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Abstract

The disorder effects on the Curie temperature of ferromagnetic
and ferroelectric systems are studied by factorizing the spin-spin (or
dipole-dipole) interaction in a chemical (on-site) and structural (off-
site) part. Assuming the statistical independence of the two contri-
butions, the Curie temperature Tc is calculated in the limit of small
disorder and in the mean field approximation. The chemical dis-
order always enhances Tc. In the absence of spin waves (Ising-like
systems), the structural disorder enhances Tc in turn. The only neg-
ative contribution to Tc is found in Heisenberg-like systems, and is
ascribed to the interplay between structural disorder and spin waves.
A comparison is made with other mean-field theories, that adopt a
different representation of the disorder. The application of the re-
sults obtained to real systems is considered, with special reference
to recent experimental data on ferroelectric perovskytes. An ap-
proximated expression, consistent with the mean field approach, is
suggested to estimate the relative weight of the chemical and struc-
tural disorder effects, even when an exact factorization is impossible,
as it is the case of the exchange interactions.

PACS: 75.50.Lk; 75.30.Kz, 75.10.-b;
Key words: Curie temperature; Disorder effects; Mean field theory

e-mail: loris.ferrari@unibo.it telephone: ++39-051-2095109

1 Introduction

The modifications induced by disorder on ferromagnetic and ferroelectric
systems is a long standing question [1, 2] that continues to stimulate a very
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active field of investigations, both theoretical and experimental. From the
experimental viewpoint [3, 4, 5, 6], the reported data seem to escape from
any attempt to classify the disorder effects in a general and simple scheme.
The increase or decrease of the Curie temperature Tc, for instance, is still
an open question. Data referring to pure mechanical treatments (for exam-
ple, milling), tend to favor the decrease of Tc with increasing disorder [6].
This agrees, qualitatively, with earliest theoretical results [7]. In random
alloys, most of the measured data are concerned with the non monotonic
behavior of Tc, as a function of the average concentration of various mag-
netic or non magnetic components [8]. The disorder, resulting from the
random fluctuations about those average values, is especially studied in
connection to the changes of the magnetization [3, 4], while the effects on
Tc itself are usually neglected. For ferroelectrics, recent experimental data
and theoretical models [5, 9, 10] report about the increase of Tc with in-
creasing cationic disorder.
The earliest theories predict no disorder effects on the Tc of Ising-like sys-
tems [11], and a depression of Tc in Heisenberg-like systems [7]. More re-
cently, contrasting theoretical results have been reported for ferromagnetic
Anderson-Hubbard models, some pointing to an increase of Tc [12, 13], oth-
ers pointing to a decrease [14]. In the present work we study the simplest
possible case of a direct interaction between localized spins, i.e. a lattice {r}
of sites, each occupied by a spin sr, with interaction energy U (r, r′) srsr′ .
More elaborated dynamical models, involving the indirect coupling through
itinerant electrons [15, 16] and the Mott-Hubbard interaction [12, 13, 14],
are ignored in what follows. Though we speak about ”spins” for brevity, it
is intended that the present approach can be extended to electric dipoles
too.
The basic elements entering the spin interactions can be split into two main
classes: chemical and structural. The formers account for the on-site fea-
tures (atomic orbitals, local electric dipoles or magnetic moments, etc.),
while the latters account for the off-site feaures, typically the spin-spin
relative positions. In order to study their distinct disorder effects, we as-
sume a model interaction in which the chemical and structural features are
factorized:

U (r, r′) = −λrλr′J (r − r′) . (1)

The on site-parameters λr’s, with probability distribution Pλ, are sta-
tistically independent from the random positions {r}’s of the lattice sites.
Hence, the off-site couplings J (r − r′)’s are themselves random variables,
with a probability distribution PJ , independent from Pλ. We call ”average
crystal”, with Curie temperature T〈J,λ〉, the ordered system with interac-
tion energy 〈λrλr′〉〈J (r − r′)〉, where 〈· · · 〉 indicates the average over Pλ

2
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and/or PJ . In contrast, 〈〈· · · 〉〉 will indicate a mean value including the
thermal average too. Though T〈J,λ〉 does not refer, in general, to any real
crystal, it represents a convenient reference value, with respect to which
one studies the enhancement or depression of Tc with increasing chemical-
structural fluctuations. In view of studying the disorder effects to the lowest
significant order, we shall refer to the so called disordered crystal model,
i.e. a lattice {r} whose sites r = f + uf are slightly shifted with respect to
a reference crystalline lattice {f}, by a random displacement uf (|uf | <<
first nearest neighbor distance). Taking advantage of the one-to-one cor-
respondence between {r} and {f}, all the quantities can be expressed in
terms of the reference crystal lattice. In particular, the coupling J (r − r′)
reads, on setting ρff ′ = uf − uf ′ :

J (r − r′) = Jff ′ = J(f − f ′) +
∂J(f − f ′)

∂fα
ραff ′

+
1
2
∂2J(f − f ′)
∂fα∂fα′

ραff ′ρ
α′

ff ′ + · · · , (2)

to second order in the displacements, where α numerates the spatial
cartesian components and the summation over repeated indices is intended.
In this case, the structural disorder is described by the probability distri-
bution Pρ (ρ) of the random anti-symmetric variable ρf ′f = −ρff ′ .
In Sections 2 and 3 it will be shown that the random fluctuations always
enhance the Curie temperature, with the exception of the structural disor-
der in Heisenberg-like systems (see Table 1 for a qualitative summary). In
this case the overall effect on Tc turns out to be model-dependent. This is
due to the existence of a negative contribution [7], that is argued to reflect
the interplay between structural disorder and spin waves.

Tc Chemical Structural
Ising + +

Heisenberg + ± model-dependent

Table 1: Effects of disorder (chemical and structural) on Tc of Ising and

Heisenberg-like systems. + and − indicate enhancement and depression respec-

tively

In Section 4, the present results will be compared with those obtained
in ref.s [7, 11], in which the interaction energy U(r, r′) is assumed as an
overall random variable, without distinction between structural and chem-
ical disorder.
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In Section 5, the applications of the model interaction eq.n (1) to real sys-
tems are discussed. The model fits well with ferroelectric systems, since
λr, carrying the chemical disorder, can be related to the magnitude of the
on-site dipole, and the coupling function J(r − r′) is influenced only by
the structural disorder, through the relative position r − r′. Experimental
evidences supporting the results of Section 2 have been actually reported,
in the context of ferroelectrics perovskites [5, 9]. An alternative theory,
specific for ferroelectrics, has been already formulated [10], with results
quite consistent with those obtained in Section 2.
The application of eq.n (1) to ferromagnets with exchange interactions is
less immediate, due to the impossibility of an exact separation of chemical
and structural components, when those are nested in an exchange integral.
However, an approximate method is proposed for estimating the relative
weight of chemical and structural disorder in this case too.
It should be clear that eq.n (2) can be applied also to the thermal atomic
displacements in an otherwise perfect crystal. The resulting modification
of Tc will be calculated in Section 5.

2 Disorder effects on Ising-like systems

For Ising-like model we mean an array of N semi-classical spins sg, all
oriented along the z-axis, and ranging over a set Λ of discrete or continuous
values (for simplicity, we assume the same Λ for all the spins). In this static
approximation, the set of magnetic energies E depends on a N -component
vector s = sg1 , sg2 · · · , sgN . From eq.n (1) one has:

E (s) = −1
2

∑
g,f

′
λgλfsgsfJgf , (3)

where the prime in the sum means g 6= f . For ferromagnetic systems,
one can assume J > 0 and λg > 0. According to the MF approximation, the
energy E in eq.n (3) is replaced by a sum Emf = (1/2)

∑
g εg of single-site

energies [17, 18]:

εg (sg| ŝ) = −sgλg
∑
f 6=g

λf ŝfJgf , (4)

in which ŝf is the thermal mean value of the spin variable sf . The self
consistent equation, determining ŝg then reads:

ŝg =
∑
s∈Λ e−βεg(s| ŝ) s∑
s∈Λ e

−βεg(s| ŝ) = F

βλg∑
f 6=g

λf ŝfJgf

 . (5)

4
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If Λ (the array of the spin values) is symmetric with respect to zero,

i.e., each value of the spin is present with both signs, the function F in
eq.n (5) has the following properties [19]:

F (2n)(0) = 0 for each n ; Ḟ (0) > 0 ;
...
F (0) < 0 . (6)

One main point in eq.n (1), is the possibility of rescaling the sr’s and
defining new interacting variables Sr = λrsr. While studying the Sr’s
or the sr’s is perfectly equivalent, in an exact calculation, this is not the
case in a MF approach in which either 〈〈Sr〉〉 or 〈〈sr〉〉 are assumed site-
independent. In both cases, the approximation involved is neglecting the
statistical correlations between the interacting variables. In the latter case,
however, one neglects also the correlations between the sr’s and the λr′ ’s.
In fact, passing to the dressed spins Sg, equation (5) reads:

Ŝg = λgF

βλg∑
f 6=g

ŜfJgf

 = Φg
(
λg, Ŝ

)
. (7)

Equation (7) contains the on-site disorder only through the parameter
λg. Therefore Ŝg is statistically independent from the other λ’s, while ŝg is
not (eq.n (5)). This shows that the correct procedure is calculating 〈〈S〉〉,
then, possibly, expressing 〈〈s〉〉 as 〈λ−1〉〈〈S〉〉.
The quantity of interest is the joint probability distribution Pjoint

(
Ŝ
)

of the dressed spin values. Neglecting the correlations of the Ŝg’s means

assuming Pjoint

(
Ŝ
)

=
∏
g PS

(
Ŝg

)
. Setting xg = βŜg, the equation for

the probability distribution P (xg) becomes, from eq.n (7):

P (xg) =
∫

dPλ
∏
f 6=g

dxfP (xf ) dPρ (ρgf ) δ (βΦg − xg) , (8a)

where

Φg (λ, x) = λF

λ∑
f 6=g

xfJgf

 , (8b)

and dPλ = Pλdλ, dPρ = Pρdρ account for on-site and off-site disorder
respectively (recall eq.n (2)). The mean value 〈〈S〉〉 = κT 〈x〉 and the
standard deviation σS = κT

√
〈x2〉 − 〈x〉2 of the dressed spins follow from

the two coupled equations:

〈x〉 =
∫

dxP (x)x = β〈λF 〉 ; 〈x2〉 =
∫

dxP (x)x2 = β2〈λ2F 2〉 , (9)

5
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according to eq.ns (8). On setting:

〈ρ〉 = 0 , λ = 1 + ∆λ , x = 〈x〉+ ∆x (10a)

〈∆λ〉 = 〈∆x〉 = 0 (10b)

〈ρ2
α〉 = σ2

ρ , 〈∆λ2〉 = σ2
λ , 〈∆x2〉 = σ2

x , (10c)

one defines the fluctuations of the random variables about their mean
values and the corresponding square standard deviations. The first relation
(10a) means that the reference crystal and the average crystal coincide. The
second relation (10a) means that 〈λ〉 = 1, which can be assumed without
loss of generality (possibly on rescaling J). The first relation (10c) refers to
each of the cartesian components of ρ, that we assume to be independent
from one another and identically distributed. The system of equations (9) is
obtained by expanding the integrand in (8a) to the lowest significant order
in the fluctuations ∆x, ∆λ and ρ. This results in the following expressions:

〈x〉
β

= F (θ) + Ḟ (θ) 〈x〉
(
σ2
λJ0 + σ2

ρJ2

)
+

+
F̈ (θ)

2
[
〈x〉2σ2

λJ
2
0 + 〈x〉2σ2

ρw
2
1 + σ2

xJ
2
1

]
, (11a)

〈x2〉
β2

=
(
1 + σ2

λ

)
F 2 (θ) +

+ 2F (θ) 〈x〉
[
σ2
ρJ2F (θ) Ḟ (θ) + 2σ2

λF̈ (θ) J0

]
+

+
[
Ḟ 2 (θ) + F̈ (θ)F (θ)

] [
〈x〉2σ2

λJ
2
0 + 〈x〉2σ2

ρw
2
1 + σ2

xJ
2
1

]
(11b)

in which (recall eq.n (2)):

J0 =
∑
D 6=0

J(D) , J2
1 =

∑
D 6=0

J2(D) (12a)

J2 =
1
2

∑
D 6=0

∇2
DJ , J2

3 =
∑
D 6=0

(∇DJ)2 (12b)

are site-independent parameters, due to the sum over the reference crys-
tal sites, and

6
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θ = 〈x〉J0 . (12c)

In order to calculate the Curie temperature Tc, one looks for the solu-
tions of the equation system (11) by an appropriate expansion of the func-
tions F , Ḟ and F̈ in θ or 〈x〉 (eq.n (12c)), up to 〈x〉3. Recalling eq.ns (6),
one gets, for the non trivial solutions (〈x〉 6= 0):

〈x〉2 =
κT〈ρ,λ〉

A

[
1 + σ2

λ + σ2
ρJ2 − σ2

x

J2
1 |

...
F (0)|

2Ḟ (0)
− T

T〈ρ,λ〉

]
≥ 0 (13a)

and

σ2
x = 〈x2〉 − 〈x〉2 = 〈x〉2

4
[
σ2
λ + σ2

ρJ2/J0

]
+ σ2

ρJ
2
3/J

2
0(

T/T〈ρ,λ〉
)2 − J2

1/J
2
0

≥ 0 , (13b)

in which

κT〈ρ,λ〉 = Ḟ (0)J0 (14a)

defines the Curie temperature of the reference (or average) crystal, and

A =
|
...
F (0)|

6
J3

0

(
1 + 6σ2

λ + 3σ2
ρJ

2
3/J

2
0

)
(14b)

is a positive constant. On substituting eq.n (13b) in eq.n (13a), it is
immediately seen that 〈x〉 ∝

√
1− T/Tc for T < Tc, where

Tc = T〈ρ,λ〉
(
1 + σ2

λ + σ2
ρJ2

)
(15)

is the Curie temperature including the disordered effects to lowest or-
der. It is seen that Tc increases with increasing chemical disorder. If J2

(eq.n (12a)) is positive, which is the standard case, for J(D) positive and
decreasing with |D|, the structural disorder does enhance Tc in turn. It
is intended that equations (13) apply for T close to Tc, which is, in turn,
close to T〈ρ,λ〉. This ensures that σ2

x (eq.n (13b)) is positive. In fact J2
0/J

2
1

(eq.ns (12a)) is certainly larger than 1, since it represents an effective num-
ber of first nearest neighbors (the exact number, actually, if J is a constant,
coupling only the first nearest neighbors).
If one were to follow the same procedure adopted above, to calculate 〈〈s〉〉
according to eq.n (5), it is not difficult to see that the result would be
simply Tc = T〈ρ,λ〉

(
1 + σ2

ρJ2

)
, i.e. the absence of any chemical disorder

effect on the Curie temperature. In fact, in eq.n (5) the random variables
λ’s refer to different sites, so that all the bilinear terms ∆λg∆λf vanish in

7
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average. In contrast, Φg in eq.n (7) depends only on λg. This yields the
term

βḞ (θ) 〈x〉σ2
λJ0 (16)

(eq.n (11a)), that is responsible for the relative increment σ2
λ of the

Curie temperature in eq.n(15). As mentioned above, assuming 〈〈sg〉〉 site-
independent introduces an additional error with respect to the same as-
sumptions on 〈〈Sg〉〉. Setting xg = βŝg, an estimate of this error is given
by the correlation term

chg = 〈λhxg〉 − 〈λh〉〈xg〉 =

= −β
∫ ∏

f ′

dPλ (λf ′) ∆λh
∏
f 6=g

dP (xf ) dPρ (ρgf )×

× F

λg∑
f 6=g

λfxfJgf


(recall eq.n (5)). On expanding F to first order in the ∆λg,f ’s and in

the ρgf ’s, the preceding equation yields

chg = βσ2
λ〈x〉J(g − h)Ḟ (〈x〉J0) .

Recalling the definition (12c), the sum∑
h

chg = β〈x〉σ2
λJ0Ḟ (θ) (17)

gives the total error, that coincides exactly with the term eq.n (16).
Hence, the absence of chemical disorder effects in the Curie tempera-
ture Tc = T〈ρ,λ〉

(
1 + σ2

ρJ2

)
, calculated under the assumption 〈〈sf 〉〉 site-

independent, results from neglecting the statistical correlations between
the λh’s and the ŝg’s. This error is exactly compensated by the increase of
the Curie temperature, calculated for the dressed spins Sg = λgsg.

3 Disorder effects on Heisenberg-like systems

The simplest example of Heisenberg ferromagnet is an array of Pauli spins
~sl, interacting through the coupling energy eq.n (1). This leads to the
following Hamiltonian:

8
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H = −1

2

∑
l,h

′
Jlhλlλh~sl~sh = (18a)

=
1
2

∑
l,h

′
Jlhλlλh

[
nl − b†l bh − nlnh

]
, (18b)

in which, passing from (18a) to (18b), the spin components

sxg = bg + b†g , s
y
g = i

(
b†g − bg

)
, szg =

(
1− 2 b†gbg

)
(19)

have been expressed in terms of the creation-annihilation operators b†g,
bg. Those obey Bosonic and Fermionic commutation rules for f 6= g and
f = g, respectively [20]. In particular:[

bf , b
†
g

]
= δfg (1− 2 ng) , nf = bfb

†
f . (20)

Following the same procedure as in Section 2, we define the dressed
spins ~Sf = λf~sf and the corresponding operators B†f = λfb

†
f , Bf = λfbf

such that, from (20):

[
Bf , B

†
g

]
= δfg

(
λ2
f − 2Nf

)
, Szf =

(
λf − 2

Nf
λf

)
, Nf = BfB

†
f . (21)

The Hamiltonian (18a) then becomes:

H = 2
∑
l,h

′
Jlh

[
λl
λh
Nl −B†lBh −

NlNh
λlλh

]
. (22)

Following the seminal work of Zubarev [21] and the development by
Montgomery et al [7], one defines the time dependent two-site Green func-
tion Ggf (t− t′) = 〈Bg (t) ;B†f (t′)〉T , whith motion equation:

i
dGgf (t− t′)

dt
= δ (t− t′) 〈

[
Bg (t) , B†f (t)

]
〉T+

+ 〈[Bg(t), H] ;B†f (t′)〉T . (23)

Note that in the present section the thermal average is indicated as
〈· · · 〉T , instead of ·̂ · ·. On time-Fourier transforming

Ggf (t− t′) =
∫ ∞
−∞

dω e−iω(t−t′)Ĝgf (ω) ,

equation (23) can be put in the matricial form:

9
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δgf = 2π

∑
l

[{
ω

λgS
− 2

∑
h

Jhg

}
δlg + 2Jlg

]
Ĝlf (ω) (24)

under the following approximations:

〈Nl(t)Bg(t);B†f (t′)〉T = 〈Nl(t)〉T 〈Bg(t);B†f (t′)〉T (25a)

λg − 2〈Ng〉T /λg = 〈Szg 〉T = S independent from g . (25b)

Equation (25a) corresponds to decoupling the hierarchy of the higher
order Green functions to the lowest possible level. Equation (25b) is equiva-
lent to the assumption in Section 2 that the thermal averaged z-components
of the dressed spins are statistically independent. Equation (24) is equiva-
lent to eq.n (9a) of ref. [7], once noticed that λgS = λ2

g−2〈Ng〉T represents,
in terms of the dressed spins, the same quantity 1 − 2n̄ = σ used therein
(recall the second definition (21)).
The self consistent equation determining S follows from calculating the
mean value 〈〈Ng〉〉 =

(
〈λ2
g〉 − 〈λg〉〈Sz〉T

)
/2 and reads (see eq.n (8) in ref.

[7] and eq.ns (10)):

1 + σ2
λ − S
2

=
1
N

∫
dωTr

[
ImĜ (ω, S)

] (
eβω − 1

)−1
, (26)

N being the total number of spins, β = 1/κT and h̄ = 1. Ĝ (ω, S)
represents the matrix of elements Ĝgf (ω, S), whose ”imaginary” part is
defined as [21]:

ImĜ (ω, S) = limε→0+i
[
Ĝ (ω + iε, S)− Ĝ (ω − iε, S)

]
, (27)

in the sense of the distribution theory.
For simplicity, let us split the problem into two parts: on-site disorder
without off-site disorder and vice versa. The resulting Curie temperatures
will be indicated as T onc and T offc respectively. Due to the assumed re-
ciprocal independence and to the lowest-order approximation adopted, the
two effects can be simply summed up to yield the total effect on Tc. First,
we deal with the on-site disorder only. In this case, recalling eq.n (12a),
equation (32a) can be put in the form AĜ = I, where the matrix elements
of A read, on account of eq.ns (10a):
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nly
Agl =

A0
gl︷ ︸︸ ︷

2π
[{ω
S
− 2J0

}
δlg + 2J (l − g)

]
−

−2π
ω

S
δlg
(
∆λg −∆λ2

g + · · ·
)

︸ ︷︷ ︸
∆Agl

. (28a)

The ”unperturbed” matrix A0 is easily diagonalized on the basis of
eigenvectors |q〉 with g-representation 〈g | q〉 = ei(g q)/

√
N and eigenvalues:

a0(q) = 2π
[ω
S
− 2

(
J0 − Ĵ(q)

)]
; Ĵ(q) =

∑
f

J(f)ei(f q) . (28b)

The eigenvalue perturbation is easily found to first order, from the
definition (28a):

∆a1 = 〈q|∆A| q〉 = −2π
ω

S

[∑
g

∆λg
N
−
∑
g

∆λ2
g

N
+ · · ·

]
=

= 2π
ω

S

∑
g

∆λ2
g

N
+ · · · , (29)

in which the final expression is obtained from the central limit theorem
in the thermodynamic limit. Equation (29) shows that the perturbation is
quadratic in the ∆λ’s, which leads to include the second order perturba-
tion too, for self consistency. We anticipate that this does not change the
final result, though the proof is a little bit complicated. The second order
perturbation reads, in fact:

∆a2 =
∑
q′ 6=q

〈q|∆A| q′〉〈q′|∆A| q〉
a0(q)− a0(q′)

=

= 2π
ω2

S2N 2

∑
g,g′

∆λg∆λg′
∑
q′ 6=q

ei(q−q
′)(g′−g)

2
[
Ĵ(q′)− Ĵ(q)

] . (30)

Following ref. [7], we take the average 〈a(q)〉, that reads, from eq.ns (29)
and (30):

〈a(q)〉 = a0(q) + 2πσ2
λ

[
ω

S
+
(ω
S

)2

∆2(q)
]
, (31a)
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with:

∆2(q) =
1

2N
∑
q′ 6=q

[
Ĵ(q′)− Ĵ(q)

]−1

, (31b)

At the lowest significant order one sets A =
∑
q | q ; 1〉〈1; q |/〈a(q)〉,

where | q ; 1〉 is the first-order perturbed eigenvector (not explicitly written
here, for brevity). Hence the Green function turns out to be:

Ĝ = A−1 =
1

2π (1 + σ2
λ)

∑
q

| q ; 1〉〈1; q |[
ω/S − j0(q) + (ω/S)2 ∆2(q)

] =

=
1

2π (1 + σ2
λ)

∑
q

| q ; 1〉〈1; q |
[ω/S − j0(q)] [ω/S − x−(q)] ∆2(q)

(32a)

with

j0(q) = 2
J0 − Ĵ(q)

1 + σ2
λ

, x−(q) = −1 + j0∆2(q)
∆2(q)

. (32b)

The lower line in eq.n (32a) is obtained by expressing 〈a〉 (the denom-
inator of the upper line) in terms of its zeroes x+ = j0 and x− (second
eq.n (32b)), calculated to the lowest order in ∆2.
Having expressed Ĝ as a sum of (double) first order poles in ω/S, equa-
tion (27) readily yields

Tr
[
ImĜ

]
=

1
(1 + σ2

λ)

∑
q

[
δ (ω/S − j0)
1 + 2j0∆2

+
δ (ω/S − x−)
(x− − j0) ∆2

]
q

. (33)

Substituting (33) in eq.n (26), one gets:

1 + σ2
λ − S
2

=
S

N (1 + σ2
λ)

∑
q

{
1[

eβS j0(q) − 1
]

[1 + 2j0(q)]
+

+
1

∆2(q)
[
eβS x−(q) − 1

]
[x−(q)− j0(q)]

}
, (34)

whose limit S → 0 gives the equation for T onc . From eq.ns (32b), and
expanding all terms to the lowest order in ∆2, equation (34) yields:
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1 + σ2

λ

2
=

κT onc
N (1 + σ2

λ)

∑
q

[
1

j0(q)
−∆2(q)

]
=

=
κT onc

N (1 + σ2
λ)

∑
q

1
j0(q)

, (35)

since
∑
q ∆2(q) = 0 for symmetry (eq.n (31b)). As anticipated above,

the second-order perturbation term ∆2 has no influence on the final result
eq.n (35). In the absence of on-site disorder, equations (35) and (32b) yield:

T−1
〈ρ,λ〉 =

κ

N
∑
q

[
J0 − Ĵ(q)

]−1

(36)

for the Curie temperature of the average crystal. Then equations (35)
and (36) show that the on-site disorder leads to the same increasing factor
T onc /T〈ρ,λ〉 = 1+σ2

λ for the Curie temperature of a Heisenberg ferromagnet,
as for the semi-classical, Ising-like model.
The effects of the pure off-site disorder can be studied with the same pro-
cedure adopted above. The matrix elements Agh now read:

Agh = A0
gh − 4π

[
δgh
∑
l

∂J(g − l)
∂gα

ραgl −
∂J(g − h)

∂gα
ραgh

]
−

− 2π

[
δgh
∑
l

∂2J(g − l)
∂gα∂gα′

ραglρ
α′

gl −
∂2J(g − h)
∂gα∂gα′

ραghρ
α′

gh

]
, (37)

where the unperturbed matrix elementsA0
gh are the same as in eq.n (28a)

and the sum over repeated α-indices is intended. The first order correction
to the unperturbed eigenvalue a0(q) (eq.n (28b)) is

∆a1(q) =
1
N
∑
gh

eiq(h−g)〈Agh −A0
gh︸ ︷︷ ︸

∆Agh

〉 = −4πσ2
ρ

[
J2 − Ĵ2(q)

]
, (38a)

where

Ĵ2(q) =
1
2

∑
f

∇2
DJ(D)eiq D , J2 = Ĵ2(0) . (38b)

The second order correction is:
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∆a2(q) =

1
N 2

∑
q′ 6=q

∑
g,h,g′h′

eiq(h
′−g)+iq′(h−g′)

a0(q)− a0(q′)
〈∆Agh∆Ag′h′〉

From eq.n (37) and from the relation 〈ραghρα
′

g′h′〉 = σ2
ρδαα′ (δgg′δhh′ − δgh′δhg′),

one gets:

∆a2(q) =
32π2σ2

ρ

N
∑
q′ 6=q

c(q,q′)︷ ︸︸ ︷
J2

3 + Ĵ2
3 (q + q′)− Ĵ2

3 (q)− Ĵ2
3 (q′)

a0(q)− a0(q′)
, (39a)

with

Ĵ2
3 (q) =

∑
D

[∇DJ(D)]2 eiq D , J2
3 = Ĵ2

3 (0) . (39b)

The time-transformed Green function

Ĝ =
∑
q

|q ; 1〉〈1; q|
a0(q) + ∆a1(q) + ∆a2(q)

is now expressed as a sum of single poles in ω/s. The equation for Tc
readily follows from eq.ns (38), (39) and (28b). At the lowest order in σ2

ρ

one finally gets:

T offc = T〈ρ,λ〉
[
1 + σ2

ρ (C+ − C−)
]
, (40a)

with the two constants C± given by:

C+ =
1∑

q

[
J0 − Ĵ(q)

]−1

∑
q

[
J2 − Ĵ2(q)

]
[
J0 − Ĵ(q)

]2 , (40b)

C− =
1

N
∑
q

[
J0 − Ĵ(q)

]−1

∑
q,q′

′ c(q, q
′)
[
2J0 − Ĵ(q)− Ĵ(q′)

]
[
J0 − Ĵ(q)

]2 [
J0 − Ĵ(q′)

]2 . (40c)

The positivity of the two terms C± is not ”universal”. However, from
the definition of c(q, q′) in eq.n (39a), it follows that C± > 0 if Ĵ(q) and
Ĵ2

3 (q) are positive and decreasing with increasing argument, which is the
standard case in the ferromagnetic regime. In conclusion, the Curie temper-
ature of a Heisenberg ferromagnet, including both chemical and structural
disorder, turns out to be:
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Tc = T〈ρ,λ〉

[
1 + σ2

λ + σ2
ρ (C+ − C−)

]
, (41)

to the lowest significant order in the random fluctuations. The overall
sign of C+−C− depends on the coupling function J(r−r′) in a complicated
way, and cannot be determined by simple arguments. For Heisenberg-like
systems, the enhancement or depression of Tc due to the structural disorder
is, thereby, model-dependent.

4 Comparison with other MF theories

A comparison of the preceding results can be made with the MF theories
developed in ref.s [11, 7], that assume the interaction energy U(r, r′) as
an overall random variable. In this representation, the disorder effects
are those produced by the energy fluctuations about the mean value 〈U〉
that determines the average crystal and, accordingly, the reference Curie
temperature T〈U〉. Since there is no rescaling of the interacting variables,
one is left with the calculation of the mean value 〈〈s〉〉 of the ”naked”
spins. Let us first consider the Ising-like systems. In this case it is easy
to see from ref. [11] that Tc = T〈U〉, and the disorder effects simply result
in a depression of the magnetization, in the close proximity of the Curie
temperature:

〈〈s〉〉 ∝

√
1− T

T〈U〉

(
1− δ2

)
, (42)

where δ is proportional to the fluctuations of the interaction energy.
In the present model, one has 〈〈s〉〉 = 〈λ−1〉〈〈S〉〉 =

(
1 + σ2

λ

)
〈〈S〉〉, ac-

cording to eq.ns (10) (the lowest order approximation is intended), and
σ2
x ∝ (1− T/Tc) (eq.ns (13)). Hence, setting T = T〈ρ,λ〉 in eq.n (14b) and

after a suitable rearrangement of terms in eq.ns (13), (14b), one gets:

〈〈s〉〉 ∝
√

1− T

Tc

(
1− δ2

)
, (43a)

δ2 = 2σ2
λ

(
1 + 2J2

1/J
2
0

1− J2
1/J

2
0

)
+

3
2
σ2
ρ

(
J2

3/J
2
0

1− J2
1/J

2
0

)
. (43b)

As can be seen, the random fluctuations of the coupling energy U , re-
sulting from σ2

λ and σ2
ρ, tend to depress 〈〈s〉〉 close to the Curie temperature,

as in eq.n (42).
At this stage, it is instructive expressing T〈U〉 (eq.n (42)) in terms of the
present model. First, we calculate the mean value and the standard devi-
ation of the interaction energy according to eq.ns (1) end (2):
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〈U(r, r′)〉 =

∫
dPρdPλU(r, r′) = −J(f − f ′)−

σ2
ρ

2
∇2
fJ(f − f ′), (44a)

σ2
U = σ2

ρ [∇fJ(f − f ′)]2 + 2σ2
λJ(f − f ′) . (44b)

Since T〈U〉 is the Curie temperature corresponding to the average crystal
with interaction energy eq.n (44a), one easily gets:

T〈U〉 = T〈ρ,λ〉
(
1 + J2σ

2
ρ

)
Tc = T〈U〉 + σ2

λT〈ρ,λ〉

 (Ising) (45)

in which T〈ρ,λ〉 (eq.n (14a)) is the reference Curie temperature in the
chemical-structural disorder representation, and the lower line follows from
eq.n (15). It is not difficult to perform the same calculation for the Heisenberg-
like systems too. From eq.ns (44) and (41), it follows that

T〈U〉 = T〈ρ,λ〉
(
1 + σ2

ρC+

)
Tc = T〈U〉 − σ2

ρC−T〈ρ,λ〉 + σ2
λT〈ρ,λ〉

 (Heisenberg) . (46)

In the absence of chemical disorder (σ2
λ = 0), equations (45) and (46)

recover the results of ref.s [11, 7] that the Curie temperature is not af-
fected by the random fluctuations of the interaction energy about its mean
value, in Ising-like systems (eq.n (45)), and decreases linearly with σ2

U in
Heisenberg-like systems (eq.n (46)). In fact, the term J2σ

2
ρ comes from

eq.n (44a), and the term −σ2
ρC−T〈ρ,λ〉 comes from eq.n (44b), i.e. right

from σU (eq.n (40c)).
The main point of the preceding arguments is that, passing from the
chemical-structural representation to the one adopted in ref.s [7, 11] (in
which the unique random variable is U itself), the positive terms J2σ

2
ρ and

T〈ρ,λ〉σ
2
ρC+, due to the structural disorder, seemingly disappear, since they

are incorporated in T〈U〉 (i.e. in a different average crystal). In contrast,
the increasing effect of the chemical disorder on Tc cannot be removed by
a redefinition of the average crystal, i.e. by replacing T〈ρ,λ〉 with T〈U〉.
This shows that the model interaction eq.n (1) and the one adopted in
ref.s [7, 11] cannot be mapped one into another, except in the absence of
chemical disorder. At this stage, it should be clear that speaking about
a Curie temperature increasing (or decreasing) with increasing disorder is
misleading, unless one defines exactly which representation of the disorder
has been adopted.
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5 Applications

As mentioned in Section 1, the model interaction eq.n (1) is an ideal ex-
pression in which the spin-spin coupling can be exactly factorized in a part
J(r−r′), depending only on the positions of the spins (structural disorder),
and a part λrλr′ , accounting for the characteristic of the spins themselves
(chemical disorder). The simplest application is certainly on ferroelectric
systems. In this case the ”spins” are actually atomic scale displacements
of charges, generating electric dipoles, whose intensity is determined by
the Born effective charge Z∗r , that can be related, after suitable rescal-
ing, to the on-site parameter λr. The dipole-dipole coupling J(r − r′) is
usually split into a nearest-neighbor contribute, strongly dependent on the
local symmetries, plus a long-range term ∝ |r − r′|−3 [22]. Of course, the
present model applies to magnetic dipoles too, whose interaction energy is
usually small, compared to the exchange interaction. However, there are
cases in which this is not true [23]. A theoretical model for perovskite fer-
roelectrics, leading to an increase of Tc has been formulated by Bokov [10],
by calculating the total polarization as the sum of single-cell contributions,
each characterized by a local Tc, whose fluctuations reflect the different
cationic content of the cell. An experimental support to the validity of
eq.n (15) has been obtained right for ferroelectric perovskites, by Sinclair
and Attfield [5]. The measured Tc of ATiO3-systems (with A a cation) is
shown to increase linearly with the square standard deviation σ2

A of the A-
radius size, whose random fluctuations are obtained by the binary cationic
mixture A = Ba1−xMgx, and the changes of σ2

A are controlled by the rel-
ative concentration x. In this case, it is reasonable to think of a direct
influence of the cationic disorder on the Born effective charge, or on other
local quantities determining the dipole intensity. This would result in what
we call the chemical disorder, whose enhancing effect on Tc is common to
Ising-like and Heisenberg-like systems.
The application of eq.n (1) to the exchange magnetic interactions is less
immediate. As a typical example, let us deal with a substitutional random
alloy, each site of which can be occupied by an orbital ψα, with probability
pα. In this case the true exchange energy between two spins with relative
position D = r − r′ reads:

Utrue (r, r′) = −e2

∫ ∫
dr1dr2

|r1 − r2|
×

× ψαr
(r1)ψ∗αr′

(r1 −D)ψαr′ (r2 −D)ψ∗αr
(r2) =

= Utrue (αr, αr′ ; D) . (47)

Since the on-site features are displayed by the two orbitals ψαr
, ψαr′ ,

it is clear that no exact factorization is possible. However, in view of a
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qualitative account of the on-site vs off-site disorder effects, one can replace
Utrue with a form like eq.n (1), for an appropriate choice of J(D) and λr.
In particular, the quantities

J(D) = −
∑
α,α′

pαpα′Utrue (α, α′; D) (48a)

λr =
∑
α′ pα′

∫
Utrue (αr, α′; D) dD∫
J(D)dD

=

=
∑
α′ pα′

∫
Utrue (α′, αr; D) dD∫
J(D)dD

(48b)

define, respectively, the mean dependence of the exchange energy on
the relative position, and on the on-site orbital (note that 〈λr〉 = 1). In
this case, U(r, r′) = −λrλr′J(D) reproduces the statistical properties of
Utrue modulo the coupling of the random variables’ fluctuations. Hence,
the use of eq.ns (48) is especially suitable in a MF approximation, aiming
to achieve a guess of the relative importance of the chemical and structural
disorder.
Recent theoretical works have stressed the importance of the thermal disor-
der for a correct interpretation of the magnetic properties. In ref. [15, 16],
the coupling between thermal fluctuations and itinerant electrons is ar-
gued to yield a crucial contribute to the magnetization, especially in the
transition between ballistic and diffusive regime. In ref. [24] the effects of
the thermal expansivity on the magnetization are shown to be non negligi-
ble in some cases. It is worthwhile mentioning that the disordered crystal
model and eq.n (2) have a staightforward application to the thermal dis-
order effects in an otherwise perfect ferromagnetic crystal. In this case,
in fact, the fluctuations of the distance |r − r′|, described by the random
variable ρ, are of pure thermal origin. For high enough temperature T ,
the probability distribution Pρ is Gaussian with square standard deviation
σ2
ρ = κT/MΩ2

D, where M is the atomic mass (for monoatomic systems),
and ΩD is comparable to the Debye frequency. In the reasonable hypothe-
sis that the spin variables are fast enough to allow for the application of the
Born-Oppenheimer approximation, equation (40a) can be used to calculate
the resulting (structural) disorder effect on the Curie temperature:

T offc = T〈ρ〉

[
1 +

κT〈ρ〉

MΩ2
D

(C+ − C−)
]
, (49)

T〈ρ〉 being the Curie temperature of the rigid crystal.
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6 Conclusions

In the present work the disorder effects on the Curie temperature, due to
the chemical and structural disorder, have been studied separately, by as-
suming a suitably factorized form of the spin interactions (eq.n (1)). It
is shown that the chemical (on site) disorder leads to distinguish between
spins sg and ”dressed” spins Sg = λgsg. In the realm of the mean field
approximation, it has been argued that the better approximation is as-
suming 〈〈Sg〉〉 site-independent, and calculating the dressed magnetization
∝ 〈〈S〉〉. If necessary, one may set 〈〈s〉〉 = 〈λ−1〉〈〈S〉〉. Following this line,
it has been shown in Sections 2 , 3 that the chemical disorder enhances
Tc, by a term proportional to the square standard deviation σ2

λ, both in
Ising-like and in Heisenberg-like systems. The structural (off-site) disor-
der enhances in turn the Tc of the Ising-like systems, but contributes two
terms ±σ2

ρC±, with opposite sign, to the Tc of the Heisenberg-like systems.
The overall effect, enhancement or depression, is model-dependent. Since
−σ2

ρC− is specific of the Heisenberg-like systems with structural disorder,
one may argue that the delocalization driven by the spin waves is the unique
responsible of the negative sign.
Special emphasis is given (Section 4) to the representation of the disorder,
by comparing the present model with other MF theories [11, 7], in which
the random variable is the interaction energy U(r, r′) itself. It is shown
that the structural disorder provides a representation equivalent to the one
in ref.s [11, 7], while the chemical disorder does not. This argument calls
attention on the necessity of specifying the disorder representation adopted,
in order that the enhancement or depression of the Curie temperature is
defined unambiguously.
Supports to the results in Sections 2 , 3 have been found in experimen-
tal data and other theoretical models referring to perovskite ferroelectrics
[5, 9, 10], to which the factorization (1) applies directly. In ferromagnets,
a comparison with experiments is less immediate and, at present, not sig-
nificant, for two related reasons. First, most of the experimental works on
ferromagnets are concerned on the modifications of Tc induced by changes
of some controlled average parameters (pressure, alloy/defect concentra-
tion, etc.). The effects of the random fluctuations about those average
values (what we mean for ”disorder effects”) are indeed more difficult to be
observed. Second, the current theoretical approaches usually deal with the
interaction energy U(r, r′) as with an overall random variable and no clear
separation is made between structural and chemical part [11, 7]. Indeed,
the factorization (1) is not exactly feasible, if the chemical-structural fea-
tures are nested in an exchange integral, as it is the case of ferromagnets.
However, the approximate method suggested in Section 5 for factorizing
the two contributions in the exchange interactions too, could be of some

19

Page 19 of 21

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
use for triggering the experimental and theoretical work on the different
effects of the two basic elements of disorder, chemical and structural, even
in ferromagnetic materials.
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