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Part I : A side and enumerative geometry

Ph. Durand : Conservatoire national des arts ét métiers Paris

Villa de Leyva July 4− 22 2011

1 Introduction
The intimate connection that links the modern geometry and physics

is discovered by Einstein from the elegant formulation of general relativity.
The main actors are Lorentzian or Riemannian manifolds in four dimension,
its tangent bundle (geometry) and the energy-momentum tensor (Physics).
The tangent bundle has the structure of a vector bundle, we can associate a
principal bundle : the bundle of orthonormal Lie group O(n) with maximal
holonomy. All this was taken in the years 50 to give rise to geometrical theo-
ries of electromagnetism : the Yang-Mills theory from the theory of bundles
and connections developed ten years earlier in mathematics [Steenrod, Eh-
resmann]. The advent of string theory has enriched this setting, we can truly
say that modern geometry in all its forms has an entrance ticket for physics.
The proof of a conjecture in the last century, in enumerative geometry has
even found its inspiration in the physical field theory [Kontsevich 1990]. The
advent of supersymmetric theories in physics has led to the theory of super-
strings. It also led to extended particles live in "more realistic" space of ten
topological dimensions. One can indeed define a "perfectly free" theory, by
replacing a particle moving in classic space-time (1.3) with vibrating "bo-
sonic" string undemanding nature of the geometric space which it operates,
the classical Lorentzian spacetime (1, D) but with D = 26 to exorcise the
space of ghosts : these negative mass to the ground state, in this scenario
the geometric setting is almost exactly that of general relativity. However,
the constraints of supersymmetry are very strong, they lead to replace a
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spacetime (1.9) by a fibration on the classical spacetime (1.3) in varieties
known as Calabi-Yau. The six remaining dimensions, to do so, must be pro-
perly compactified to generate our universe (and this is not so simple). At
this price you can define complex manifolds (Kahler) very special holonomy
which is lower (holonomy SU(n) which imposes a zero Ricci curvature). The
simplest example of such a variety is provided by the torus complex : an el-
liptic curve or complex manifold of dimension 1. In this talk, we will initially
discuss the A side string theory, namely the of Gromov-Witten invariants.
In a next talk, we discuss mirror symmetry B-model which generalizes the T
duality in string theory and to calculate the invariants through the "mirror"

2 The Physics of field theory and string

2.1 Example of classical fields

The concept of field is fundamental in physics. A field ϕ is a function of a
world sheet (source space) into a target space,M (space physics) with a suf-
ficient number of dimensions. So given a "package" (Σ,M, ϕ) and a classical
action : S where : Σ is the source space, often a manifold : for The classical
mechanic of the point is the time axis (world line). For the conformal field
théories like strings theories : Riemann surface ...
The Lagrangian density is a function on one or more fields and its first de-
rivatives :

L = L(ϕ1, ϕ2, ..., ∂µϕ1, ∂µϕ2...).

The classical action is the integral of the classical Lagrangian density on
the parameter space S =

∫
Ldn+1x

Principle of least action : The minimization of the action (δS = 0, leads
to each field noted just ϕ to the Euler-Lagrange equation gives the equations
of motion of the particle ∂L

∂ϕ
− ∂µ( ∂L

∂(∂µϕ)) = 0

2.2 Example of classical fields

The free particle : For a free particle, the field is simply the parameteri-
zed curve that describes the trajectory of the particle in free space :x(t). In
this case, you can take to Lagrangian density
L = L(x(t), ẋ(t)) = 1

2mẋ
2, Euler Lagrange equation is :

∂L
∂x
− ∂t(

∂L
∂(ẋ)) = −∂t(

∂L
∂(ẋ)) = 0 solution is the uniform motion.



Figure 1 – Les dimensions enroulées

The free string : For the free string, the field is simply the function that
describes the trajectory of the string in the target space : X(τ, σ). Its La-
grangian density is contained in the Nambu-Goto action :
S = −T

∫ τ1
τ1
dτ
∫ l

0 dσ
√
Ẋ2X ′2 − (ẊX ′)2 with Ẋ2 = ẊµẊνηµν , ẊX

′ = ẊµX ′νηµν

Euler Lagrange equation is then : ∂τ
∂L
∂Ẋµ

+ ∂σ
∂L
∂X ′µ

= 0 and the solution is
the equation of vibrating strings.

2.3 Noether Symmetries

Symmetry of the action : the role of symmetry in physics is essential.
We want, for example, such action invariant through a transformation like
translation, rotation ... : if ϕ→ ϕ+ δϕ alors S → S + δS
Noether’s theorem : through any symmetry, the action is the same : δS =
0

Example translation : x → x + ε is taken up the free particle, ε small,
independent of time,
δS =

∫
(mẋε̇)dt = εmẋ|t1t0 −

∫
(mẍ)εdt

and as ẍ = 0 we get : The symmetry by translation is equivalent to the
conservation of momentum p = mẋ

Notation : In physics, symmetry x→ x+ ε is denoted δx = ε.

2.4 Complexification of the bosonic string

We can define the Polyakov action, much better than Nambu-Goto ac-
tion described above which is difficult to quantify : that consist to add a
metric field on the world sheet (2d- gravity). It can be show that these two
action are equivalents :
S = −T/2

∫
Σ
√
−ggαβ(σ, τ)∂αXµ∂βX

νηµνdσdτ



Parameterized curve :
by setting z = τ + iσ the (τ, σ) → X(τ, σ), that is to say a real field is a
field complex z → f(z) : a parameterized (complex) curve.

Particle string :
The evolution of a point particle is described by a parameterized curve, for
a string it is a complex curve ,among some will have a privileged status,
holomorphic curves are A model instanton of Witten and were studied by
Gromov in symplectic geometry.

2.5 Quantum fields, QFT

Path integral :

Uncertainty on the position or momentum in quantum mechanic led to re-
place the classical solution (least action) by the partition function or the set
of all possible solutions : It is the path integral Z =

∫
Σ→M e−S(ϕ)Dϕ :

Correlation Functions :

Similarly, one can calculate correlation functions, or functions with n points.
< ϕ1(x1), ..., ϕn(xn) >=

∫
Σ→M ϕ1(x1)...ϕn(xn)e−S(ϕ)Dϕ

We can apply this machinery to the supersymmetric sigma model and
define a new quantum field theory : the topological field theory TFT .The
program developed by Witten is to calculate the correlation functions, by
replacing each value by a cohomology class called BRST cohomology. That
requires, introducing fermionic variables invariant under this generalized
Noether symmetries.

These tools are supersymmetry.

2.6 Supersymmetry

We can define a supersymmetric field theory Σ→M by adding fermio-
nic variables, that is to say sections of some vector bundle E on Σ. A good
image of a fermionic field is ψ(x) = Σfi(x)dxi , a 1-form equipped with a
wedge-product . We have the theorem :
Localization theorem : the path integral is localized around field confi-
gurations where fermionic variables stay invariant under supersymmetric



transformations. Supersymmetric transformation is infinitesimal transfor-
mation of the action, which transforms bosons into fermions and vice versa.

2.7 Calculus supersymmetric

We can define a supersymmetric Calculus :
Algebraic Computation : Let ψ1, ψ2 two fermions ψ1ψ2 = −ψ2ψ1 we
deduce ψψ = 0 Let a bosonic variable Xboson,ψX = Xψ

Calculus :
∫

(a+bψ)dψ = b,
∫
ψdψ = 1,

∫
ψ1ψ2...ψn)dψ1dψ2...dψn = 1,∫

dψ = 0
Change of variables : We have :

∫
ψ̃dψ̃ =

∫
ψdψ = 1

2.8 Example zero-dimensional supersymmetry

A "Toy" model is to make space for starting Σ = {P} and target M = R
the real line. In this context, a field is simply the variable x, the path integral
is just Z =

∫
M e−S(x)dx

A supersymmetric action is given by :
S(x, ψ1, ψ2) = h′(x)2

2 − h”(x)ψ1ψ2.
hence the partition function :
Z =

∫
e
−h′(x)2

2 +h”(x)ψ1,ψ2dxdψ1dψ2
by developing in power series fermionic part, we get :
Z =

∫
e
−h′(x)2

2 (1 + h”(x)ψ1ψ2)dxdψ1dψ2, but
∫
dψ = 0, hence the first inte-

gral is zero, then :
Z =

∫
M h”(x)e

−h′(x)2
2 dx

∫
ψ1dψ1

∫
ψ2dψ2,

and as
∫
ψdψ = 1 (fermionic integration) we get :

Z =
∫
M h”(x)e

−h′(x)2
2 dx

2.9 Supersymmetric transformations

For the example above, we can define supersymmetric transformations
that respect this action.
δx = ε1ψ1 + ε2ψ2
δψ1 = h′(x)ε2
δψ2 = −h′(x)ε1



We show that δS = 0, the fermionic variables are invariant for supersym-
metric transformation iff h′(x) = 0. If h′(x) 6= 0, the change of variables
(x, ψ1, ψ2) → (x − ψ1ψ2

h′(x) , ψ1, ψ2) shows that the partition function is zero
outside the critical points. By expanding to second order near the critical
point xc
(h(x) = h(xc) + h”(xc)

2 (x− xc)2) :

Z =
∫
M h”(x)e

−h′(x)2
2 dx

Z =
∑
h′(xc)=0 h”(xc)

∫
M exp(− (h”(xc)(x−xc))2

2 )dx,
with change of variables y = |h”(xc)|(x− xc) :
Z =

∑
h′(xc)=0

√
π h”(xc)
|h”(xc)|

Abstract

Supersymmetry : We just define an action for a supersymmetric field
theory of dimension 0 by adding fermions, supersymmetry variables.
Invariance : This action is invariant under supersymmetric transfor-
mations.
Location : The associated path integral is localized on the fields for
which the fermions are invariant under supersymmetry.
Towards a generalization : This suggests defining an operator that va-
nishes on the fermionic fields. A fermionic field is associated to a dif-
ferential form, there is an idea of cohomology below.

2.10 Application : A model of Witten "A side of the mirror"

L, the supersymmetric lagrangian of a super-string is given by :
L = 2t

∫
Σ(1

2gIJ∂zφ
I∂zφ

J)d2z+2t
∫

Σ(iψizDzχ
igii+iψizDzχ

igii−Riijjψ
i
zψ

i
zχ

jχj)d2z
The beginning of integral is the bosonic part of the action, the last , the fer-
mionic part : fields are sections of bundles on Σ :

Party fermionic
•χ(z) a section C∞ de f∗TX ⊗ C
•ψz(z) a section C∞ de (T 10Σ)∗ ⊗ f∗T 01X
•ψz, a section C∞ de (T 01Σ)∗ ⊗ T 10X
Transformation supersymmetric preserving action
δxI = ηχI δχI = 0
δψiz = η∂zφi δψiz = η∂zφi

• If δψiz = δψiz = 0, we recognize the conditions of Cauchy-Riemann ! : The



instantons of this model are curves "minimum energy" according to Gromov :
holomorphic curves.

2.11 BRST Cohomology

At previous fermionic transformations one associates an operator Q (for
charge), the terminology come from electromagnetism : charge is the inte-
gration of a "current". Mathematically, the operator Q has the properties of
ordinary differential form (they will have an isomorphism between BRST
cohomology with that of De Rham :
we give now the main properties of this operator
Properties of the operator
• Q(xI) = χI Q(χI) = 0
• Q is a linear operator.
• Q(fg) = Q(f)g + fQ(g) : Q is a derivation.
BRST cohomology
• We note that Q2 = 0
• Hp

BRST = KerQ:Hp→Hp+1
ImQ:Hp−1→Hp is the p- th cohomology group BRST

endsubsection

2.12 Correlation functions BRST

In correlation functions fields are replaced by their cohomology classes,
so they are defined modulo an exact term by :

Correlation Functions
Correlation functions of topological field theory will be given by :
< [Φ1(x1)], ..., [Φn(xn)] >=

∫
Σ→M Φ1(x1)...Φn(xn)e−SDxDgDχDψ

• they do not depend on the selected points on the Riemann surface.

Correlations functions of side A of the mirror
• Let ω1, ....ωn forms on M ,
< [ω1], ..., [ωn] >=

∫
Σ→M ω1...ωne

−(SB(f)+SF (f))DxDgDχDψ
• For the theorem location : the path intgral is localized around holomorphic
curves f̃ : < [ω1], ..., [ωn] >=

∫
Σ→M ω1...ωne

−(SB(f̃))DxDgDχDψ
• e−(SB(f̃)) = e−

∫
Σ f̃
∗ω is a topological invariant gives the "degree" of appli-

cation f̃ .



2.13 Relationship with enumerative geometry

The path integral above can be rewritten :
< [ω1], ..., [ωn] >=

∑
β∈H2(M,Z) e

−
∫

Σ f̃
∗ω ∫

f̃(Σ)∈β ω1...ωnDxDgDχDψ
Here β ∈ H2(X,Z) is a cohomology class, "specifically" the degree of f̃ .

Counting curves
we can hope the integral :∫
f(Σ)∈β ω1...ωnDxDgDχDψ
taken on a moduli spaceM to define properly, can provide an integer. This
will be the case if the dimension of this moduli space is related to the num-
ber of fields [ωi] Gromov Witten invariants These integrals, which give inte-
gers in good cases are Gromov Witten invariants.Their knowledge provides
a means of calculating correlation functions from a topological viewpoint
and hope to understand better the physics !

3 The Mathematics of Gromov and Grothendieck
The global study of schemes or varieties is very difficult. Grothendieck

already started studying moduli of curves, more malleable, as that means
study object through its sections which is much easier. Gromov noted that.
There are very few holomorphic functions on a complex manifold or almost-
complex like symplectic manifolds.
The big idea of Gromov is to consider the study of a symplectic manifold
through its sections that are : holomorphic curves

Curves, parametric curves
In mathematics the worldsheet is a curve (Riemann surface), the evolution
of a bosonic string that is a field of Σ→ X is a parameterized curve.

Symplectic Geometry or algebraic geometry
We can present the Gromov-Witten invariants by one of these two views
Symplectic Geometry (Ruan, Tuan), Algebraic Geometry (Pandaripande,
Katz).

3.1 Symplectic geometry and pseudoholomorphic curves

Recall that a symplectic manifold is a differential manifold equipped with
a 2-closed form ω : (M,ω). The simplest example is R2n and ω =

∑
dxi∧dyi,

We can also consider the space Cn or create new complex structures J which



are all integrated. Thus R2n can be endowed with a structure of analytic ma-
nifold which is not always the case.

Parameterized curve A parameterized curve is a map :
varphi : (Σ, j) → (M,Y ), where j is an almost complex structure on Σ, J
be an almost complex structure on the target.

Pseudoholomorphic Curve :
A parametric curve is pseudoholomorphe if its differential verifies equations
of Cauchy-Riemann : J ◦ dϕ = dϕ ◦ j, (the differential is C linear).

3.2 Riemann-Roch formula moduli space of curves

For now we place ourselves in the more general context of the geometry.
We give here without proof the Riemann Roch formula for a curve, is the
case of Riemann surfaces which interests us here, there isMg,Mg,n respec-
tively The moduli space of curves of genus g, and the moduli space of curves
of genus g with n marked points :

Riemann Roch formula for a curve
The Riemann-Roch formula gives :

dimCH
0(TΣ)− dimCH

1(TΣ) =
∫

Σ ch(TΣ)td(TΣ)

Specifically, dimCH
0(TΣ), consider the infinitesimal automorphisms,

dimCH
1(TΣ) is the complex dimension of moduli space of curves. For a

Riemann surface of genus g yields :

Dimension ofMg :

dimCH
0(TΣ)− dimCH

1(TΣ) = 3− 3g
dimCMg = 3g − 3+ dimCH

0(TΣ)

3.3 Riemann-Roch formula for a map, curves, stable maps

Make first application of the formula above :
H0(TΣ) count the number of marked points need to stabilize the curve thus :

g ≥ 2 : dim(H0(TΣ)) = 0) : dim(H1(TΣ)) = dim(Mg) = 3g − 3
si g = 1 : H0(TΣ) = C : dim(H1(TΣ)) = dim(Mg) = 1



si g = 0 : dim(H0(TΣ)) = 3 : H1(TΣ) =Mg is a point.

We will therefore focus our attention on stable scurves (and maps) . Let
φ : Σ→ X be a holomorphic curve

Riemann Roch formula for a map :
The Riemann-Roch formula gives in this case :
dimCH

0(φ∗TX)− dimCH
1(φ∗TX) =

∫
Σ ch(φ∗TX)td(Σ)

= n(1− g) +
∫
Σ φ
∗c1(TX)

3.4 Curves, stable maps, moduli spaces

In genus 0, an automorphism of P 1(C) is determined by the images of
three distinct points, that is to say automorphisms which fix two points form
a no discrete subgroup PGL(2,C),
we will therefore infinitesimal automorphisms. To get rid of infinitesimal au-
tomorphisms : stabilize the curve, we must add "marked points" doing the
curve is stabilized.
A stable curve is a curve on which we added enough marked points to kill
the infinitesimal automorphisms.

Stable map
A stable map is a parametric curve (Σ, (x1, ..., xk), ϕ) for which Σ is stable.
We can now give the definition of the moduli space of stable maps with k
marked points :Mg,n(X,β).

Definition
We define the space :
Mg,n(X,β) = {(Σ, (x1, ..., xn), ϕ), ϕ : Σ → X,ϕ∗(Σ) = β}/ ∼ where ∼ are
quotient by the group of reparameterization.

The space considered above is not compact in general, we denoteMg,n(X,β)
its compactification, this amounts to add singular curves .

3.5 (Virtual) dimension space of holomorphic curves

From the two previous formula (Riemann Roch for curve and parametric
curve, we can deduce the virtual dimension of moduli space of holomorphic
curves. For this we can reason using the exact sequences Consider the long



exact sequence in cohomology associated to the exact sequence :
0→ TΣ → f∗TX → NΣ/X → 0
For details see [Pandharipande]
Dimension ofMg(X)
By combining the two forms of the Riemann-Roch previous :
dimvirtMg,n(X,β) = (dimX)(1− g) +

∫
f∗(Σ) c1(TX) + 3g − 3 + n

We could find directly this result in symplectic case (varieties that are trea-
ted are thus symplectic Kähler) relying on the index of a Fredholm operator
for an elliptic complex adhoc.

4 Gromov-Witten invariants
We use the notation [.] To denote the fundamental class inHk(Mg,n(X,β),Q) :

We can now properly define from a mathematical point of view the Gromov-
Witten invariants. Indeed, if [ω1], ..., [ωn] cohomology class in H∗DR(X) such
that Σn

i=1deg[ωi] = k "integration on the space module will then be a non-
zero number, So we can expect count something.

Definition : Gromov-Witten invariants
is called Gromov-Witten invariant quantity :

< [ω1], ...[ωn] >β=
∫

[Mg,n(X,β)] ev
∗([ω1]) ∧ ... ∧ ev∗([ωn])

In this script we used an evaluation map :

evi :Mg,n(X,β)→ X : (Σ, x1, ..., xn, ϕ) 7→ ϕ(xi)
ev∗i : H∗(X)→ H∗(Mg,n(X,β)) : [ωi] 7→ ev∗i ([ωi])

This can be seen more explicitly by introducing the Poincare dual of Ci
associated with [ωi] : the invariant is seen as an intersection of cycles :
Gromov-Witten invariant
is called Gromov-Witten invariant quantity :
< [ω1], ...[ωn] >β= ](ev−1

1 (C1) ∩ ... ∩ ev−1
n (Cn)) ∩ [Mg,n(X,β)])

In this script we used an evaluation map :

evi : Mg,n(X,β)→ X : (Σ, x1, ..., xn, ϕ) 7→ ϕ(xi)
ev−1
i : X →Mg,n(X,β) : Ci 7→ ev−1

i (Ci)

We must understand that we will count the number of curves ϕ of class
β cycles that meet Ci in points xi (ϕ(xi) ∈ Ci)



4.1 Example 1 : applications of P1(C)→ P2(C)
Recall that

∫
P1 ϕ∗(TP2) = d.3, where d is the degree of application. Also

remind that in this simple case the degree of application is less abstract than
the class β for d = 0, 1, 2... applications were constants, the class of straight,
tapered ...

Dimension ofM0,n(X, d)
We have the formula : dim(M0,n(X, d)) = 3d− 1 + n
If d = 1 : dim(M0,n(X, d)) = 2 + n : Class of lines
Si d = 2 : dim(M0,n(X, d)) = 5 + n : Class of conics
A requirement that the invariant < [pt1], ..., [ptn] >d is nontrivial it : it takes
Σideg([pti]) = dim(M0,n(X, d)), but we know that
deg([pti]) = codim[pti] = 2
For d = 1 we find n = 2, < [pt1], [pt2] >1 =1 : For two points passes only
one line !

4.2 Formula iterative Kontsevich

You can find n = 5 , < [PT1], ..., [pt5] >= 1. We find that by 5 points can
be passed 1 tapered. Drawing diagram Feymann fours Maxim Kontsevich
showed iterative formula below was then a conjecture enumerative geometry !
Kontsevich formula :
There nd the number of curves of degree d through the number of desired
point
Nd =

∑
d=d1+d2 Nd1Nd2(d2

1d
2
2C

3d−4
3d1−2 − d3

1d2C
3d−4
3d1−1)

By applying this formula, we find : N2 = 1, N3 = 12, N4 = 620

4.3 Example 2 : Back physics !

We return now to our case for the supersymmetric A model of Witten,
take X Calabi-Yau 3 included in P4(C)

Dimension ofMg,n(X,β)
It is known that Calabi Yau Ricci-flat is that means :

∫
Σ ϕ
∗(c1(X)) = 0 in

these conditions,
dim(Mg,n(X,β)) = −3 + 3g + dimX(1− g) + n
If g = 0 and dimX = 3 we get :
dim(M0,n(X,β)) = n
In M0,n(X,β)) as deg([H]) = codim[H] = 1 it takes n hyperplanes in
< [H], ..., [H] >β to make this non-trivial correlation function.



Figure 2 – Une variété de Calabi Yau

For n = 3, we have the three points correlation function or "pant" : n = 3,
< [H], [H], [H] >β, basic "lego" of topological fields theory .

4.4 Example 2 : Calculating the correlation function at three
points : the problems, the mirror symmetry

The calculation of correlation functions by direct methods namely ’A’side
of the mirror is not easy : if you expand you have :
< [H], [H], [H] >=

∑
β < [H], [H], [H] >β e

−
∫
β
ω.

A conjecture of Clemens said we can not calculate this number due to a
problem of multiple coatings, which contradicts the expected dimension of
0 for space applications module with 0 runs scored.
To survive we must work on the other side of the mirror.

mirror symmetry
The objects we work with in enumerative geometry are forms of Khler and
parameterize deformations of the geometry. The Mirror symmetry Mirror
symmetry says that one can express the same physical setting deformations
of complex structure on a variety mirror and identifying the correlation func-
tions from the two models.

but That is for the next talk !
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