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Geometric, Algebraic and Topological Methods for Quantum Field Theory Geometry of closed strings, A and B side of Witten Part II : B side and mirror symmetry

Introduction

The mirror symmetry postulate that there are two viewpoints to represent the physics of fermionic strings. The relevance comes from the fact that some problems not solvable from a certain point of view are on the other. Mirror symmetry is very accomplished in the form of the T-duality appeared in bosonic theory which states that the partition function remains unchanged in the change R ↔ 1 R , where R denotes the radius of compactification of extra dimension. In a bosonic field theory, where the source space is the cylinder and target a torus, one can notice that the T-duality exchange symplectic structure deformation (area) and deformation of complex structure. In this "survey", we will introduce tools from physics and mathematics for understanding some aspects of mirror symmetry. Especially we construct the mirror map locally as historically Morrison has presented this theory for closed strings. In addition, we briefly explain the implications in enumerative geometry.

Landau Ginzburg model and complex manifolds

At the A-side of the mirror , The correlation functions were calculated from the instantons : Holomorphic curves in symplectic tools, in this context, they will be calculated using the tools of complex geometry, the key point 1 is the statistical physics and the Russian school of Arnold and his theory of singularity.

ϕ 4 theory and complex geometry

The model of Ginzburg Landau plays a decisive role on this side of the mirror, where we will look at the admissible deformations (distortions marginal) preserving certain symmetries. Starting from the Lagrangian in ϕ 4 :

L LG = ∂ µ φ∂ µ φ-V (T, φ) where V (T, φ) = 1 4! λ(t)φ 4 + 1 2! µ 2 (t)φ 2 At the critical temperature T c "mass", µ 2 (T c ) = 0, so the correlation length (inverse mass) is infinite. At this temperature the field φ 0 , solution of ∂ ∂φ V (T, φ) is zero three times degenerated. A small perturbation V (T c , φ) → V (T c , φ) + δµ 2 (T )φ 2
, solves the singularity and the is "symmetry breaking". The challenge is to find ways of a marginally perturbpotential theory in order to preserve the symmetry and defined by the fact a critical family of superpotentials.

Theory of singularities, marginal deformations

The superpotential is an holomorphic function W :

C M → C is chosen as a potential V (x) = N 1 |∂ i W(X)| 2 = N 1 ∂ i W(X)∂ i W(X) * if we consider only one field, one can consider the function W(X) = 1 (n+1)! X n+1
The bosonic part of the supersymmetric Lagrangian is written then :

L LG N =2 = -∂ + X * ∂ -X + ∂ -X * ∂ + X + V (X) There is : V (X) = 0 ⇔ ∂ i W(X 0 ) = 0, so it is relevant to define the textbfring Chiral R W = C[X] ∂W(X)
where the ratio is proportional to the polynomials of ∂ i W(X) : P (X) = P i (X)∂ i W(X) deformations respecting the Chiral ring are given by : W def (X) = W(X)

+ P ∈R W t P P (X) If we choose W(X, Y, Z) = 1 3 (X 3 +Y 3 +Z 3 ), the deformed potential is given by W def (X, Y, Z) = W(X, Y, Z) + t 0 + t 1 X + t 2 Y + t 3 Z + t 4 XY + t 5 Y Z + t 6 ZX + t 7 XY Z
Only the non vanishing term µ = t 7 preserves the critical situation, it does not break the Z 3 symmetry (X, Y, Z) → (exp( 2kiπ 3 )X, exp( 2kiπ 3 )Y, exp( 2kiπ 3 )Z) we just define continuous family of allowed perturbations :

W def (X, Y, Z, µ) = 1 3 (X 3 + Y 3 + Z 3 ) + µXY Z Figure 1 -Variétés de Calabi Yau
3 Calabi-Yau deformation theory

The hypersurface of a complex projective space obtained by canceling

W def (X, Y, Z, µ) = 1 3 (X 3 + Y 3 + Z 3 ) + µXY Z is the
The simplest example of Calabi-Yau. Is an elliptic curve or complexe torus .Calabi-Yau variety is a Kählérienne Ricci flat which is to say the canonical bundle is trivial. There among other K3 surfaces involved in branes theory and the quintic threefold for closed strings. The easiest way to realize the Calabi-Yau is to consider an hypersurface of a complex projective space. There is a strong constraint between the degree of a hypersurface and the dimension of the ambient space. Subsection Example of a Calabi-Yau Let us write the exact sequence associated to a hypersurface of degree d : 0

→ O P n+1 (-d) → O P n+1 → O X → 0
With exact long sequence in cohomology, one can calculate the cohomology groups associated.

The Result :

H n (X, O X )=C C d-1 n-1 = C (condition Calabi-Yau) Necessa- rily d = n +2 -n = 1 (d = 3) : Elliptic Curves -n = 2 (d = 4) : K3 Surfaces -n = 3 (d = 5) : Quintic threefold

Deformations, mirror symmetry

We will focus on two types of deformations of Calabi-Yau : the deformation of symplectic structure and those from its complex structure. We can consider the deformation of complex structure (J deformation). She is captured by H 1 (X, T X) H 2,1 (X), It can also vary the Kähler structure, referenced by H 1,1 (X) = H 1 (X, Ω 1 X ) There are two field theories (CFT) supersymmetric duality in satisfactory : h 2,1 (X) = h 1,1 (M X) and h 1,1 (X) = h 2,1 (M X) : deform the complex structure of M amounts to deform the volume of his mirror. diamond Hodge plots the Hodge numbers of a complex manifold Diamond a Calabi-Yau (Quintic Threefold)

h 0,0 = 1 h 1,0 = 0 h 0,1 = 0 h 2,0 = 0 h 1,1 = 1 h 0,2 = 0 h 3,0 = 1 h 2,1 = 101 h 1,2 = 101 h 0,3 = 1 h 2,0 = 0 h 1,1 = 1 h 0,2 = 0 h 1,0 = 0 h 0,1 = 0 h 0,0 = 1

"B side" Origin of Physics

On the A Side, supersymmetric constraints lead to what the action does depends only on the the Kähler form ; instantons are holomorphic curves. The calculation of correlation functions is difficult because it takes into account correction on the degree curves (invariants of Gromov-Witten) On the side "B", BRST Formalism explained in the other side of the mirror applies here : instantons are constants maps from the worldsheet Σ on a point of target space X. The correlation functions are simpler to calculate : they require no instanton correction. If X is a Calabi-Yau 3, the 3 points correlation function is :

W A W B W C = X Ω jkl A j ∧ B k ∧ C l ∧ Ω
A, B, C belong to H 1 (X, T X) and depend on the complex structure, Ω is (3.0) top-form holomorphic. The two numbers h 1,1 (X)=1 and h 2,1 (X) = 101, count the number of deformation structures respectively Kähler and complex. The principle of mirror symmetry, gives h 1,1 (M X)=101 and h 2,1 (M X) = 1. He said in addition that correlation functions calculated from both sides of the mirror are identical . The Mirror map associated parameter of deformation of Kälher structure with parameter of deformation of complex structure. If a problem is difficult at the A side, we can try to solve it at the B side. In mathematics passing through the mirror application can solves so important old problem of geometry Enumerative

The Quintic and its mirror

Recall that the homogeneous quintic in P 4 , is obtained by canceling the superpotential : W= 1 5 (X 5 0 + ... + X 5 4 ) A marginal deformation of this superpotential is almost the variety expected the variety mirror quintic is associated with the emphcrepant resolution of :

{(X 0 , ..., X 4 ) ∈ P 4 / 1 5 (X 5 0 + ... + X 5 4 ) -µX 0 ...X 4 = 0} /G
with G = {(a 0 , ..., a 4 ) ∈ Z /5 / a i = 0} /Z /5 ={(a,a,a,a,a)} (Z /5 ) 3

Program

localizaion The construction of the mirror map is difficult globally . Should be localize and built the map at the neighborhood of a point.

Plan of the study X denote the Calabi-Yau, M X its mirror .

-We must first calculate the Yukawa coupling H 1 (M X, T M X) -Identify by the mirror map.

-Deduce the Yukawa couplings of H 1,1 (X)

One can deduce predictions about the number of rational curves in X We will briefly describe in the following emph textbf useful mathematics for the B-side the Quintic.

Mirror-map

The principle of mirror symmetry says that < H, H, H >=< θ, θ, θ >, if tH denotes an curve parameter in the module of Kähler X we set H = d dt = 2πiq d dq its tangent vector (q = exp(2πit) Local coordinates for this module. The problem is to produce an image q(x) in emph module complex deformations was :

q = q(x), d dq → dx dq d dx
Then we can write

H = 2πiq d dq ) ↔ θ = 2πiq dx dq d dx < H, H, H >= (2πiq d dq ) 3 < d dx , d dx , d dx >= (2πi q x dx dq ) 3 < x d dx , x d dx , x d dx >

Mathematical Tools

The simplest examples of Calabi-Yau are elliptic curves. They will guide us to understand the techniques identified below and set the mirror application. Monodromy : For a flat bundle,go around a singular object centred in t = 0 at constant distance |t|, (t :deformation parameter of a smooth family) is namely monodromy in mathematics. In physics we talk about loop Wilson. Residue map : We can generalize the formula for residues of a complex variables function around z = 0 by replacing function differential forms and point by hypersurface. This will be very useful for calculating periods.

Elliptic curves

The elliptic curve

E τ = C/(1, τ ) is a Calabi-Yau dimension 1.
The volume form is given by Ω = dz Emph textbf Numbers Hodge : Hodge diamond is :

h 00 h 10 h 01 h 11 = 1 1 1 1
The one parameter family of deformations of an elliptic curve is :

X 3 + Y 3 + Z 3 -3ψXY Z = 0
If α and β are homology cycles , they depend then ψ, we can find τ to from ratio periods : α Ω, β Ω. Solving a differential equation called Picard-Fuchs

Family of elliptic curves, monodromy

An important concept is the notion of local system we consider one parameter of family of curve which degenerate at t = 0 :

Degeneration of a family of curves X π ⊃ X t t = t X t X t D 2 t t = 0 X 0 : sing.

Monodromy theorem :

Either X t where t varies along a loop in π 1 (D 2 -{0}, t 0 ) around 0, ( emphloop Wilson), all elements of this family are diffeomorphic .This induces an automorphism on homology : ϕ ∈ Aut(H n (X t 0 ), Z)) Pratical Example Let's illustrate by taking a one parameter family of elliptic curve

C t = {(Y 2 Z = X 3 + X 2 Z -tZ 3 } ⊂ CP 2
which is expressed in affine coordinates : C t : y 2 = x 3 + x 2 -t : elliptic curve defined by an algebraic equation. The parameter t of the elliptic curve is the signature of the variation of complex structure, the geometric expression is E τ = C/(1, τ (t)) when t revolves around the origin τ (t) → τ (t) + 1 with τ function of : t :

τ (t) = lnt 2πi
At the level of group automorphism

τ (t) 1 → 1 1 0 1 τ (t) 1 = τ (t)
+ 1 1 We find that the complex structure varies but the symplectic structure is unchanged. We justify the choice of new coordinate q(t) = e 2πiτ (t) , because a passage to the limit gives : when t → 0, Imτ (t) → +∞, d'où q(t), where q(t) is an holomorphic function of t which also tends to 0 ; so it is a local coordinate for this family of elliptic curves. We spoke in physics : large complex structure limit(WSCC) in "bijection" with large volume limit (LVL) on the A side

Application to the quintic

Is the quintic 4 i=0 x 5 i -ψx 0 x 1 x 2 x 3 x 4 = 0. As with elliptic curves, Morrison showed by standing near x = ( 1 ψ ) -5 = 0 we could find t (side strain Kähler ) from of ψ (or x).

As with elliptic curves, t = γ 1 Ω γ 0 Ω , we must calculate the periods φ i (x) =

γ i Ω, i = 1, 2. γ 0 is invariant under monodromy around x = 0 (large com- plex structure limit (WSCC )), ψ → ∞ γ 1 → γ 0 + γ 1 .
Both quantities depend on ψ (or x) We can compute locally the three forms (*) Ω using a version "differential form" of theorem of residue (and the theorem of emphimplicit function) and deduce by direct calculation , the first period.

The equation called emph Picard Fuchs calculates the other period. Finally, we find :

φ 0 (x) = ∞ n=0 5n! (n!) 5 x n , φ 1 (x)=φ 0 (x)log(x) + f (x), with f (x) = 5 ∞ n=0 5n! (n!) 5 ( 5n j=n+1 1 j )x n

Calculation of Yukawa couplings on the B-side

Let Θ (i) = (x d dx ) (i) , the equation of Picard-Fuch written :

Θ (4) y + 2.5 5 x 1+5 5 x Θ (3) y + 7.5 4 x 1+5 5 x Θ (2) y + 2.5 4 x 1+5 5 x Θ (1) y + 2.5 5 x 1+5 5 x Θy = 0 It is applied to Ω : If Y = M X Ω ∧ Ω (3) , M X Ω ∧ Ω = M X Ω ∧ Ω = M X Ω ∧ Ω" = 0, twice
differentiating the last equality we have :

M X Ω ∧ Ω (4) + 2 M X Ω ∧ Ω (3) = 0 We deduce the differential equation (x d dx )Y = -5 5 x 1+5 5 x Y The solution is Y =< x d dx , x d dx , x d dx >= c 2 1+5 5 x
We must normalize Y in agreement with (*) and then divide Ω by Φ 0 (x) Thus :

< x d dx , x d dx , x d dx >= c 2 (1+5 5 x)φ 0 (x) 2 For identification, < H, H, H >= (2πi q x dx dq ) 3 < x d dx , x d dx , x d dx >= c 2 (2πi q x dx dq ) 3 (1+5 5 x)φ 0 (x) 2

Conclusions : Application to enumerative geometry

The parameter t Kähler deformation, expressed as a function of the ratio of the first two periods, we get : q = e 2iπ φ 1 (x) φ 0 (x) Where : q = c 1 (x -770x 2 + ...) and conversely x = q c 1 + 770( q c 1 ) 2 + ... We can now calculate everything according to the variable q : < H, H, H >= (2πi) 3 (-c 2 -575( c 2 c 1 )q -19575( c 2 c 2 1 )q 2 + ...) It remains to calculate the constants c 1 and c 2 . We remember that it was not enumerate rational curves of degree n d is known for first degrees, which calculates c 1 and c 2 .

< H, H, H >= 5 + ∞

d=1 n d d 3 q d 1-q d = 5 + 2875q + ...

We deduce c 2 = -5 (2πi) 3 , c 1 = -1 Finally, we can enumerate the number curve of a rational quintic of P 4 all degrees < H, H, H >= 5 + ∞ d=1 n d d 3 q d 1-q d = 5 + 2875 q 1-q + 609250.2 3 q 2 1-q 2 + ...

Références

[1] D.R.Morrisson Mirror symmetry and rational curves on quintic threefolds : A guide for mathematicians, journal of the american mathematical sociaty, vol. 6, number 1, jauary 1993.

[2] K.Hori, S. Katz, A. Klem, R. Pandharipande, R. Thomas, C. Vafa, R.

Vakil, E. Zaslow,Mirror symmetry, AMS, 2003. Press.