have
{Ukn < t} = Ukzl{ak <tk,= k}

It remains to prove that {k, = k} € }';/I]:H. We will prove this by induction on n. For n = 1, this is
clear since {k; = 1} = C; and for k > 2,

{ki=k}=C{n---NC{_; NCy.
Suppose the result holds for n. Then for all £ > 2,
{knt1 =k} =Urcici1 ({kn =} N CEL N CFy N )

and the desired result holds for n + 1 using the induction hypothesis.
O

We have proved Part (1) of Proposition 1 (for both ¢ and K™ ™ ). Part (2) can be deduced by

analogy.
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5 The support of K (Proof of Proposition 2)

In this section p’é and K™ ™" will be denoted simply by p* and K.

5.1 Thecasel=mn

When m* and m™ are both different from %(50 + 61), a precise description of supp(Ko(1)) can be
given as follows. Recall the definitions of the sequences (Sj)r>1 and (T} )r>1 from Section 4.1 and set

To = 0. Then for all k € N,t € [T}, Sg+1],

W, —iW.
Tk,t, e Tk,t}

supp(Ko(1)) = {e
and for all k > 1,t € [Sk, Tk],
supp(Ko (1)) = {ei(WJrWs_k,t)’ ei(n—wgk,t)}.

In fact, for all s <,

supp(Ks(1)) = {eXot, emXou},

with X, being the unique reflecting Brownian motion on [0, 7] (see [1]) solution of

Xoy=Wes+ L), — LT, t>s,

st
and

1
L, = 8l_1>1(1)1+ 2—6/3 X, 0—a|<eydu, = =0,T.

If m* = m~ =41, then K is a Wiener flow such that K (1) = £(6,ix,, + 0,-ix,,) for all s <t.
2

5.2 The case [ # 7

From the definition of K, K ,(2) is carried by at most two points for all k > 0, t € [p*, pFT1] and

z € €. Using the flow property and the fact that limj,_,. p* = co a.s., it is therefore clear that a.s.
Vt >0, z €€, Card supp Ko (z) < oo.

We assume in this section that m*™ and m™ are both distinct from %(50 + 91) (for the other case, see

Remark 2 below).
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Fix a decreasing positive sequence (ay),>1 such that oy < inf(l,2(w—1)). Now define A; = { W0+p1 =1}

and for k > 1,

o = 1, o < sup Wp2k—17u < 042]6,1}
p2k—1§u§p2k

Ao = {WP_%_IJ’
= {Wp},c_l, ok = L=l +ag < Wk yor < =L+ agk1},
Aoy = {Wp—;k7p2k+1 =1, —ag, < p%giféfp%ﬂ Wk, < =01}
= {W;;hp%ﬂ =1, | — g < W prer <1 — gy}
We are going to prove the following
Proposition 11. Let Cy = and C, = N}_ A; for alln > 1. Then for all n > 0,
(i) P(Crn) >0,
(ii) Card supp (Ko pn(1)) =n+1 a.s. on Cy.
Moreover a.s. for all k > 0,
(ii1) On Coy,
supp (Ko px (1)) = {P7*,1 <i < 2k + 1},
with arg(P?*) < arg(P2F)) for alli € [1,2k],
P =1, P =% and Py, = e (I Wpak1 p2k)
(Note that arg(Pgy, ;) < 21 — agy.)
(1i2) On Coyy1, we have
supp (Ko jee1(1)) = (PP 1 < <2k + 2},
with arg(P*1) < arg(Pfffl) for all i € [1,2k + 1],

2k+1 _ il p2k+l _ i(21=W op okt1) 2k4+1 _ il
P =e", Py =e P2Ep and Py’ly =e "

(Note that arg(PH#1) > 1+ agpy1.)
To prove this proposition, let first establish the following

Lemma 14. Fiz 0 < o < § <l and define

E={W,=la< OingWu < B}

where p = inf{r > 0 : sup(W,", W) =1}. Then P(E) > 0.
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Proof. Recall the definition of T, from the begining of Section 4. Consider the event
F ={T, < Ts_; < Tz} N{after Tg_;, W reaches o — [ before g — [ + a}.
Using the Markov property at time T3_;, we have P(F) > 0. Note that p can be expressed as
=i >0: s — i =1[}.

p=inf{t >0 0;111}; Wy O%Iiltfgt W, =1}

On F, we have Tg_; < p <T,_; and so a < sup W, < . Moreover, on F'
0<u<p
+ s _ _ _
W, =W, ogzltfgtWU<ﬂ l+a—(a—1) <l

In other words W,” = [ which proves the inclusion F' C E and allows to deduce the lemma. ]

Proof of Proposition 11 (i) The sequence (A4;);>1 is independent and therefore we only need to
check that P(A4,,) > 0 for all n > 1. But this is immediate from Lemma 14 for n even. By replacing
W with —W, it is also immediate for n odd.

(ii) We denote the properties (iil) and (ii2) respectively by Py and Pog41. Let prove all the (P;)i>o0
by induction. First Py and Py are clearly satisfied since Ko (1) = 61 and supp Kg 1 (1) = {e’, e}
on (4. Suppose that all the P; hold for all 0 < ¢ < 2k — 1 where k > 1. On Cy, Kpgkﬂ,t(e*“) #+ 01

for all t € [p?*~1, p?*] since for all ¢ €]p?*~1, p?#], we have
_Wp2k—17t < Wp;’“*l,t <.
Moreover, on Cyy, we have

inf 21 - W 2k—2 2k—1 — W 2k—1 — l - W 2k—2 ,2k—1 — W 2k—1 2k > l
p2k71<t<p2k( P P P ,t) P P P P

Thus

Kp%_l t(ngfl) — el(ZZ_Wp2k—2’p2k—1_WPQk—l’t) £ el

for all t € [p?*~1, p?*] so that Py, holds. Similarly, on Cop 1, Kp2k7_(€2il) cannot reach &, before p?k+1

since for all ¢ €]p?*, p?F+1],
Wka,t < W;k,t <.

Moreover, on Coj, 1,

sup (271' -1 - Wp2k—1 p2k — Wp% u) =27 — (Wp2k71 p2k T szk p2k+1) < 2.
p2k <u<p2k+1 ’ ’ ’ ’

Thus, on Copy1, Kp2k,t(P22]f+1) # 01 for all t € [p?*, p? 1] and Pop 1 easily holds.
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Remark 2. When m™ #m~,m~ = %(50 +01), by considering

Egz;l == AQZ',l and EQZ' == AQZ‘ N {Kp2i717p2i (eil) == 61} fOT”i Z 1,

and then F,, = Mi<i<nE;, we similarly show that supp(Ko (1)) may be sufficiently large with positive

probability.
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