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Projection Pursuit methodology permits to solve the difficult problem of finding an estimate of a density defined on a set of very large dimension. In his seminal article, Huber (see "Projection pursuit", Annals of Statistics, 1985) evidences the interest of the Projection Pursuit method thanks to the factorisation of a density into a Gaussian component and some residual density in a context of Kullback-Leibler divergence maximisation. In the present article, we introduce a new algorithm, and in particular a test for the factorisation of a density estimated from an iid sample.

1.1.Huber's analytic approach A density f on R d is considered. We then define an instrumental density g with the same mean and variance as f . According to Huber's approach, we first carry out the K(f, g) = 0 test -with K being the relative entropy (also called the Kullback-Leibler divergence). If the test is passed, then f = g and the algorithm stops. If the test were not to be verified, based on the maximisation of a → K(f a , g a ) since K(f, g) = K(f a , g a ) + K(f ga fa , g) and assuming that K(f, g) is finite, Huber's methodology requires as a first step to define a vector a 1 and a density f (1) with

a 1 = arg inf a∈R d * K(f g a f a , g) and f (1) = f g a 1 f a 1 , (1) 
where R d * is the set of non null vectors of R d and f a (resp. g a ) represents the density of a X (resp. a Y ) when f (resp. g) is the density of X (resp. Y ).

As a second step, Huber's algorithm replaces f with f (1) and repeats the first step.

Finally, a sequence (a 1 , a 2 , . . .) of vectors of R d * and a sequence of densities f (i) are derived from the iterations of this process.

Remark 1

The algorithm enables us to generate a product approximation and even a product representation of f . Indeed, two rules can trigger the end of the process. The first one is the nullity of the relative entropy and the second one is the process reaching the d th iteration. When both rules are satisfied, the algorithm produces a product approximation of f . When only the first rule is satisfied, the algorithm generates a product representation of f . Mathematically, for any integer j, such that K(f (j) , g) = 0 with j ≤ d, the process infers f (j) = g, i.e. f = gΠ j i=1 f (i-1) a i ga i since by induction f

(j) = f Π j i=1 ga i f (i-1) a i
. Likewise, when, for all j, the algorithm gets K(f (j) , g) > 0 with j ≤ d, we assume g = f (d) in order to obtain f = gΠ d i=1 f (i-1) a i ga i , i.e. we approximate f with the product gΠ d i=1 f (i-1) a i ga i .

Even if the condition j ≤ d is not met, the algorithm can also stop if the Kullback-Leibler divergence equals zero. Therefore, since by induction we have f

(j) = f Π j i=1 ga i f (i-1) a i with f (0) = f , we infer g = f Π j i=1 ga i f (i-1) a i
. We can thus represent f as f = gΠ j i=1 f (i-1) a i ga i .

Finally, we remark that the algorithm implies that the sequence (K(f (j) , g)) j is decreasing and non negative with f (0) = f .

1.2.Huber's synthetic approach

Maintaining the notations of the above section, we begin with performing the K(f, g) = 0 test; If the test is passed, then f = g and the algorithm stops, otherwise, based on the maximisation of 2 a → K(f a , g a ) since K(f, g) = K(f a , g a ) + K(f, g fa ga ) and assuming that K(f, g) is finite, Huber's methodology requires as a first step to define a vector a 1 and a density g (1) with a 1 = arg inf a∈R d * K(f, g f a g a ) and g (1) = g f a 1 g a 1 .

(2)

As a second step, Huber's algorithm replaces g with g (1) and repeats the first step.

Finally, a sequence (a 1 , a 2 , . . .) of vectors of R d * and a sequence of densities g (i) are derived from the iterations of this process.

Remark 2

Similarly as in the analytic approach, this methodology allows us to generate a product approximation and even a product representation of f from g. Moreover, it also offers the same end of process rules.

In other words, if for any j, such that j ≤ d, we have K(f, g (j) ) > 0, then f is approximated with g (d) . And if there exists j, such that K(f, g (j) ) = 0, then it holds g (j) = f , i.e. f is represented by g (j) . In this case, the relationship K(f, g (j) ) = 0 implies that g (j) = f , i.e. since by induction we have g (j) = gΠ j i=1 fa i g (i-1) a i with g (0) = g, it holds f = gΠ j i=1 fa i g (i-1) a i . Eventually, we note that the algorithm implies that the sequence (K(f, g (j) )) j is decreasing and non negative with g (0) = g. Finally, in [START_REF] Zhu | On the forward and backward algorithms of projection pursuit[END_REF], Mu Zhu shows that, beyond d iterations, the data processing of these methodologies evidences significant differences, i.e. that past d iterations, the two methodologies are no longer equivalent. We will therefore only consider Huber's synthetic approach since g is known and since we want to find a representation of f .

1.3.Proposal

We begin with performing the K(f, g) = 0 test; should this test be passed, then f = g and the algorithm stops, otherwise, the first step of our algorithm consists in defining a vector a 1 and a density g (1) by

a 1 = arg inf a∈R d * K(g f a g a , f
) and g (1) = g f a 1 g a 1 .

(3)

In the second step, we replace g with g (1) and we repeat the first step. We thus derive, from the iterations of this process, a sequence (a 1 , a 2 , ...) of vectors in R d * and a sequence of densities g (i) . We will prove that a 1 simultaneously optimises (1), ( 2) and (3). We will also prove that the underlying structures of f evidenced through this method are identical to the ones obtained through the Huber's methods.

Remark 3

As in Huber's algorithms, we perform a product approximation and even a product representation In the case where, at each of the d th first steps, the relative entropy is positive, we then approximate f with g (d) .

In the case where there exists a step of the algorithm such that the Kullback-Leibler divergence equals zero, then, calling j this step, we represent f with g (j . In other words, if there exists a positive integer j such that K(g (j) , f ) = 0, then, since by induction we have g (j) = gΠ j i=1 fa i g (i-1) a i with g (0) = g, we represent f with the product gΠ j i=1 fa i g (i-1) a i .

We also remark that the algorithm implies that the sequence (K(g (j) , f )) j is decreasing and non negative with g (0) = g.

Finally, the very form of the relationship (3) demonstrates that we deal with M-estimation. We can consequently state that our method is more robust than Huber's -see [YOHAI], [TOMA] as well as [HUBER].

Example 1 Let f be a density defined on R 10 by f (x 1 , . . . , x 10 ) = η(x 2 , . . . , x 10 )ζ(x 1 ), with η being a multivariate Gaussian density on R 9 , and ζ being a non Gaussian density.

Let us also consider g, a multivariate Gaussian density with the same mean and variance as f . Since g(x 2 , . . . , x 10 /x 1 ) = η(x 2 , . . . , x 10 ), we have

K(g f 1 g 1 , f ) = K(η.f 1 , f ) = K(f, f ) = 0 as f 1 = ζ -
where f 1 and g 1 are the first marginal densities of f and g respectively. Hence, the non negative function a → K(g fa ga , f ) reaches zero for e 1 = (1, 0, . . . , 0) . We therefore infer that g(x 2 , . . . , x 10 /x 1 ) = f (x 2 , . . . , x 10 /x 1 ).

To recapitulate our method, if K(g, f ) = 0, we derive f from the relationship f = g; should a sequence (a i ) i=1,...j , j < d, of vectors in R d * defining g (j) and such that K(g (j) , f ) = 0 exist, then f (./a i x, 1 ≤ i ≤ j) = g(./a i x, 1 ≤ i ≤ j), i.e. f coincides with g on the complement of the vector subspace generated by the family {a i } i=1,...,j -see also section 2.1.2. for details.

In this paper, after having clarified the choice of g, we will consider the statistical solution to the representation problem, assuming that f is unknown and X 1 , X 2 ,... X m are i.i.d. with density f . We will provide asymptotic results pertaining to the family of optimizing vectors a k,m -that we will define more precisely below -as m goes to infinity. Our results also prove that the empirical representation scheme converges towards the theoretical one. Finally, we will compare Huber's optimisation methods with ours and we will present simulations.

The algorithm

2.1.The model

As described by Friedman [Frie84] and Diaconis [START_REF] Diaconis | Asymptotics of graphical projection pursuit[END_REF], the choice of g depends on the family of distribution one wants to find in f . Until now, the choice has only been to use the class of Gaussian distributions. This can also be extended to the class of elliptical distributions. The fact that conditional densities with elliptical distributions are also elliptical -see [START_REF] Cambanis | On the theory of elliptically contoured distributions[END_REF], [START_REF] Landsman | Tail conditional expectations for elliptical distributions[END_REF] -enables us to use this class in our algorithm -and in Huber's algorithms.

Definition 1 X is said to abide by a multivariate elliptical distribution, denoted X ∼ E d (µ, Σ, ξ d ), if X has the following density, for any

x in R d : f X (x) = c d |Σ| 1/2 ξ d 1 2 (x -µ) Σ -1 (x -µ)
, where Σ is a d × d positive-definite matrix and where µ is an d-column vector, where ξ d is referred as the "density generator", where c d is a normalisation constant, such that

c d = Γ(d/2) (2π) d/2 ∞ 0 x d/2-1 ξ d (x)dx -1 , with ∞ 0 x d/2-1 ξ d (x)dx < ∞.
Property 1 1/ For any X ∼ E d (µ, Σ, ξ d ), for any m × d matrix with rank m ≤ d, A, and for any

m-dimensional vector, b, we have AX + b ∼ E m (Aµ + b, AΣA , ξ m ).
Any marginal density of multivarite elliptical distribution is consequently elliptical, i.e.

X = (X 1 , X 2 , ..., X d ) ∼ E d (µ, Σ, ξ d ) implies that X i ∼ E 1 (µ i , σ 2 i , ξ 1 ) with f X i (x) = c 1 σ i ξ 1 1 2 ( x-µ i σ ) 2 , 1 ≤ i ≤ d.
2/ Corollary 5 of [START_REF] Cambanis | On the theory of elliptically contoured distributions[END_REF] states that the conditional densities with elliptical distributions are also elliptical.

Indeed, if X = (X 1 , X 2 ) ∼ E d (µ, Σ, ξ d ), with X 1 (resp. X 2 ) of size d 1 < d (resp. d 2 < d), then X 1 /(X 2 = a) ∼ E d 1 (µ , Σ , ξ d 1 ) with µ = µ 1 + Σ 12 Σ -1 22 (a -µ 2 ) and Σ = Σ 11 -Σ 12 Σ -1 22 Σ 21 , with µ = (µ 1 , µ 2 ) and Σ = (Σ ij ) 1≤i,j≤2 .
Remark 4 In [START_REF] Landsman | Tail conditional expectations for elliptical distributions[END_REF], the authors show that the multivariate Gaussian distribution derives from ξ d (x) = e -x . They also show that if X = (X 1 , ..., X d ) has an elliptical density such that its

marginals meet E(X i ) < ∞ and E(X 2 i ) < ∞ for 1 ≤ i ≤ d,
then µ is the mean of X and Σ is a multiple of the covariance matrix of X. From now on, we will therefore assume this is the case.

Definition 2 Let t be an elliptical density on R k and let q be an elliptical density on R k . The elliptical densities t and q are said to be part of the same family of elliptical densities, if their generating densities are ξ k and ξ k respectively, which belong to a common given family of densities.

Example 2 Consider two Gaussian densities N (0, 1) and N ((0, 0), Id 2 ). They are said to belong to the same elliptical family as they both present x → e -x as generating density.

2.1.2.Choice of g

Let f be a density on R d . We assume there exists d non null linearly independent vectors a j , with j < d, n being an elliptical density on R d-j-1 and with h being a density on R j , which does not belong to the same family as n. Let X = (X 1 , ..., X d ) be a vector with f as density.

with 1 ≤ j ≤ d, of R d , such that f (x) = n(a j+1 x, ..., a d x)h(a 1 x, ..., a j x), (4) 
We define g as an elliptical distribution with the same mean and variance as f .

For simplicity, let us assume that the family {a j } 1≤j≤d is the canonical basis of R d :

The very definition of f implies that (X j+1 , ..., X d ) is independent from (X 1 , ..., X j ). Hence, the property 1 allows us to infer that the density of (X j+1 , ..., X d ) given (X 1 , ..., X j ) is n.

Let us assume that K(g (j) , f ) = 0, for some j ≤ d. We then get

f (x) fa 1 fa 2 ...fa j = g(x) g (1-1) a 1 g (2-1) a 2 ...g (j-1) a j
, since, by induction, we have g (j) (x) = g(x)

fa 1 g (1-1) a 1 fa 2 g (2-1) a 2 ... fa j g (j-1) a j
. Consequently, the fact that the conditional densities with elliptical distributions are also elliptical, as well as the above relationship enable us to state that n(a j+1 x, ., a d x) = f (./a i x, 1 ≤ i ≤ j) = g(./a i x, 1 ≤ i ≤ j). In other words, f coincides with g on the complement of the vector subspace generated by the family {a i } i=1,...,j .

At present, if the family {a j } 1≤j≤d is no longer the canonical basis of R d , then this family is again a basis of R d . Hence, lemma 8 implies that g(./a 1 x, ..., a j x) = n(a j+1 x, ..., a d x) = f (./a 1 x, ..., a j x),

(5) which is equivalent to K(g (j) , f ) = 0, since by induction g (j) = g

fa 1 g (1-1) a 1 fa 2 g (2-1) a 2
...

fa j g (j-1) a j
.

The end of our algorithm implies that f coincides with g on the complement of the vector subspace generated by the family {a i } i=1,...,j . Therefore, the nullity of the Kullback-Leibler divergence provides us with information on the density structure. In summary, the following proposition clarifies the choice of g which depends on the family of distribution one wants to find in f :

Proposition 1 With the above notations, K(g (j) , f ) = 0 is equivalent to g(./a 1 x, ..., a j x) = f (./a 1 x, ..., a j x).

More generally, the above proposition leads us to defining the co-support of f as the vector space generated by the vectors a 1 , ..., a j .

Definition 3 Let f be a density on R d . We define the co-vectors of f as the sequence of vectors a 1 , ..., a j which solves the problem K(g (j) , f ) = 0 where g is an elliptical distribution with the same mean and variance as f . We define the co-support of f as the vector space generated by the vectors a 1 , ..., a j .

2.2.Stochastic outline of the algorithm

Let X 1 , X 2 ,. B). Let P n be the empirical measure based on the subsample X 1 , X 2 ,.,X n . Let f n (resp. f a,n for any a in R d * ) be the kernel estimate of f (resp. f a ), which is built from X 1 , X 2 ,..,X n (resp. a X 1 , a X 2 ,..,a X n ).

As defined in section 1.3, we introduce the following sequences (a k ) k≥1 and (g (k) ) k≥1 :

• a k is a non null vector of R d such that a k = arg min a∈R d * , K(g (k-1) fa g (k-1) a , f ),
• g (k) is the density such that g

(k) = g (k-1) fa k g (k-1) a k
with g (0) = g.

The stochastic setting up of the algorithm uses f n and g (0) n = g instead of f and g (0) = g, since g is known. Thus, at the first step, we build the vector ǎ1 which minimizes the Kullback-Leibler divergence between f n and g fa,n ga and which estimates a 1 . Proposition 11 and lemma 4 enable us to minimize the Kullback-Leibler divergence between f n and g fa,n ga . Defining ǎ1 as the argument of this minimization, proposition 4 shows us that this vector tends to a 1 .

Finally, we define the density ǧ(1)

m as ǧ(1) m = g f ǎ1 ,m g ǎ1
which estimates g (1) through theorem 1.

Now, from the second step and as defined in section 1.3, the density g (k-1) is unknown. Once again, we therefore have to truncate the samples.

All estimates of f and f a (resp. g (1) and g

(1)

a ) are being performed using a subsample X 1 , X 2 ,..,X n (resp.

Y (1) 1 , Y (1) 2 ,..,Y (1) n ) extracted from X 1 , X 2 ,..,X m (resp. Y (1) 1 , Y (1) 2 ,..,Y (1) 
m -which is a sequence of m independent random vectors with the same density g (1) ) such that the estimates are bounded below by some positive deterministic sequence θ m (see Appendix B).

Let P n be the empirical measure based on the subsample X 1 , X 2 ,..,X n . Let f n (resp. g

(1) n , f a,n , g (1) a,n for any a in R d * ) be the kernel estimate of f (resp. g (1) , f a , g (1) 
a ) which is built from X 1 , X 2 ,..,X n (resp. Y (1) 1 , Y (1) 2 ,..,Y (1) 
n ). The stochastic setting up of the algorithm uses f n and g

(1)

n instead of f and g (1) . Thus, we build the vector ǎ2 which minimizes the Kullback-Leibler divergence between f n and g

(1) n fa,n g (1) a,n -since g (1) and g

(1) a are unknown -and which estimates a 2 . Proposition 11 and lemma 4 enable us to minimize the Kullback-Leibler divergence between f n and g

(1) n fa,n g (1) a,n
. Defining ǎ2 as the argument of this minimization, proposition 4 shows that this vector tends to a 2 in n. Finally, we define the density ǧ( 2)

n as ǧ(2) n = g (1) n f ǎ2 ,n g (1) ǎ2 ,n
which estimates g (2) through theorem 1.

And so on, we will end up obtaining a sequence (ǎ 1 , ǎ2 , ...) of vectors in R d * estimating the co-vectors of f and a sequence of densities (ǧ k) through theorem 1.

(k) n ) k such that ǧ(k) n estimates g (

Results

3.1.Convergence results

3.1.1.Hypotheses on f

In this paragraph, we define the set of hypotheses on f which can possibly be used in our work. Discussion on several of these hypotheses can be found in Appendix D. In this section, to be more legible we replace g with g (k-1) . Let

Θ = R d * , M (b, a, x) = ln( g(x) f (x) f b (b x) g b (b x) )g(x) fa(a x) ga(a x) dx -( g(x) f (x) f b (b x) g b (b x) -1), P n M (b, a) = M (b, a, x)dP n , PM (b, a) = M (b, a, x)f (x)
dx, P being the probability measure of f . Similarly as in chapter V of [VDW], we define :

(H 1) : For all ε > 0, there is η > 0, such that for all c ∈ Θ verifying

c -a k ≥ ε, we have PM (c, a) < PM (a k , a) -η, with a ∈ Θ.
(H 2) : There exists a neighborhood of a k , V , and a positive function H, such that, for all c ∈ V we have |M (c, a k , x)| ≤ H(x) (P -a.s.) with PH < ∞, (H 3) : There exists a neighborhood of a k , V , such that for all ε, there exists a η such that for all c ∈ V and a ∈ Θ, verifying a -

a k ≥ ε, we have PM (c, a k ) < PM (c, a) -η. Putting I a k = ∂ 2 ∂a 2 K(g fa k ga k , f ), and x → ρ(b, a, x) = ln( g(x)f b (b x) f (x)g b (b x) ) g(x)fa(a x)
ga(a x) , we now consider : (H 4) : There exists a neighborhood of (a k , a k ), V k , such that, for all (b, a) of V k , the gradient ∇( g(x)fa(a x) ga(a x) ) and the Hessian H( g(x)fa(a x) ga(a x) ) exist (λ a.s.), and the first order partial derivative

g(x)fa(a x) ga(a x)
and the first and second order derivative of (b, a) → ρ(b, a, x) are dominated (λ a.s.) by integrable functions.

(H 5) : The function (b, a) → M (b, a, x) is C 3 in a neighborhood V k of (a k , a k ) for all
x and all the partial derivatives of order 3 of (b, a) → M (b, a, x) are dominated in V k by a P integrable function H(x).

(H 6) : P ∂ ∂b M (a k , a k ) 2 and P ∂ ∂a M (a k , a k ) 2 are finite and the expressions P ∂ 2 ∂b i ∂b j M (a k , a k ) and I a k exist and are invertible. (H 7) : There exists k such that PM (a k , a k ) = 0.

(H 8) : (V ar P (M (a k , a k ))) 1/2 exists and is invertible.

(H 0): f and g are assumed to be positive and bounded and such that K(g, f ) ≥ |f (x) -g(x)|dx.

3.1.2.Estimation of the first co-vector of f

Let R be the class of all positive functions r defined on R and such that g(x)r(a x) is a density on R d for all a belonging to R d * . The following proposition shows that there exists a vector a such that fa ga minimizes K(gr, f ) in r: Proposition 2 There exists a vector a belonging to R d * such that arg min r∈R K(gr, f ) = fa ga and r(a x) = fa(a x) ga(a x) . Following [BROKEZ], let us introduce the estimate of

K(g fa,n ga , f n ), through Ǩ(g fa,n ga , f n ) = M (a, a, x)dP n (x) Proposition 3 Let ǎ := arg inf a∈R d * Ǩ(g fa,n ga , f n ).
Then, ǎ is a strongly convergent estimate of a, as defined in proposition 2. Let us also introduce the following sequences (ǎ k ) k≥1 and (ǧ (k) n ) k≥1 , for any given n -see section 2.2.:

• ǎk is an estimate of a k as defined in proposition 3 with ǧ(k-1)

n instead of g, • ǧ(k) n is such that ǧ(0) n = g, ǧ(k) n (x) = ǧ(k-1) n (x) f ǎk ,n (ǎ k x) [ǧ (k-1) ] ǎk ,n (ǎ k x) , i.e. ǧ(k) n (x) = g(x)Π k j=1 f ǎj ,n (ǎ j x)
[ǧ (j-1) ] ǎj ,n (ǎ j x) . We also note that ǧ(k) n is a density.

3.1.3.Convergence study at the k th step of the algorithm:

In this paragraph, we show that the sequence (ǎ k ) n converges towards a k and that the sequence (ǧ k) . Let čn (a) = arg sup c∈Θ P n M (c, a), with a ∈ Θ, and γn = arg inf a∈Θ sup c∈Θ P n M (c, a). We state Proposition 4 Both sup a∈Θ čn (a) -a k and γn converge toward a k a.s.

(k) n ) n converges towards g (
Finally, the following theorem shows that ǧ(k) n converges almost everywhere towards g (k) :

Theorem 1 It holds ǧ(k) n → n g (k) a.s.

3.2.Asymptotic inference at the k th step of the algorithm

The following theorem shows that ǧ(k) n converges towards g (k) at the rate O P (m -1 4+d ) in three differents cases, namely for any given x, with the L 1 distance and with the Kullback-Leibler divergence:

Theorem 2 It holds |ǧ (k) n (x) -g (k) (x)| = O P (m -1 4+d ), |ǧ (k) n (x) -g (k) (x)|dx = O P (m -1 4+d ) and |K(ǧ (k) n , f ) -K(g (k) , f )| = O P (m -1 4+d ).
Then, the following theorem shows that the laws of our estimators of a k , namely čn (a k ) and γn , converge towards a linear combination of Gaussian variables.

Theorem 3 It holds √ nA.(č n (a k ) -a k ) Law → B.N d (0, P ∂ ∂b M (a k , a k ) 2 ) + C.N d (0, P ∂ ∂a M (a k , a k ) 2 ) and √ nA.(γ n -a k ) Law → C.N d (0, P ∂ ∂b M (a k , a k ) 2 ) + C.N d (0, P ∂ ∂a M (a k , a k ) 2 ) where A = P ∂ 2 ∂b∂b M (a k , a k )(P ∂ 2 ∂a∂a M (a k , a k ) + P ∂ 2 ∂a∂b M (a k , a k )), C = P ∂ 2 ∂b∂b M (a k , a k ) and B = P ∂ 2 ∂b∂b M (a k , a k ) + P ∂ 2 ∂a∂a M (a k , a k ) + P ∂ 2 ∂a∂b M (a k , a k ).

3.3.A stopping rule for the procedure

In this paragraph, we show that g (k) n converges towards f in k and n. Then, we provide a stopping rule for this identification procedure.

3.3.1.Estimation of f

Through remark 5 and as explained in section 14 of [START_REF] Peter | Projection pursuit[END_REF], the following lemma shows that 

K(g (k-1) n fa k ,n g (k-1) a k ,n , f a k ,n ) converges
(k) n fa k ,n [ǧ (k) ]a k ,n , f n ) = 0 a.s.
Consequently, the following proposition provides us with an estimate of f :

Theorem 4 We have lim n lim k ǧ(k) n = f a.s.

3.3.2.Testing of the criteria

In this paragraph, through a test of the criteria, namely a → K(ǧ

(k) n fa,n [ǧ (k) ]a,n , f n ),
we build a stopping rule for this identification procedure. First, the next theorem enables us to derive the law of the criteria:

Theorem 5 For a fixed k, we have √ n(V ar P (M (č n (γ n ), γn ))) -1/2 (P n M (č n (γ n ), γn ) -P n M (a k , a k )) Law → N (0, I),
as n goes to infinity, where k represents the k th step of the algorithm and I is the identity matrix in R d .

Note that k is fixed in theorem 5 since γn = arg inf a∈Θ sup c∈Θ P n M (c, a) where M is a known function of k, see section 3.1.1. Thus, in the case where K(g

(k-1) fa k g (k-1) a k , f ) = 0, we obtain Corollary 1 We have √ n(V ar P (M (č n (γ n ), γn ))) -1/2 (P n M (č n (γ n ), γn )) Law → N (0, I).
Hence, we propose the test of the null hypothesis

(H 0 ) : K(g (k-1) fa k g (k-1) a k , f ) = 0 versus (H 1 ) : K(g (k-1) fa k g (k-1) a k , f ) = 0.
Based on this result, we stop the algorithm, then, defining a k as the last vector generated, we derive from corollary 1 a α-level confidence ellipsoid around a k , namely

E k = {b ∈ R d ; √ n(V ar P (M (b, b))) -1/2 P n M (b, b) ≤ q N (0,1) α } where q N (0,1) α
is the quantile of a α-level reduced centered normal distribution and where P n is the empirical measure araising from a realization of the sequences (X 1 , . . . , X n ) and (Y 1 , . . . , Y n ).

The following corollary thus provides us with a confidence region for the above test:

Corollary 2 E k is a confidence region for the test of the null hypothesis (H 0 ) versus (H 1 ).

Comparison of all the optimisation methods

In this section, we study Huber's algorithm in a similar manner to sections 2 and 3. We will then be able to compare our methodologies.

Until now, the choice has only been to use the class of Gaussian distributions. Here and similarly to section 2.1, we extend this choice to the class of elliptical distributions. Moreover, using the subsample X 1 , X 2 ,..., X n , see Appendix B, and using the procedure of section 2. • we define â1 and the density ĝ( 1)

n such that â1 = arg max a∈R d * K(g a , f a,n ) and ĝ(1) n = g f â1 ,n g â1 ,
• we define â2 and the density ĝ( 2)

n such that â2 = arg max a∈R d * K(ĝ (1) a,n , f a,n ) and ĝ(2) n = ĝ(1) n f â2 ,n ĝ(1) â2 ,n
, and so on, we obtain a sequence (â 1 , â2 , ...) of vectors in R d * and a sequence of densities ĝ(k) n .

4.1.Hypotheses on f

In this paragraph, we define the set of hypotheses on f which can be of use in our present work.

First, we denote g in lieu of

g (k-1) . Let Θ 1 a = {b ∈ Θ | ( g b (b x) f b (b x) -1)f a (a x) dx < ∞}, m(b, a, x) = ln( g b (b x) f b (b x) )g a (a x) dx -( g b (b x) f b (b x) -1), P a m(b, a) = m(b, a, x)f a (a x) dx and P n m(b, a) = m(b, a, x) fa(a x)
f (x) dP n , P a being the probability measure of f a . Similarly as in chapter V of [VDW], we define : (H1) : For all ε > 0, there is η > 0 such that, for all b ∈ Θ 1 a verifying b -a k ≥ ε for all a ∈ Θ, we have P a m(b, a) < P a m(a k , a) -η, (H2) : There exists a neighborhood of a k , V , and a positive function H, such that, for all b ∈ V , we have |m(b, a k , x)| ≤ H(x) (P a -a.s.) with P a H < ∞, (H3) : There exists a neighborhood V of a k , such that for all ε, there exists a η such that for all b ∈ V and a ∈ Θ, verifying a -a k ≥ ε, we have P a k m(b, a k ) -η > P a m(b, a).

Moreover, defining x → υ(b, a, x) = ln( g b (b x) f b (b x)
)g a (a x), putting: (H4) : There exists a neighborhood of (a k , a k ), V k , such that, for all (b, a) of V k , the gradient ∇( ga(a x) fa(a x) ) and the Hessian H( ga(a x) fa(a x) ) exist (λ -a.s.) and the first order partial derivative ga(a x) fa(a x) and the first and second order derivative of order 3 of (b, a) → υ(b, a, x) are dominated (λ a.s.) by integrable functions.

(H5) : The function (b, a) → m(b, a) is C 3 in a neighborhood V k of (a k , a k ) for all x and all the partial derivatives of (b, a) → m(b, a) are dominated in V k by a P integrable function H(x).

(H6) : P ∂ ∂b m(a k , a k ) 2 and P ∂ ∂a m(a k , a k ) 2 are finite and the quantities P ∂ 2 ∂b i ∂b j m(a k , a k ) and P ∂ 2 ∂a i ∂a j m(a k , a k ) are invertible. (H7) : There exists k such that Pm(a k , a k ) = 0.

(H8) : (V ar P (m(a k , a k ))) 1/2 exists and is invertible.

4.2.The first co-vector of f simultaneously optimizes four problems

We first study Huber's analytic approach. Let R be the class of all positive functions r defined on R and such that f (x)r -1 (a x) is a density on R d for all a belonging to R d * . The following proposition shows that there exists a vector a such that fa ga minimizes K(f r -1 , g) in r:

Proposition 5 (Analytic Approach) There exists a vector a belonging to R d * such that arg min r∈R K(f r -1 , g) = fa ga , r(a x) = fa(a x) ga(a x) as well as K(f, g) = K(f a , g a ) + K(f ga fa , g). We also study Huber's synthetic approach. Let R be the class of all positive functions r defined on R and such that g(x)r(a x) is a density on R d for all a belonging to R d * . The following proposition shows that there exists a vector a such that fa ga minimizes K(gr, f ) in r:

Proposition 6 (Synthetic Approach) There exists a vector a belonging to R d * such that arg min r∈R K(f, gr) = fa ga , r(a x) = fa(a x) ga(a x) as well as K(f, g) = K(f a , g a ) + K(f, g fa ga ).

In the meanwhile, the following proposition shows that there exists a vector a such that fa ga minimizes K(g, f r -1 ) in r.

Proposition 7 There exists a vector a belonging to R d * such that arg min r∈R K(g, f r -1 ) = fa ga , and r(a x) = fa(a x) ga(a x) . Moreover, we have K(g, f ) = K(g a , f a ) + K(g, f ga fa ).

Remark 5 First, through property 4, we get K(f, g fa ga ) = K(g, f ga fa ) = K(f ga fa , g) and K(f a , g a ) = K(g a , f a ). Thus, proposition 7 implies that finding the argument of the maximum of K(g a , f a ) amounts to finding the argument of the maximum of K(f a , g a ). Consequently, the criteria of Huber's methodologies is a → K(g a , f a ). Second, our criteria is a → K(g ga fa , f ) and property 4 implies K(g, f ga fa ) = K(g fa ga , f ). Consequently, since [BROKEZ] takes into account the very form of the criteria, we are then in a position to compare Huber's methodologies with ours.

To recapitulate, the choice of r = fa ga enables us to simultaneously solve the following four optimisation problems, for a ∈ R d * : First, find a such that a = arginf a∈R d * K(f ga fa , g) -analytic approach -Second, find a such that a = arginf a∈R d * K(f, g fa ga ) -synthetic approach -Third, find a such that a = argsup a∈R d * K(g a , f a ) -to compare Huber's methods with ours -Fourth, find a such that a = arginf a∈R d * K(g fa ga , f ) -our method.

4.2.On the sequence of the transformed densities (g (j) )

As already explained in the introduction section, the Mu Zhu article leads us to only consider Huber's synthetic approach.

4.2.1.Estimation of the first co-vector of f

Using the subsample X 1 , X 2 ,..,X n , see Appendix B, and following [BROKEZ], let us introduce the estimate of K(g a , f a,n ), through K(g a , f a,n ) = m(a, a, x)( fa,n(a x) fn(x) )dP n Proposition 8 Let â := arg sup a∈R d * K(g a , f a,n ). Then, â is a strongly convergent estimate of a, as defined in proposition 7. 

• ĝ(k) n is such that ĝ(0) n = g and ĝ(k) n (x) = ĝ(k-1) n (x) f âk ,n (â k x) [ĝ (k-1) ] âk ,n (â k x) , i.e. ĝ(k) n (x) = g(x)Π k j=1 f âj ,n (â j x)
[ĝ (j-1) ] âj ,n (â j x) . We also note that ĝ(k) is a density. Finally, the following theorem shows that ĝ(k) n converges almost everywhere towards g (k) :

4.2.2.Convergence

Theorem 6 For any given k, it holds ĝ(k) n → n g (k) a.s.

4.2.3.Asymptotic inference at the k th step of the algorithm

The following theorem shows that ĝ(k) n converges towards g (k) at the rate O P (m -1 4+d ) in three differents cases, namely for any given x, with the L 1 distance and with the Kullback-Leibler divergence:

Theorem 7 It holds |ĝ (k) n (x) -g (k) (x)| = O P (m -1 4+d ), |ĝ (k) n (x) -g (k) (x)|dx = O P (m -1 4+d ) and |K(f, ĝ(k) n ) -K(f, g (k) )| = O P (m -1 4+d ).
The following theorem shows that the laws of Huber's estimators of a k , namely bn (a k ) and βn , converge towards a linear combination of Gaussian variables.

Theorem 8 It holds √ nD.( bn (a k ) -a k ) Law → E.N d (0, P ∂ ∂b m(a k , a k ) 2 ) + F.N d (0, P ∂ ∂a m(a k , a k ) 2 ) and √ nD.( βn -a k ) Law → G.N d (0, P ∂ ∂a m(a k , a k ) 2 ) + F.N d (0, P ∂ ∂b m(a k , a k ) 2 ) where E = P ∂ 2 ∂a 2 m(a k , a k ), F = P ∂ 2 ∂a∂b m(a k , a k ), G = P ∂ 2 ∂b 2 m(a k , a k ) and D = (P ∂ 2 ∂b 2 m(a k , a k )P ∂ 2 ∂a 2 m(a k , a k ) -P ∂ 2 ∂a∂b m(a k , a k )P ∂ 2 ∂b∂a m(a k , a k )) > 0.

4.3.A stopping rule for the procedure

We first give an estimate of f . Then, we provide a stopping rule for this identification procedure.

Remark 6 In the case where f is known, as explained in section 14 of [START_REF] Peter | Projection pursuit[END_REF], the sequence

(K(g (k-1) a k
, f a k )) k≥1 converges towards zero. Many authors have studied this hypothesis and its consequences. For example, Huber deducts that, if f can be deconvoluted with a Gaussian component,

(K(g (k-1) a k
, f a k )) k≥1 converges toward 0. He then shows that g (i) uniformly converges in L 1 towards f -see propositions 14.2 and 14.3 page 461 of his article.

4.3.1.Estimation of f

The following lemma shows that lim k K(ĝ 

(k) a k ,n , f a k ,n ) converges
K(ĝ (k) a k ,n , f a k ,n ) = 0, a.s.
Then, the following theorem enables us to provide simulations through an estimation of f Theorem 9 We have lim n lim k ĝ(k) n = f, a.s.

4.3.2.Testing of the criteria

In this paragraph, through a test of Huber's criteria, namely a → K(ĝ

(k)
a,n , f a,n ), we build a stopping rule for the procedure. First, the next theorem gives us the law of Huber's criteria.

Theorem 10 For a fixed k, we have √ n(V ar P (m( bn ( βn ), βn ))) -1/2 (P n m( bn ( βn ), βn )

-P n m(a k , a k )) Law → N (0, I),
as n goes to infinity, where k represents the k th step of the algorithm and I is the identity matrix in R d .

Note that k is fixed in theorem 10 since βn = arg sup a∈Θ sup b∈Θ P a n m(b, a) where m is a known function of k -see section 4.1. Thus, in the case where K(g

(k)
a , f a ) = 0, we obtain

Corollary 3

We have √ n(V ar P (m( bn ( βn ), βn ))) -1/2 (P n m( bn ( βn ), βn ))

Law → N (0, I).
Hence, we propose the test of the null hypothesis (H 0 ) : K(g

(k-1) a k , f a k ) = 0 versus the alternative (H 1 ) : K(g (k-1) a k
, f a k ) = 0. Based on this result, we stop the algorithm, then, defining a k as the last vector generated from the Huber's algorithm, we derive from corollary 3, a α-level confidence ellipsoid around a k , namely

E k = {b ∈ R d ; √ n(V ar P (m(b, b))) -1/2 P n m(b, b) ≤ q N (0,1) α
} where q N (0,1) α

is the quantile of a α-level reduced centered normal distribution and where P n is the empirical measure araising from a realization of the sequences (X 1 , . . . , X n ) and (Y 1 , . . . , Y n ).

Consequently, the following corollary provides us with a confidence region for the above test:

Corollary 4 E k is a confidence region for the test of the null hypothesis (H 0 ) versus (H 1 ).

Simulations

We illustrate this section by detailing three simulations.

In each simulation, the program follows our algorithm and aims at creating a sequence of densities (g (j) ), j = 1, .., k, k < d, such that g(0) = g, g (j) = g (j-1) f a j /[g (j-1) ] a j and K(g (k) , f ) = 0, where K is the Kullback-Leibler divergence and a j = arg inf b K(g (j-1) f b /[g (j-1) ] b , f ), for all j = 1, ..., k.

Then, in the first two simulations, the program follows Huber's method and generates a sequence of densities (g (j) ), j = 1, .., k, k < d, such that g(0) = g, g (j) = g (j-1) f a j /[g (j-1) ] a j and K(f, g (k) ) = 0, where K is the Kullback-Leibler divergence and a j = argsup b K([g (j-1) ] b , f b ), for all j = 1, ..., k.

Finally, in the third simulation, we study the robustness of our method with four outliers. We are in dimension 3(=d). We consider a sample of 50(=n) values of a random variable X with density f defined by,

f (x) = N ormal(x 1 + x 2 ).Gumbel(x 0 + x 2 ).Gumbel(x 0 + x 1 ),
where the Gumbel law parameters are (-3, 4) and (1, 1) and where the normal distribution parameters are (-5, 2).We generate a Gaussian random variable Y with a density -that we will name gwhich has the same mean and variance as f .

In the first part of the program, we theoretically obtain k = 2, a 1 = (1, 0, 1) and a 2 = (1, 1, 0) (or a 2 = (1, 0, 1) and a 1 = (1, 1, 0) which leads us to the same conclusion). To get this result, we perform the following test

(H 0 ) : (a1, a2) = ((1, 0, 1), (1, 1, 0)) versus (H 1 ) : (a1, a2) = ((1, 0, 1), (1, 1, 0)).
Moreover, if i represents the last iteration of the algorithm, then

√ n(V ar P (M (c n (γ n ), γ n ))) (-1/2) P n M (c n (γ n ), γ n ) Law → N (0, 1),
and then we estimate (a 1 , a 2 ) with the following 0.9(=α) level confidence ellipsoid

E i = {b ∈ R 3 ; (V ar P (M (b, b))) -1/2 P n M (b, b) ≤ q N (0,1) α / √ n 0,2533
7.0710678 = 0.03582203}. Indeed, if i = 1 represents the last iteration of the algorithm, then a 1 ∈ E 1 , and if i = 2 represents the last iteration of the algorithm, then a 2 ∈ E 2 , and so on, if i represents the last iteration of the algorithm, then a i ∈ E i . Now, if we follow Huber's method, we also theoretically obtain k = 2, a 1 = (1, 0, 1) and a 2 = (1, 1, 0) (or a 2 = (1, 0, 1) and a 1 = (1, 1, 0) which leads us to the same conclusion). To get this result, we perform the following test:

(H 0 ) : (a 1 , a 2 ) = ((1, 0, 1), (1, 1, 0)) versus (H 1 ) : (a 1 , a 2 ) = ((1, 0, 1), (1, 1, 0)).

Similarly as above, the fact that, if i represents the last iteration of the algorithm, then

√ n(V ar P (m(b n (β n ), β n ))) (-1/2) P n m(b n (β n ), β n )
Law → N (0, 1), enables us to estimate our sequence of (a i ), reduced to (a 1 , a 2 ), through the following 0.9(=α) level confidence ellipsoid

E i = {b ∈ R 3 ; (V ar P (m(b, b))) -1/2 P n m(b, b) ≤ q N (0,1) α / √ n 0.03582203}.
Finally, we obtain 

H 0 : a 2 ∈ E 2 : True H 0 : a 2 ∈ E 2 : True K(Estimate g (2)
m , g (2) ) 0.444388 0.794124 Therefore, we conclude that f = g (2) .

Simulation 2

We are in dimension 10(=d). We consider a sample of 50(=n) values of a random variable X with density f defined by, f (x) = Gumbel(x 0 ).N ormal(x 1 , . . . , x 9 ), where the Gumbel law parameters are -5 and 1 and where the normal distribution is reduced and centered.

Our reasoning is the same as in Simulation 1.

In the first part of the program, we theoretically obtain k = 1 and a 1 = (1, 0, . . . , 0). To get this result, we perform the following test (H 0 ) : a 1 = (1, 0, . . . , 0) versus (H 1 ) : a 1 = (1, 0, . . . , 0).

We estimate a 1 by the following 0.9(=α) level confidence ellipsoid

E i = {b ∈ R 2 ; (V ar P (M (b, b))) -1/2 P n M (b, b) ≤ q N (0,1) α / √ n 0.03582203}.
Now, if we follow Huber's method, we also theoretically obtain k = 1 and a 1 = (1, 0, . . . , 0). To get this result, we perform the following test (H 0 ) : a 1 = (1, 0, . . . , 0) versus (H 1 ) : a 1 = (1, 0, . . . , 0).

Hence, using the same reasoning as in Simulation 1, we estimate a 1 through the following 0.9 (=α)

level confidence ellipsoid E i = {b ∈ R 2 ; (V ar P (m(b, b))) -1/2 P n m(b, b) ≤ q N (0,1) α / √ n 0.03582203}.
And, we obtain We are in dimension 20(=d). We first generate a sample with 100(=n) observations, namely four outliers x = (2, 0, . . . , 0) and 96 values of a random variable X with a density f defined by f (x) = Gumbel(x 0 ).N ormal(x 1 , . . . , x 19 ), where the Gumbel law parameters are -5 and 1 and where the normal distribution is reduced and centered. Our reasoning is the same as in Simulation 1.

We theoretically obtain k = 1 and a 1 = (1, 0, . . . , 0). To get this result, we perform the following test (H 0 ) : a 1 = (1, 0, . . . , 0) versus (H 1 ) : a 1 = (1, 0, . . . , 0). We estimate a 1 by the following 0.9(=α)

level confidence ellipsoid E i = {b ∈ R 2 ; (V ar P (M (b, b))) -1/2 P n M (b, b) ≤ q N (0,1) α / √ n 0.02533}.
And, we obtain 

0 : a 1 ∈ E 1 : True K(Estimate g (1) 
m , g (1) ) 2.677015

Therefore, we conclude that f = g (1) .

Critics of the simulations

As customary in simulation studies, as approximations accumulate, results depend on the power of the calculators used as well as on the available memory. Moreover, in order to implement our optimisation in R d of the relative entropy, we choose to apply the simulated annealing method.

Thus, in the case where f is unknown, we will never have the certainty to have reached the desired minimum or maximum of the Kullback-Leibler divergence. Indeed, this probabilistic metaheuristic only converges, and the probability to reach the minimum or the maximum only tends towards 1, when the number of random jumps tends in theory towards infinity.

We also note that no theory on the optimal number of jumps to implement does exist, as this number depends on the specificities of each particular problem.

Finally, we choose the 50 -4 4+d (resp. 100 -4 4+d ) for the AMISE of the simulations 1 and 2 (resp. 3). This choice leads us to simulate 50 (resp.100) random variables, see [START_REF] Scott | Multivariate density estimation. Theory, practice, and visualization[END_REF] page 151, none of which have been discarded to obtain the truncated sample. 17 The present article demonstrates that our Kullback-Leibler divergence minimisation method constitutes a good alternative to Huber's relative entropy maximization approach, see [START_REF] Peter | Projection pursuit[END_REF]. Indeed, the convergence results as well as the simulations we carried out clearly evidence the robustness of our methodology.

A. Reminders

A.1.The relative entropy (or Kullback-Leibler divergence)

We call h a the density of a Z if h is the density of Z, and K the relative entropy or Kullback-Leibler divergence. The function K is defined by -considering P and Q, two probabilities:

K(Q, P ) = ϕ( ∂Q ∂P ) dP if P << Q and K(Q, P ) = +∞ otherwise, where ϕ : x → xln(x) -x + 1 is strictly convex.
Let us present some well-known properties of the Kullback-Leibler divergence.

Property 2 We have K(P, Q) = 0 ⇔ P = Q. Property 3 The divergence function Q → K(Q, P ) is convex, lower semi-continuous (l.s.c.) -for
the topology that makes all the applications of the form Q → f dQ continuous where f is bounded and continuous -as well as l.s.c. for the topology of the uniform convergence.

Property 4 (corollary (1.29), page 19 of [LIVAJ])

If T : (X, A) → (Y, B) is measurable and if K(P, Q) < ∞, then K(P, Q) ≥ K(P T -1 , QT -1
), with equality being reached when T is surjective for (P, Q).

Theorem 11 (theorem III.4 of [AZE97]) Let f : I → R be a convex function. Then f is a Lipschitz function in all compact intervals [a, b] ⊂ int{I}.
In particular, f is continuous on int{I}.

A.2.Useful lemmas

Demonstrations of everything introduced in this section can be found in [TOUB] Lemma 3 If f and g are positive and bounded densities, then g (k) is positive and bounded.

Lemma 4 inf a∈R d * K(g fa ga , f ) is reached.
Lemma 5 Let H be an integrable function and let C = H dP and Theorem 12 In the case when f and g are known, if we assume (H 0) to (H 3) hold, for any k = 1, ..., d and any x ∈ R d , we then have

C n = H dP n , then, C n -C = O P ( 1 √ n ).
|ǧ (k) (x) -g (k) (x)| = O P (n -1/2 ), |ǧ (k) (x) -g (k) (x)|dx = O P (n -1/2 ) and |K(ǧ (k) , f ) -K(g (k) , f )| = O P (n -1/2 ).
Theorem 13 In the case when f and g are known, if we assume that conditions (H 1) to (H 6)

hold, then √ nA.(č n (a k ) -a k ) Law → B.N d (0, P ∂ ∂b M (a k , a k ) 2 ) + C.N d (0, P ∂ ∂a M (a k , a k ) 2 ) and √ nA.(γ n -a k ) Law → C.N d (0, P ∂ ∂b M (a k , a k ) 2 ) + C.N d (0, P ∂ ∂a M (a k , a k ) 2 ) where A = (P ∂ 2 ∂b∂b M (a k , a k )(P ∂ 2 ∂a i ∂a j M (a k , a k ) + P ∂ 2 ∂a i ∂b j M (a k , a k ))), C = P ∂ 2 ∂b∂b M (a k , a k ) and B = P ∂ 2 ∂b∂b M (a k , a k ) + P ∂ 2 ∂a i ∂a j M (a k , a k ) + P ∂ 2 ∂a i ∂b j M (a k , a k ).
Lemma 7 Keeping the notations of the proof of lemma 1, we have

0 ≤ .. ≤ K(Ψ (∞) n,k , f n ) ≤ .. ≤ K(g (∞) n , f n ) ≤ .. ≤ K(Ψ (∞) n,k-1 , f n ) ≤ .. ≤ K(g n , f n ), (***)
Theorem 14 Assuming that (H 1) to (H 3), (H 6) and (H 8) hold. Then, √ n(V ar

P (M (č n (γ n ), γn ))) -1/2 (P n M (č n (γ n ), γn ) -P n M (a k , a k )) Law → N (0, I),
where k represents the k th step of the algorithm and with I being the identity matrix in R d .

B. Study of the sample

Let X 1 , X 2 ,..,X m be a sequence of independent random vectors with the same density f . Let Y 1 , Y 2 ,..,Y m be a sequence of independent random vectors with the same density g. Then, the kernel estimators f m , and f a,m of f and f a , for all a ∈ R d * , almost surely and uniformly converge since we assume that the bandwidth h m of these estimators meets the following conditions (see [BOLE]):

(Hyp): h m m 0, mh m m ∞, mh m /L(h -1 m ) → m ∞ and L(h -1 m )/LLm → m ∞, with L(u) = ln(u ∨ e).

Let us consider

A 0 (m, a) = 1 m Σ m i=1 ln{ ga(a Y i ) fa,m(a Y i ) } ga(a Y i ) g(Y i ) , A 0 (m, a) = 1 m Σ m i=1 ( ga(a X i ) fa,m(a X i ) -1) fa,m(a X i ) fm(X i ) , B 0 (m, a) = 1 m Σ m i=1 ln{ fa,m(a Y i ) ga(a Y i ) g(Y i ) fm(Y i ) } fa,m(a Y i ) ga(a Y i ) , B 0 (m, a) = 1 m Σ m i=1 (1 -{ fa,m(a X i ) ga(a X i ) g(X i )
fm(X i ) }). Our goal is to estimate the maximum of K(g a , f a ) and the minimum of K(g fa ga , f )). To achieve this, it is necessary for us to truncate X 1 , X 2 ,..,X m and Y 1 , Y 2 ,..,Y m : Let us consider now a sequence θ m such that θ m → 0, and y m /θ 2 m → 0, where y m is defined through lemma 10 with y m = O P (m -2 4+d ). We will generate f m and f b,m from the starting sample and we select the X i and the Y i vectors such that f m (X i ) ≥ θ m and g(Y i ) ≥ θ m , for all i and for all b ∈ R d * -for our algorithm. The vectors meeting these conditions will be called X 1 , X 2 , ..., X n and Y 1 , Y 2 , ..., Y n .

Consequently, the next proposition provides us with the condition required to obtain our estimates Proposition 11 (see [TOUB]) Using the notations introduced in [BROKEZ] and in sections 3.1.1. and 4.1., it holds

sup a∈R d * |(A 0 (n, a) -A 0 (n, a)) -K(g a , f a )| → 0 a.s., (6) 
sup

a∈R d * |(B 0 (n, a) -B 0 (n, a)) -K(g f a g a , f )| → 0 a.s. ( 7 
)
Remark 7 We can take for θ m the expression m -ν , with 0 < ν < 1 4+d . Moreover, to estimate a k , k ≥ 2, we use the same procedure than the one we followed in order to find a 1 with g (k-1) n instead of g -since g (k-1) is unknown in this case.

D. Hypotheses' discussion

D.1.Discussion on (H 2).

We verify this hypothesis in the case where :

• a 1 is the unique element of R d * such that f (./a 1 x) = g(./a 1 x), i.e. K(g(./a 1 x)f a 1 (a 1 x), f ) = 0,(1) • f and g are bounded and positive, (2)

• there exists a neighborhood V of a k such that, for all b in V and for all positive real A, there exists S > 0 such that g(./b x) ≤ S.f (./b x) with x > A (3).

We remark that we obtain the same proof with f , g (k-1) and a k .

First, (1) implies that g fa 1 ga 1 = f . Hence, 0 > ln( g f fc gc )g fa 1 ga 1 dx = -K(g fc gc , f ) > -K(g, f ) as a result of the very construction of g fc gc . Besides, (2) and (3) imply that there exists a neighborhood V of a k such that, for all c in V , there exists S > 0 such that, for all x in R d , g(./c x) ≤ S.f (./c x).

Consequently, we get |M (c, a 1 , x)| ≤ | -K(g, f )| + | -( g(./c x) f (./c x) -1)| ≤ K(g, f ) + S + 1. Finally, we infer the existence of a neighborhood V of a k such that, for all c in V , |M (c, a k , x)| ≤ H(x) = K(g, f ) + S + 1 (P -a.s.) with PH < ∞.

D.2.Discussion on (H 3).

We verify this hypothesis in the case where a 1 is the unique element of R d * such that f (./a 1 x) = g(./a 1 x), i.e. K(g(./a 1 x)f a 1 (a 1 x), f ) = 0 -we obtain the same proof with f , g (k-1) and a k .

Preliminary (A): Shows that A = {(c, x) ∈ R d * \{a 1 } × R d ; fa 1 (a 1 x)
ga 1 (a 1 x) > fc(c x) gc(c x) and g(x) fc(c x) gc(c x) > f (x)} = ∅ through a reductio ad absurdum, i.e. if we assume A = ∅. gc(c x) implies g(./a 1 x)f a 1 (a 1 x) = g(x)

Thus, we have f (x) = f (./a 1 x)f a 1 (a 1 x) = g(./a 1 x)f a 1 (a 1 x) > g(./c x)f c (c x) > f , since
fa 1 (a 1 x) ga 1 (a 1 x) ≥ g(x) fc(c x) gc(c x) = g(./c x)f c (c x), i.e. f > f . We can therefore conclude.

Preliminary (B): Shows that B = {(c, x) ∈ R d * \{a 1 } × R d ; fa 1 (a 1 x)
ga 1 (a 1 x) < fc(c x) gc(c x) and g(x) fc(c x) gc(c x) < f (x)} = ∅ through a reductio ad absurdum, i.e. if we assume B = ∅.

Thus, we have

f (x) = f (./a 1 x)f a 1 (a 1 x) = g(./a 1 x)f a 1 (a 1 x) < g(./c x)f c (c x) < f .
We can thus conclude as above.

Let us now prove (H 3). We have P M (c, a 1 )-P M (c, a) = ln( g(x)fc(c x) gc(c x)f (x) ){ fa 1 (a 1 x) ga 1 (a 1 x) -fc(c x) gc(c x) }g(x)dx. Moreover, the logarithm ln is negative on {x ∈ R d * ; g(x)fc(c x) gc(c x)f (x) < 1} and is positive on {x ∈ R d * ; g(x)fc(c x) gc(c x)f (x) ≥ 1}. Thus, the preliminary studies (A) and (B) show that ln( g(x)fc(c x) gc(c x)f (x) ) and { fa 1 (a 1 x) ga 1 (a 1 x) -fc(c x) gc(c x) } always present a negative product. We can thus conclude, since (c, a) → P M (c, a 1 ) -P M (c, a) is not null for all c and for all a = a 1 . 2

E. Proofs

Remark 8

1/ Through lemma 3, (H 0) -according to which f and g are assumed to be positive and boundedimplies that ǧ(k) n and ĝ(k) n are positive and bounded. 2/ Remark 4 implies that f n , g n , ǧ(k) n and ĝ(k) n are positive and bounded since we consider a Gaussian kernel.

Proof of propositions 5 and 6. Let us first study proposition 6.

Without loss of generality, we prove this proposition with x 1 in lieu of a X.

We define g * = gr. We remark that g and g * present the same density conditionally to x 1 . Indeed,

g * 1 (x 1 ) = g * (x)dx 2 ...dx d = r(x 1 )g(x)dx 2 ...dx d = r(x 1 ) g(x)dx 2 ...dx d = r(x 1 )g 1 (x 1
). Thus, we can prove this proposition. We have g(.|x 1 ) = g(x 1 ,...,xn) g 1 (x 1 )

and g 1 (x 1 )r(x 1 ) is the marginal density of g * . Hence, g * is a density since g * is positive and since

g * dx = g 1 (x 1 )r(x 1 )g(.|x 1 )dx = g 1 (x 1 ) f 1 (x 1 ) g 1 (x 1 ) ( g(.|x 1 )dx 2 ..dx d )dx 1 = f 1 (x 1 )dx 1 = 1. More- over, K(f, g * ) = f {ln(f ) -ln(g * )}dx, (8) 
= f {ln(f (.|x 1 )) -ln(g * (.|x 1 )) + ln(f 1 (x 1 )) -ln(g 1 (x 1 )r(x 1 ))}dx, = f {ln(f (.|x 1 )) -ln(g(.|x 1 )) + ln(f 1 (x 1 )) -ln(g 1 (x 1 )r(x 1 ))}dx, (9) 
as g * (.|x 1 ) = g(.|x 1 ). Since the minimum of this last equation ( 9) is reached through the minimization of f {ln(f 1 (x 1 )) -ln(g 1 (x 1 )r(x 1 ))}dx = K(f 1 , g 1 r), then property 2 necessarily implies that K(f 1 , g 1 ), which completes the demonstration of proposition 6.

f 1 = g 1 r, hence r = f 1 /g 1 . Finally, we have K(f, g) -K(f, g * ) = f {ln(f 1 (x 1 )) -ln(g 1 (x 1 
Similarly, if we replace f * = f r -1 with f and g with g * , we obtain the proof of proposition 5. 2

Proof of propositions 2 and 7. The proof of proposition 2 (resp. 7) is very similar to the one for proposition 6, save for the fact we now base our reasoning at row 8 on K(g * , f ) = g * {ln(f ) -ln(g * )}dx (resp. g{ln(g * ) -ln(f )}dx) instead of K(f, g * ) = f {ln(f ) -ln(g * )}dx.

2

Proof of lemma 8.

Lemma 8 If the family (a i ) i=1...d is a basis of R d then g(./a 1 x, ..., a j x) = n(a j+1 x, ..., a d x) = f (./a 1 x, ..., a j x).

Putting A = (a 1 , .., a d ), let us determine f in the A basis. Let us first study the function defined by ψ : R d → R d , x → (a 1 x, .., a d x). We can immediately say that ψ is continuous and since

A is a basis, its bijectivity is obvious. Moreover, let us study its Jacobian. By definition, it is

J ψ (x 1 , . . . , x d ) = |( ∂ψ i ∂x j ) 1≤i,j≤d | = |(a i,j ) 1≤i,j≤d | = |A| = 0 since
A is a basis. We can therefore infer for any x in R d , there exists a unique y in R d such that f (x) = |A| -1 Ψ(y), i.e. Ψ (resp. y) is the expression of f (resp of x) in the A basis, namely Ψ(y) = ñ(y j+1 , ..., y d ) h(y 1 , ..., y j ), with ñ and h being the expressions of n and h in the A basis. Consequently, our results in the case where the family {a j } 1≤j≤d is the canonical basis of R d , still hold for Ψ in the A basis -see section 2.1.2. And then, if g is the expression of g in the A basis, we have g(./y 1 , ..., y j ) = ñ(y j+1 , ..., y d ) = Ψ(./y 1 , ..., y j ),

i.e. g(./a 1 x, ..., a j x) = n(a j+1 x, ..., a d x) = f (./a 1 x, ..., a j x). 2

Proof of lemma 9.

Lemma 9 Let f be an absolutely continuous density, then, for all sequences (a n ) tending to a in R d * , the sequence f an uniformly converges towards f a .

Proof :

For all a in R d * , let F a be the cumulative distribution function of a X and ψ a be a complex function defined by ψ a (u, v) = F a (Re(u + iv)) + iF a (Re(v + iu)), for all u and v in R.

First, the function ψ a (u, v) is an analytic function, because x → f a (a x) is continuous and as a result of the corollary of Dini's second theorem -according to which "A sequence of cumulative distribution functions which pointwise converges on R towards a continuous cumulative distribution function F on R, uniformly converges towards F on R"-we deduct that, for all sequences (a n ) converging towards a, ψ an uniformly converges towards ψ a . Finally, the Weierstrass theorem, (see proposal (10.1) page 220 of [START_REF] Dieudonné | Calcul infinitésimal[END_REF]), implies that all sequences ψ a,n uniformly converge towards ψ a , for all a n tending to a. We can therefore conclude. , we conclude similarly as for ǧ(1) n . In a similar manner, we prove theorem 6. 2 Proof of lemma 10. ). Finally, since the central limit theorem rate is O P (m -1 2 ), we then obtain that y m ≤ O P (m -1 2 ) + O P (m -2 4+d ) = O P (m -2 4+d ). 2

Proof of theorems 2 and 7. First, from lemma 10, we derive that, for any x, ((f ǎj ,n ( ǎj x) -f a j (a j x))g (j-1) a j (a j x) + f a j .(a j x)(g (j-1) a j (a j x)ǧ(j-1) ǎj ,n ( ǎj x))), i.e. |Ψ j | = O P (n -2 4+d ) since f a j (a j x) = O(1) and g (j-1) a j (a j x) = O(1). We can therefore conclude similarly as in theorem 12 and through lemma 6. Similarly, we derive theorem

2

Proof of theorems 3 and 8. We get the theorem through proposition 11 and theorem 13. 2

Proof of lemmas 1 and 2. We apply our algorithm between f and g. There exists a sequence of densities (g (k) ) k such that 0 = K(g (∞) , f ) ≤ .. ≤ K(g (k) , f ) ≤ .. ≤ K(g, f ), (*)

where g (∞) = lim k g (k) which is by construction a density. Moreover, let (g

(k)
n ) k be the sequence of densities such that g (k)

n is the kernel estimate of g (k) . Since we derive from remark 8 page 21 an integrable upper bound of g (k)

n , for all k, which is greater than f -see also the definition of ϕ in the proof of theorem 4 -, then the dominated convergence theorem implies that, for any k,

lim n K(g (k)
n , f n ) = K(g (k) , f ), i.e., from a certain given rank n 0 , we have 0 ≤ .. ≤ K(g

(∞) n , f n ) ≤ .. ≤ K(g (k)
n , f n ) ≤ .. ≤ K(g n , f n ), (**) Consequently, through lemma 7 page 19, there exists a k such that 0 ≤ .. ≤ K(Ψ

(∞) n,k , f n ) ≤ .. ≤ K(g (∞) n , f n ) ≤ .. ≤ K(Ψ (∞) n,k-1 , f n ) ≤ .. ≤ K(g n , f n ), (***) where Ψ (∞) n,k is a density such that Ψ (∞) n,k = lim k g (k)
n . Finally, through the dominated convergence theorem and taking the limit as n in (***) we get 0 = K(g (∞) , f ) = lim n K(g

(∞) n , f n ) ≥ lim n K(Ψ (∞)
n,k , f n ) ≥ 0. The dominated convergence theorem enables us to conclude: 0 = lim n K(Ψ

(∞) n,k , f n ) = lim n lim k K(g (k)
n , f n ). Similarly, we get lemma 2. 2

Proof of theorems 4 and 9. We recall that g is a convex combination of multivariate Gaussian distributions. As derived at remark 4, for all k, the determinant of the covariance of the random vector -with density g (k) -is greater than or equal to the product of a positive constant times the determinant of the covariance of the random vector with density f . The form of the kernel estimate therefore implies that there exists an integrable function ϕ such that, for any given k and any given n, we have |g 
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  Page

Finally

  , we define the following sequences (â k ) k≥1 and (ĝ (k) n ) k≥1 -for any given n : • âk is an estimate of a k as defined in proposition 8 with ĝ(k-1)

  study at the k th step of the algorithm Let bn (a) = arg sup b∈Θ P a n m(b, a), with a ∈ Θ, and βn = arg sup a∈Θ sup b∈Θ P a n m(b, a), then Proposition 9 Both sup a∈Θ bn (a) -a k and βn converge toward a k a.s.

  well as one-dimensional projections and their associated distributions in multivariate datasets can be evidenced through Projection Pursuit.

  Proposition 10 In the case when f and g are known, if we assume (H 1) to (H 3) hold, then both sup a∈Θ čn (a) -a k and γn tends to a k a.s. Lemma 6 We keep the notations introduced in Appendix B. It holds n = O

Page

  b ∈ R d * -for Huber's algorithm -and such that f m (X i ) ≥ θ m and g b (b Y i ) ≥ θ m , for all i and for all 19

  fa 1 (a 1 x) ga 1 (a 1 x)

2

  Proof of propositions 4 and 9. Proposition 4 comes immediately from proposition 11 page 20 22 Proof of theorems 1 and 6. We prove the theorem 1 by induction. First, by the very definition of the kernel estimator ǧ(0) n = g n converges towards g. Moreover, the continuity of a → f a,n and a → g a,n and proposition 4 imply that ǧ

Lemma 10

 10 For any continuous density f , we havey m = |f m (x) -f (x)| = O P (m -2 4+d ). Defining b m (x) as b m (x) = |E(f m (x)) -f (x)|, we have y m ≤ |f m (x) -E(f m (x))| + b m (x). Moreover, from page 150 of [SCOTT92], we derive that b m (x) = O P (Σ d j=1 h 2 j ) where h j = O P (m -1 4+d). Then, we infer b m (x) = O P (m -2 4+d

  sup a∈R d * |f a,n (a x) -f a (a x)| = O P (n -2 4+d ). Then, let us consider Ψ j = f ǎj ,n ( ǎj x) ǧ(j-1) ǎj ,n ( ǎj x)

  divergence is greater than the L 1 -distance, we then have lim n lim k K(g(k) n , f n ) ≥ lim n lim k |g (k) n (x) -f n (x)|dx. Moreover, the Fatou's lemma implies that lim k |g (k) n (x) -f n (x)|dx ≥ lim k |g (k) n (x) -f n (x)| dx = |[lim k g (k) n (x)] -f n (x)|dx and lim n |[lim k g (k) n (x)] -f n (x)|dx ≥ lim n |[lim k g (k) n ] -f n | dx = |[lim n lim k g (k) n (x)] -lim n f n (x)|dx.We then obtain that 0 = lim n lim k K(g(k) n , f n ) ≥ | lim n lim k g (k) n (x) -lim n f n (x)|dx ≥ 0, i.e. that | lim n lim k g (k)n (x)-lim n f n (x)|dx = 0. Moreover, for any given k and any given n, the function g (k) n

  ϕ. Finally, the dominated convergence theorem enables us to say that lim n lim k g(k) n = lim n f n = f , since f n converges towards f and since | lim n lim k g (k)n (x) -lim n f n (x)|dx = 0. Similarly, we get theorem 9.2Proof of theorems 5 and 10. Through proposition 11 and theorem 14, we derive theorem 5.Similarly, we get theorem 10.
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  .,X m (resp. Y 1 , Y 2 ,..,Y m ) be a sequence of m independent random vectors with the same density f (resp. g). As customary in nonparametric Kullback-Leibler optimizations, all estimates of f and f a , as well as all uses of Monte Carlo methods are being performed using subsamples X 1 , X 2 ,..,X n and Y 1 , Y 2 ,..,Y n , extracted respectively from X 1 , X 2 ,..,X m and Y 1 , Y 2 ,..,Y m ,
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Table 1 :

 1 Simulation 1 : Numerical results of the optimisation.
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		Our Algorithm	Huber's Algorithm
		minimum : 0.0266514 maximum : 0.007277
	Projection Study 1 :	at point : (1.0,0,1.0)	at point : (1,0.0,1.0)
		P-Value : 0.998852	P-Value : 0.999835
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Table 2 :

 2 Simulation 2 : Numerical results of the optimisation.

	Page 17 of 25		
			Our Algorithm	Huber's Algorithm
			minimum : 0.00263554	maximum : 0.00376235
			at point : (1.0001,	at point : (0.9902,
			0.0040338, 0.098606, 0.115214, 0.0946806, 0.161447, 0.0090245,
	Projection Study 0:	0.067628, 0.16229, 0.00549203, 0.147804, 0.180259, 0.0975065, 0.014319, 0.149339, 0.0578906) 0.101044, 0.190976, 0.155706)
			P-Value : 0.828683	P-Value : 0.807121
	Test :	H (1) m , g (1) ) 2.44546	2.32331
			16
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Therefore, we conclude that f = g
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Table 3 :

 3 Simulation 3: Numerical results of the optimisation.

		Our Algorithm
		minimum : 0.024110
		at point : (0.8221, 0.0901, 0.0892, -0.2020, 0.0039, 0.1001,
	Projection Study 0	0.0391, 0.08001, 0.07633, -0.0437, 0.12093, 0.09834, 0.1045,
		0.0874, -0.02349, 0.03001, 0.12543, 0.09435, 0.0587, -0.0055)
		P-Value : 0.77004
	Test :	H
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