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Abstract

During emerging epidemics of infectious diseases, it is vital to have

up-to-date information on epidemic trends, such as incidence or health

care demand, because hospitals and intensive care units have limited

excess capacity. However, real-time tracking of epidemics is difficult,

because of the inherent delay between onset of symptoms or hospital-

izations, and reporting. We propose a robust algorithm to correct for

reporting delays, using the observed distribution of reporting delays.

We apply the algorithm to pandemic influenza A/H1N1 2009 hospital-

izations as reported in the Netherlands. We show that the proposed

algorithm is able to provide unbiased predictions of the actual number

of hospitalizations in real-time during the ascent and descent of the

epidemic. The real-time predictions of admissions are useful to adjust

planning in hospitals to avoid exceeding their capacity.

Introduction

A hallmark of influenza A pandemics is their unpredictability, not only with

respect to the timing of their occurrence but also with respect to their size,

duration, and severity. With the benefit of hindsight it is now clear that the

2009 pandemic influenza A/H1N1 has been relatively mild, both in terms of

the fraction of the population that has developed influenza-like illness, and
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the overall severity of the disease [1, 2, 3]. Nevertheless, demand for high

care hospital beds has been high compared to the available number of beds

[4, 5].

Excess high care hospital capacity is limited [6]. For instance, in the

Netherlands intensive care capacity is approximately 10 beds per 100,000

persons, of which less than 2 per 100,000 may be available to meet sudden

increases in demand [7]. It is therefore vital that trends of rapidly increas-

ing incidence and health care demand (especially hospitalizations requiring

intensive care) are noticed early so that there may be time to increase op-

erational capacity by strict triaging and by postponement of non-critical

operations [8].

Real-time tracking of hospital admissions during epidemics is difficult

because of the inherent delay in reporting of cases or hospital admissions.

Reasons for such delays include the time to complete diagnostic tests, lo-

gistics, and overwhelmed surveillance systems. A number of studies have

addressed the problem of reporting delay, and recently the term ‘nowcast-

ing’ has been coined for attempts to assess the current situation based on

imperfect information [9, 10, 11].

Here we propose an algorithm to correct for delays in reporting, and

infer the number of admissions from incoming reports. We have applied this
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nowcasting method to track the 2009 influenza A/H1N1 hospitalizations in

the Netherlands, using a complete set of dates of hospital admissions and

associated reporting delays. Now the pandemic has passed, we can assess

retrospectively the precision of our nowcasting estimates of the number of

hospital admissions during the pandemic.

Methods

surveillance system

From April 25 2009, both general practitioners and hospitals were required to

notify to the municipal health services patients with influenza like symptoms.

Laboratory tests were performed at the National Influenza Centre (repre-

sented by the National Institute for Public Health and the Environment,

RIVM, and the Erasmus Medical Centre), using RT-PCR. Anonymized data

about confirmed cases, including date of admission and travel history, was

entered into a web-based database by the municipal health services and col-

lected at the RIVM. On August 3 it was announced that the novel influenza

A/H1N1 would no longer be a notifiable disease, which stopped the regis-

tration of cases. From that day on, only hospitalized cases that fulfilled the

case definition [12] were reported by the hospitals to the municipal health
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services.

Reporting probability

We reconstructed the number of hospitalized patients on each day of the

epidemic. The reporting delay was measured as the difference between the

date of admission of a patient and the date of reporting. We observed the

reporting delays for all cases from June 5 to measure the distribution of

reporting delays. The cumulative frequency distribution of reporting delays

gives the probability of a case having been reported i days after the day of

onset of symptoms, ρi. The 95% reporting horizon is the delay where this

cumulative distribution surpasses 0.95.

Estimation of the actual number of cases

We set the current day as day 0. Our goal is to estimate the number of

admissions i days ago, Ni. We denote the number of admissions on that

day that have been reported up to the current day by Ci. We denote the

probability that an admission on that day has been reported before or during

that day by ρi. We are looking for the actual number of admissions i days

ago, Ni, given the number of reported cases for that day so far, Ci.
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We note that the number of observed cases is the product of the reporting

probability ρi and the actual number of cases Ni: Ci = ρiNi. Rearranging

gives an estimator for the actual number of cases

N̂i =
Ci

ρi
. (1)

Maximum likelihood estimator and 95% confidence interval

In order to construct a likelihood function for the actual number of cases we

assume that the number of observed cases follows a binomial distribution

that is defined by a number of Ni independent trials where the probability

of success is ρi. The probability of observing Ci cases is

P (Ci|Ni, ρi) =

(
Ni

Ci

)
ρCi

i (1 − ρi)Ni−Ci (2)

The corresponding likelihood function for Ni given the number of observed

cases Ci and probability of reporting ρi is, up to a constant, given by

L(Ni; Ci, ρi) =

(
Ni

Ci

)
(1 − ρi)Ni−Ci (3)

The value of the actual number of cases that maximizes the likelihood is

N̂i =
Ci

ρi
. (4)

This confirms that the straightforward estimator derived earlier is a maxi-

mum likelihood estimator.
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We construct a confidence interval by the profile likelihood method. We

accept values of Ni that have a likelihood ratio of λ = L(Ni)

L(N̂i)
in the acceptance

region specified by the likelihood ratio test with α = 0.05, that is −2 log λ ≤

χ2
1:0.05. This means that the confidence interval includes all values Ni that

have a likelihood higher than 1/6.8 of the maximum likelihood.

Results

Figure 1 summarizes the information on the daily number of hospitalizations

due to pandemic influenza A/H1N1 in the Netherlands. After a period from

July up to early October during which approximately 15 hospitalizations

were recorded per week, the number of hospitalizations started to increase

steeply in the second week of October (Figure 1A). The frequency distribu-

tion of the reporting delay and the associated cumulative delay distribution

are shown in Figure 1C and 1D, respectively. The delay distribution is

sharply peaked around 3 days, but also has a long tail that extends to more

than 25 days. 95% of all hospitalizations is reported within 14 days, hence

we call this the 95% reporting horizon. The mean reporting delay was vari-

able in the early stages of the epidemic (2-7 days) due to the small number

of hospitalizations (Figure 1B). Later on the delay first stabilized to 6-7

days in the period from early September until mid October, and then slowly
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decreased to 5 days over the period from mid October to December (Fig-

ure 1B). Hence, the daily number of reported admissions provides a poor

estimate of the actual number of admissions.

With the number of reported cases and the cumulative delay distribu-

tion at hand, it is possible to estimate the number of hospitalizations that

are still to be reported. Figure 2 shows for two specific dates the number

of hospitalizations that were recorded up to that day (top panels), the cu-

mulative delay distribution up to that day (middle panels), the expected

number of hospitalizations (bottom panel, black lines), and the number of

hospitalizations that were ultimately recorded (bottom panels, dark gray

lines). The bottom panel of Figure 2 also shows the likelihood support for

the estimates as confidence bounds (light grey shading). Both the increasing

and decreasing trends in the early and late stages of the epidemic are well

captured. Moreover, our method is even able to estimate the actual number

of cases with fair precision (Figure 3).

The number of hospital admissions was evenly distributed over all week-

days (∼300 per day), while the number of reports was high for working days

(∼400 per day) and low (∼0) in weekends (Figure 4A). The delay between

admission and reporting was highest for admissions on Thursday and Friday

(∼6 days), and lower during the other days of the week (4-5 days) (Figure
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4B). However, this difference in delays between weekdays did not greatly

affect our nowcasting estimates (Figure 5). Overall, our nowcasting esti-

mates were most precise on Wednesdays, while underestimating during the

beginning of the week and slightly overestimating at the end of the week.

Discussion

In emerging outbreaks, it is important to have up-to-date information on

the spread of the disease, and growth of the epidemic, because the number

of cases can increase dramatically in a matter of days. Hospitalizations, and

intensive care admissions in particular, should be tracked promptly, because

excess capacity is small most of the time. However, surveillance systems

suffer from delayed reporting of cases. This delay causes an apparent de-

crease in number of cases in the most recent part of the epidemic, and should

therefore be taken into consideration when interpreting epidemic curves.

We have shown how routinely collected surveillance data can be used to

obtain precise estimates of the actual number of hospitalized patients during

an outbreak. Despite considerable reporting delays, the estimates were close

to the actual numbers of daily hospitalized patients, up to 1 day before the

observation.

The estimator has a number of limitations that should be addressed.
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First, patients that are reported after a very long time have not yet been

included in the delay distribution. This truncation of data can be adjusted

for [13], but we believe that little additional precision can be obtained by

such more complicated analyses. Second, we assume that the distribution

of delays is at least approximately stationary. If there is evidence of signifi-

cant changes in the delay distribution over time, the different phases of the

epidemic should be analyzed separately to reduce bias in the estimation, at

the expense of a loss of precision. Third, the reporting delay will typically

differ between weekdays, because hospitalizations are generally not reported

during the weekends. If the difference between weekdays is large, the num-

ber that is still to be reported for each day of the week should be analyzed

separately. Again, this reduces bias at the expense of a loss of precision.

The application of the nowcasting algorithm to pandemic influenza A/H1N1

2009 hospitalizations in the Netherlands provides an example where the lim-

itations as described above, have been checked carefully. The scale of the

delay distribution is much shorter than the scale of the epidemic. The report-

ing delay differed between weekdays but not enough to cause a substantial

bias. Our analysis of the pandemic influenza A/H1N1 2009 hospitalizations

may have profited from the relatively long period between the first reported

cases and the start of the epidemic growth in the Netherlands. The Dutch
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hospitals and health services had ample time to prepare for the epidemic, and

diagnostic tests were available throughout the epidemic. These preparations

resulted in the relatively stable reporting delay distribution throughout the

epidemic. Whereas a shorter period, such as in the UK, USA or Australia,

could have overwhelmed the health services, causing larger fluctuations in

the reporting delay. This, in turn, could result in less precise estimations.

The method presented here enables estimation of the current number of

cases, and is not intended to predict the development of the epidemic. To

that end, real-time prediction models are available that use the numbers of

reported cases in combination with simple mathematical models to project

the trajectory of the epidemic [14, 15, 16]. These models usually assume

that cases are reported instantaneously, which is hardly ever the case in

practice. We believe that a two-pronged approach in which our nowcasting

estimator is used in conjunction with real-time prediction models could sub-

stantially improve prospects for the practical application of predicting the

future course of an epidemic.

Concluding, we combined surveillance data to estimate the number of

hospitalizations during the pandemic influenza A/H1N1 2009 outbreak, to

track the actual health care demand. The method reliably predicts both

increasing and decreasing trends in the number of hospitalizations. The
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nowcasting tool holds considerable promise for gauging actual number of

hospitalizations in the presence of reporting delays.
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Figure 1: Hospitalizations of confirmed pandemic influenza A/H1N1 cases
during the 2009 pandemic. A) Daily numbers of patients admitted between
July 13 and December 30. The peak of the hospitalizations is on November
12. B) The mean reporting delay over all cases up to the indicated date
of admission. C) The frequency distribution of the admission-to-reporting
delay. D) The normalized cumulative delay distribution. The dotted line
indicates the threshold level of 0.95 for the reporting horizon, the dashed
line indicates that after 14 days more than 95% of the hospitalizations has
been reported.

Figure 2: Correcting for the reporting delay on October 28 (left) and De-
cember 2 (right). Top panels) The reported number of patients admitted
to hospital with confirmed influenza A/H1N1 at each of the dates. Middle
panels) The probability of having been reported, as a function of admission
date. The dotted line shows the 95% threshold, used for the reporting hori-
zon (dashed line). Bottom panels) The estimated number of cases (black
line), including 1/6.8 likelihood support (light grey area) and 95% reporting
horizon (black dashed line). The dark grey line denotes the final number
of cases, reported until December 30. The initial number of cases shows
a decline on both dates, but the compensation shows that the number of
hospitalized patients is still increasing on the first date.

Figure 3: Accuracy of the estimates. A) Distribution of the difference be-
tween the estimated and actual number of admitted patients as a function
of the time between the admission and observation, measured as a moving
window over the entire epidemic. The solid black line shows the median,
the shaded areas show the total range, 95% of the data (between the 2.5%
and 97.5% percentile), and 75% of the data (between the 12.5% and 87.5%
percentile) B) The percentage of estimations where the actual number of
cases was below the lower or above the upper confidence bound.

Figure 4: Differences between weekdays. A) Total number of hospitaliza-
tions (dark grey) and incoming reports (light gray) by weekday. Only 8
reports were filed during the weekends. B) The mean (and 95%CI) report-
ing delay for each weekday. Delays are longest on Thursday and Friday, and
shortest on Sunday and Monday.
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Figure 5: Total difference between estimated and actual number of admitted
patients over the entire time period, excluding the day of observation (0 days
delay), and split up be weekday of observation. The results of the estimator
clearly shifts during the week, with the best estimations on Wednesday.
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