
HAL Id: hal-00680015
https://hal.science/hal-00680015

Submitted on 17 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Posterior Sampling when the Normalizing Constant is
Unknown

Stephen G. Walker

To cite this version:
Stephen G. Walker. Posterior Sampling when the Normalizing Constant is Unknown.
Communications in Statistics - Simulation and Computation, 2011, 40 (05), pp.784-792.
�10.1080/03610918.2011.555042�. �hal-00680015�

https://hal.science/hal-00680015
https://hal.archives-ouvertes.fr


For Peer Review
 O

nly
 

 
 

 
 

 
 

Posterior Sampling when the Normalizing Constant is 

Unknown 
 
 

Journal: Communications in Statistics - Simulation and Computation 

Manuscript ID: LSSP-2010-0228.R1 

Manuscript Type: Original Paper 

Date Submitted by the 

Author: 
27-Dec-2010 

Complete List of Authors: Walker, Stephen G.; IMSAS 

Keywords: Bayesian inference, unknown normalizing constant, Gibbs sampling 

Abstract: 

This paper describes a means by which to undertake Bayesian 
posterior inference via sampling techniques when the normalizing 
constant is not computable and hence unavailable. The strategy 
relies on the introduction of latent variables which removes any 
integrals associated with the inaccessibility of the normalizing 
constant. 

  

Note: The following files were submitted by the author for peer review, but cannot be converted 
to PDF. You must view these files (e.g. movies) online. 

revj.zip 

 
 

 

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation



For Peer Review Only

theta

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

Page 1 of 16

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only
0 100 200 300 400 500

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

sample number

th
et

a
Page 2 of 16

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

theta

0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Page 3 of 16

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only
0 100 200 300 400 500

0
1

2
3

4

sample number

th
et

a
Page 4 of 16

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
Posterior Sampling when the Normalizing Constant

is Unknown

Stephen G. Walker ∗

Abstract

This paper describes a means by which to undertake Bayesian pos-
terior inference via sampling techniques when the normalizing constant
is not computable and hence unavailable. The strategy relies on the
introduction of latent variables which removes any integrals associated
with the inaccessibility of the normalizing constant.

Keywords: Bayesian inference, Gibbs sampling, Reversible Jump MCMC,
Unknown normalizing constant.

1. Introduction. This paper considers the situation when a prob-
ability model is employed for which the normalizing constant is not
computable. That is, for y ∈ I,

f(y|θ) =
g(y, θ)∫

I
g(s, θ) ds

where g(y, θ) is known and computable, but

Z(θ) =
∫
I

g(s, θ) ds

is uncomputable. Such a scenario arises naturally in a number of prob-
lems:

1. Censored data problems; for some density g(y, θ) and A ⊂ I it is
that

f(y|θ) ∝ g(y, θ) 1(y ∈ A)

and the normalizing constant
∫
A
g(y, θ) dy is not computable.

∗Stephen G. Walker is Professor of Statistics, School of Mathematics, Statistics &
Actuarial Science, University of Kent, Canterbury, U. K. (email: S.G.Walker@kent.ac.uk)
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2. Weighted sampling problems; for some density g(y, θ) and weight

function w(y), it is that

f(y|θ) ∝ w(y) g(y, θ)

and
∫
w(y) g(y, θ) dy is not computable.

We will provide a means by which to implement an exact Gibbs
sampler based on latent variables; see Besag and Green (1993) and
Damien et al. (1999). The aim here is to use latent variables to
remove the integral from the denominator. Numerical methods work
first by calculating the normalizing constant and then undertake poste-
rior inference with the estimated normalizing constant. Path sampling
(Gelman and Meng, 1998) is one popular approach and some applica-
tions are to be found in Pettitt et al. (2003).

Other methods rely on an original auxiliary variable scheme intro-
duced by Moller et al. (2006). This ideas has been extended by Murray
et al. (2006) and also by Adams et al. (2009). Specifically, this latter
paper deals with case 2. above whereby it is also that w is modeled
as a stochastic process in a Bayesian setting. These algorithms rely
on proposal distributions associated with auxiliary variables which,
within the framework of a Metropolis–Hastings sampler, yield an ac-
ceptance probability ratio which does not depend on the normalizing
constant. However, difficulties emerge in obtaining good enough ac-
ceptance probabilities and also the need to sample the proposals which
are forced in order to obtain the correct acceptance probability.

The method outlined in this paper uses auxiliary variables but
only to remove the problem caused by the normalizing constant. The
MCMC algorithm can then be constructed with no special considera-
tions required to be taken into account. In Murray et al. (2006) it is
stated that “No known method of defining auxiliary variables removes
Z(θ) from the joint distribution”. The joint distribution referred to is
the one for (y, θ) once a prior π(θ) has been included; that is

f(y, θ) =
g(y, θ)
Z(θ)

π(θ).

The present paper indeed finds such auxiliary variables for removing
Z(θ).

Hence, we can proceed with posterior inference for θ without first
having to estimate the normalizing constant and without being forced
to employ a special MCMc algorithm for which the normalizing con-
stant only disappears in an acceptance probability ratio. The only
condition under which we work is that g is bounded; so there exists
some known constant M < +∞ such that g(y, θ) ≤ M for all θ and
y. In all of the material which follows, and without loss of generality,

2
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we will assume that M = 1. We will also assume that y belongs to
some bounded interval which, again without loss of generality, we will
assume to be the interval [0, 1]. This is to cover the general case

f(y|θ) =
g(y, θ)∫

I
g(s, θ) ds

.

However, in cases 1. and 2. described earlier no restrictions are re-
quired save A need be a bounded set and w needs to be bounded. We
can also cover the case 2. with w modeled as a bounded stochastic
process based on a transformed Gaussian process, as in Adams et al.
(2009).

In Section 2 we will describe the latent model which provides the
basis for a reversible jump MCMC algorithm for sampling the posterior
distribution. The reversible jump algorithm is given in some detail in
Section 3 and Section 4 contains some numerical illustrations.

2. The latent variables. The likelihood function based on a sample
of size n from f(y|θ) is given by

f(y1, . . . , yn|θ) ∝
∏n
i=1 g(yi, θ)
m(θ)n

where

m(θ) =
∫ 1

0

g(s, θ) ds.

When faced with a denominator of the type m(θ)n, a standard trick
(see, e.g. Nieto at al., 2004) to remove some of the complexity is to
use

f(v, y|θ) ∝ vn−1 exp{−vm(θ)}
n∏
i=1

g(yi, θ)

so that integrating out the v yields the likelihood function. But, when
m(θ) is an uncomputable integral then little progress has been made
here.

However, we can now introduce some further latent variables

(k, s1, . . . , sk)

which removes the integral:

f(v, k, s(k), y|θ) ∝ e−vvk+n−1

k!

k∏
j=1

{(1− g(sj , θ))1(0 < sj < 1)}
n∏
i=1

g(yi, θ),

where s(k) = (s1, . . . , sk). Integrating out the (sj)kj=1 and the sum-
ming over k returns the likelihood. One further idea which can ease

3
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the sampling algorithm would be to introduce further latent variables
(uj)kj=1 which interact with the (sj) via

k∏
j=1

1(uj < 1− g(sj , θ)).

This then provides us with a basis for the implementation of a MCMC
(Smith and Roberts, 1993) for sampling the model. The only possi-
ble source of complication is the k variable which when changes the
dimension of the model also changes. This can then be solved using
ideas based on reversible jump MCMC (Green, 1995).

The variables ((uj , sj)kj=1, v, θ), once a prior π(θ) has been specified,
should not be difficult to sample from their full conditional density
functions and so the next section is devoted to the sampling of the k,
which needs some attention.

For completeness we provide the other full conditional densities
here. Bur before doing this we note a simple procedure which is to
remove the v latent variable. Integrating out v from f(v, k, s(k), y|θ)
yields

f(k, s(k), y|θ) ∝
(
n+ k − 1
k

) k∏
j=1

{(1− g(sj , θ))1(0 < sj < 1)}
n∏
i=1

g(yi, θ).

Now we can also confirm that integrating out the s(k) and summing
over k returns the original likelihood due to the identity

∞∑
k=0

(
n+ k − 1
k

)
ξk = (1− ξ)−n

for any 0 < ξ < 1 and n ≥ 1.
The full conditional for uj is uniform from the interval (0, 1 −

g(sj , θ)) and similarly we take sj uniformly from the interval {0 <
s < 1 : g(s, θ) < 1− uj}. Finally, we have the conditional for θ as

π(θ| · · ·) ∝

{
n∏
i=1

g(yi, θ)

}
π(θ)1(s ∈ A),

where
A = {θ : g(sj , θ) < 1− uj ∀ j}.

We now turn to the sampling of k.

3. Sampling k. The form of reversible jump MCMC for k described
here is based on the formulation presented in Godsill (2001). The idea

4
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here is to complete the model with an infinite set of (uj , sj)∞j=1 and
construct a joint density p(k, u, s) of the form

p(k, u, s) ∝
(
n+ k − 1
k

)∏k
j=1 {1(uj < 1− g(sj , θ))1(0 < sj < 1)}

×
∏∞
j=k p(uj+1, sj+1|uj , sj),

where p(uj+1, sj+1|uj , sj) are to be specified density functions acting
as proposals for the states moved to when k changes. In this case and
formulation of a joint density, there is no dimension change when k
changes and hence a standard Metropolis step can be implemented.
The specific form involving the

∞∏
j=k

p(uj+1, sj+1|uj , sj)

term means that there is substantial canceling when the Metropolis
acceptance probability is computed.

One possibility for the p(uj+1, sj+1|uj , sj) is based on an indepen-
dent proposal density and given by

p(uj , sj) =
1(uj < 1− g(sj , θ))

1− g(sj , θ)
1(0 < sj < 1).

In fact there is little reason here to have a dependent proposal and it
makes things simpler to work with.

Now suppose the chain is at state k and a proposal is made, with
probability q(k + 1|k), to state k + 1. Then we would need to sample
(uk+1, sk+1) from p(uk+1, sk+1) and the move is accepted with proba-
bility

min
{

1,
(n+ k) (1− g(sk+1, θ))q(k|k + 1)

(k + 1) q(k + 1|k)

}
.

On the other hand, if the proposal is made to go to state k − 1, with
probability p(k − 1|k), then the move is accepted with probability

min
{

1,
k q(k|k − 1)

(n+ k − 1) (1− g(sk, θ))q(k − 1|k)

}
.

Note that it is a must for q(1|0) = 1, whereas for all other moves it
seems reasonable for q(k′|k) = 1

2 for all |k − k′| = 1.

4. Numerical illustrations. We start with a simple example whereby
we take

g(y, θ) = e−θy
2

5

Page 9 of 16

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
for 0 < y < 1 and θ > 0. Then, specifically, sj is uniform from the
interval (

√
−θ−1 log(1− uj), 1) and θ has density

π(θ) exp

{
−θ

n∑
i=1

y2
i

}
1(θ > a)

where
a = max

1≤j≤k
{−s−2

j log(1− uj)}.

We took the prior as π(θ) = e−θ so the full conditional for θ is easy to
sample.

For the example, we took the true value of θ as 2; 100 observations
were generated, which can be done by sampling truncated normal ran-
dom variables with mean 0 and variance 1/(2θ). The chain was run
for 50,000 iterations and every 100th sample was used to construct the
posterior distribution of θ presented in Figure 1. The posterior mean
was 2.10. In Figure 2 we provide the trace of the plot of samples from
the chain, exhibiting adequate mixing.

In the second illustration we take

g(y, θ) = (1 + y2)−θ

for 0 < y < 1 and θ > 0. Again, we sample 100 observations with a
true value of θ = 2. The conditional distribution of sj is uniform from
the interval (

√
(1− uj)−1/θ − 1, 1), and the density for θ is given by

π(θ) exp

{
−θ

n∑
i=1

log(1 + y2
i )

}
1(θ > a),

where

a = max
1≤j≤k

{
− log(1− uj)
log(1 + s2j )

}
.

We again took a standard exponential prior for θ.
The posterior distribution of θ is presented in Figure 3. This is

based on taking every 100th sample from a chain of length 50,000. The
posterior mean is 2.04. The trace of samples, demonstrating adequate
mixing, is presented in Figure 4.

In both cases the proposal probabilities for moving k was taken to be
1
2 ; to k + 1 and k − 1. Except when k = 0 and then the proposal is
probability 1 of moving to k = 1. In summary, the conditional densities
are as follows:

• For j = 1, . . . , k, uj ∼ Un(0, 1− g(sj , θ)).

6
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• For j = 1, . . . , k, sj ∼ Un{0 < s < 1 : g(s, θ) > 1− uj}.
• π(θ| · · ·) ∝ π(θ)

∏n
i=1 g(yi, θ)1(θ ∈ A), where

A = {θ : g(sj , θ) > 1− uj ∀ j}.

• Moving k as described in Section 3.

If at a particular iteration it is that k = 0, then the sampling of
the (u, s) is not needed; and θ is sampled without the constraint of any
(θ ∈ A).

5. Discussion. This paper has presented a means by which to under-
take posterior sampling directly even when the normalizing constant
is not available. There is no need to estimate it first using numerical
methods nor ensure its removal only on the construction of a special
MCMC algorithm. We have introduced auxiliary variables so that the
normalising constant is removed prior to the introduction of any algo-
rithm. Any MCMC can be used based on any proposal distribution.
The only requirement is that in the most general case we require the
g(y, θ) function to be bounded.

Acknowledgements. Thanks to a referee for constructive comments.
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Figure 1: Density estimate for posterior distribution of θ for first illustration
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Figure 2: Trace of samples from chain for first illustration
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Figure 3: Density estimate for posterior distribution of θ for second illus-
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Figure 4: Trace of samples from chain for second illustration
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