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The structural properties of square-shoulder fluids are derived from the use of the rational
function approximation method. The computation of both the radial distribution function
and the static structure factor involves mostly analytical steps, requiring only the numerical
solution of a single transcendental equation. The comparison with available simulation data
and with numerical solutions of the Percus–Yevick and hypernetted-chain integral equations
shows that the present approximation represents an improvement over the Percus–Yevick
theory for this system and a reasonable compromise between accuracy and simplicity.

Keywords: radial distribution function; square-shoulder potential; rational function
approximation; Percus–Yevick integral equation; hypernetted-chain integral equation

1. Introduction

It is well known that the inclusion of attractive interactions in the intermolecular
potential used to describe a fluid is crucial to obtain a liquid-vapor transition.
Perhaps the simplest model accounting for this fact is the square-well (SW) fluid
in which the interaction potential is given by

ϕSW(r) =

∞, r < σ,
−ϵ, σ < r < λσ,
0, r > λσ,

(1)

where r is the distance, σ is the diameter of the hard core, ϵ > 0 is the well depth
and (λ − 1)σ is the well width. The thermodynamic properties of the SW fluid
only depend on three dimensionless parameters, namely the packing fraction η ≡
(π/6)ρσ3 (ρ being the number density), the reduced temperature T ∗ = kBT/ϵ (kB
and T being the Boltzmann constant and the absolute temperature, respectively)
and the width parameter λ. Due to the combined assets of relative simplicity and
‘realistic’ features, the SW fluid has been studied thoroughly using both theoretical
approaches and simulations (see, for example, Refs. [1–20] and references therein).

∗Email: santos@unex.es

†Corresponding author. Email: andres@unex.es

‡Email: malopez@servidor.unam.mx

ISSN: 00268976 print/ISSN 13623028 online
c⃝ 2009 Taylor & Francis
DOI: 10.1080/0026897YYxxxxxxxx
http://www.informaworld.com

Page 1 of 16

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

January 8, 2011 19:14 Molecular Physics man˙subm

2 S. B. Yuste, A. Santos and M. López de Haro

Another closely related interaction potential is the “square-shoulder” (SS) po-
tential, that has also been considered in the literature. It reads

ϕSS(r) =

∞, r < σ,
ϵ, σ < r < λσ,
0, r > λσ.

(2)

This purely repulsive potential, apparently considered first by Hemmer and Stell
forty years ago [21], has been the subject of recent attention [22–41]. On the one
hand, it may lead to an isostructural solid-solid transition [22], to a fluid-solid
coexisting line with a maximum melting temperature [23], to unusual phase be-
havior [24–26] and to a rich variety of (self-organised) ordered structures [27–30].
On the other hand, it is the simplest model belonging to the class of core-softened
potential models for fluids that have been used to study a number of interesting
substances such as water [31], metallic systems [32], colloidal suspensions [33] and
aqueous solutions of electrolytes [34].
It should also be noted that, as in the SW case, the thermodynamic properties of

the SS system only depend on the packing fraction η, the reduced temperature T ∗

and the width parameter λ. Further, the SS potential becomes equivalent to a hard-
sphere (HS) interaction of diameter σ in the high-temperature limit (T ∗ → ∞) or
in the limit of vanishing shoulder width (λ → 1), and to an HS interaction of
diameter λσ in the low-temperature limit (T ∗ → 0).
Despite the simplicity of the SS potential, so far no exact results for the ther-

modynamic or structural properties of this system are available. Further, even in
the simplest approximation within the integral equation approach for the study
of liquids, namely the Percus–Yevick (PY) closure for the Ornstein–Zernike (OZ)
integral equation, no analytical results have been derived for the SS fluid, Very
recently, Zhou and Solana [39] have reported simulations and theoretical results
based on a bridge function approximation to close the OZ equation, while Guillén-
Escamilla et al. [40] have also presented simulation results and a parametrisation
of the direct correlation function which quantitatively agrees with the numerical
solution of the OZ equation within the PY approximation.
Several years ago two of us [5] derived approximate analytical results for the

structural properties of the SW fluid using a methodology that has proved useful
for many other systems [42]. Exploiting the fact that this methodology does not
make explicit use of the positive character of the well depth, the major aim of this
paper is to extend it to the SS system and compare the resulting structure with
the simulation data available to our knowledge in the literature, namely those just
mentioned by Zhou and Solana [39] and Guillén-Escamilla et al. [40], as well as
the data in the paper by Lang et al. [7]. Also, given the fact that our approach
represents an alternative analytical route to the integral equation approach for the
structural properties of fluids, we will further assess its merits for the SS fluid by
comparing our results with those we have obtained from the numerical solution of
the OZ equation both with the PY and the hypernetted-chain (HNC) closures.
The paper is organised as follows. In order to make it self-contained, in the next

section we present the derivation of the structural properties of the SS fluid using
the methodology that we refer to as the Rational Function Approximation (RFA).
This is followed in Section 3 by a comparison of our analytical approximation
and of the numerical solution of the PY and HNC equations for the SS potential
with the available simulation results. The paper is closed in Section 4 with further
discussion and concluding remarks.
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2. Radial distribution function of the square-shoulder fluid

In this section, we present our proposal for the structural properties of the SS fluid.
It follows very closely the parallel derivation for the SW fluid as presented in Ref.
[42].

2.1. Physical requirements

As in previous works [43], it is convenient to consider the Laplace transform of
rg(r), where g(r) is the radial distribution function (rdf), namely

G(s) =

∫ ∞

0
dr e−srrg(r) (3)

and the auxiliary function Ψ(s) defined through

G(s) =
1

2π

s

ρ+ esσΨ(s)
. (4)

The choice of G(s) as the Laplace transform of rg(r) and the definition of Ψ(s)
from Equation (4) are suggested by the exact form of g(r) to first order in density
[5].
Since g(r) = 0 for r < σ while g(σ+) = finite, one has

g(r) = Θ(r − σ)
[
g(σ+) + g′(σ+)(r − σ) + · · ·

]
, (5)

where g′(r) ≡ dg(r)/dr and Θ (x) is the Heaviside step function. The foregoing
property imposes a constraint on the large-s behavior of G(s), namely

eσssG(s) = σg(σ+) +
[
g(σ+) + σg′(σ+)

]
s−1 +O(s−2). (6)

Therefore, lims→∞ esσsG(s) = σg(σ+) = finite or, equivalently,

lim
s→∞

s−2Ψ(s) =
1

2πσg(σ+)
= finite. (7)

On the other hand, according to the definition of the (reduced) isothermal com-
pressibility

χ ≡ kBT

(
∂ρ

∂p

)
T

= 1 + 24ησ−3

∫ ∞

0
dr r2 [g(r)− 1] , (8)

it follows that

χ = 1− 24ησ−3 lim
s→0

d

ds

∫ ∞

0
dr e−srr [g(r)− 1]

= 1− 24ησ−3 lim
s→0

d

ds

[
G(s)− s−2

]
. (9)
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Since the isothermal compressibility χ is also finite, one has
∫∞
0 dr r2 [g(r)− 1] =

finite, so that the weaker condition
∫∞
0 dr r [g(r)− 1] = lims→0[G(s)−s−2] = finite

must hold. This in turn implies

Ψ(s) = −ρ+ρσs− 1

2
ρσ2s2+

(
1

6
ρσ3 +

1

2π

)
s3−

(
1

24
ρσ3 +

1

2π

)
σs4+O(s5). (10)

Equation (4) can be formally rewritten as

G(s) = − s

2π

∞∑
n=1

ρn−1 [−Ψ(s)]−n e−nsσ. (11)

Thus, the rdf is given by

g (r) =
1

2πr

∞∑
n=1

ρn−1ψn (r − nσ)Θ (r − nσ) , (12)

with

ψn (r) = −L−1
{
s [−Ψ(s)]−n} , (13)

L−1 denoting the inverse Laplace transform.
So far, Equations (4), (7), (10) and (12) apply exactly to any interaction potential

having a hard core at r = σ. This includes, among other models, the HS, SW and
SS potentials.
For the SS potential given in Equation (2), G(s) must reflect the fact that g(r)

is discontinuous at r = λσ as a consequence of the discontinuity of the potential
ϕSS(r) and the continuity of the cavity function y(r) = exp [ϕSS(r)/kBT ] g(r). This
implies that G(s), and hence Ψ(s), must contain the exponential term e−(λ−1)σs.
This manifests itself in the low-density limit, where the condition limρ→0 y(r) = 1
yields

lim
ρ→0

g(r) =


0, r < σ,

e−1/T ∗
, σ < r < λσ,

1, r > λσ,
(14)

lim
ρ→0

G(s) = e−1/T ∗
e−σs 1 + σs

s2
+
(
1− e−1/T ∗

)
e−λσs 1 + λσs

s2
. (15)

Therefore, from Equation (4) we have

lim
ρ→0

Ψ(s) =
s3

2π

[
e−1/T ∗

(1 + s) + e−(λ−1)s(1− e−1/T ∗
)(1 + λs)

]−1
, (16)

where we have taken, without loss of generality, σ = 1. This means that in what
follows all distances are measured in units of the hard-core diameter σ.
Equations (7), (10) and (16) are basic exact properties that any reasonable ap-

proximation for Ψ(s) must fulfill.
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2.2. The Rational Function Approximation

In the spirit of the RFA method that has been used in other cases [42], and following
the same rationale as for the SW fluid [5], the simplest form that complies with
Equation (7) and is consistent with Equation (16) is

Ψ(s) =
1

2π

−12η +A1s+A2s
2 +A3s

3

1−B0 +B1s+ e−(λ−1)s (B0 +B2s)
, (17)

where the coefficients B0, B1, B2, A1, A2 and A3 are functions of η, T ∗ and λ.
Comparison with Equation (16) shows that in the limit η → 0 one must have
A1 → 0, A2 → 0, A3 → 1, B0 → 1− e−1/T ∗

, B1 → e−1/T ∗
and B2 → (1− e−1/T ∗

)λ.
The condition (10) allows one to express the parameters B1, A1, A2 and A3 as

linear functions of B0 and B2 [5, 10]:

B1 =
1

1 + 2η

[
1+

η

2
−2η(λ3−1)B2+

η

2
(λ−1)2(λ2+2λ+3)B0

]
−B2+(λ−1)B0, (18)

A1 =
6η2

1 + 2η

[
3 + 4(λ3 − 1)B2 − (λ− 1)2(λ2 + 2λ+ 3)B0

]
, (19)

A2 =
6η

1 + 2η

{
1− η + 2(λ− 1) [1− 2ηλ(λ+ 1)]B2 − (λ− 1)2

[
(1− η(λ+ 1)2

]
B0

}
,

(20)

A3 =
1

1 + 2η

{
(1− η)2 − 6η(λ− 1)

(
λ+ 1− 2ηλ2

)
B2

+η(λ− 1)2[4 + 2λ− η(3λ2 + 2λ+ 1)]B0

}
. (21)

From Equations (7) and (17), we have

g(1+) =
B1

A3
. (22)

More generally, the complete rdf follows from Equations (12), (13) and (17). In
particular,

ψ1(r) = ψ10(r)Θ(r) + ψ11(r + 1− λ)Θ(r + 1− λ), (23)

ψ2(r) = ψ20(r)Θ(r)+ψ21(r+1−λ)Θ(r+1−λ)+ψ22(r+2−2λ)Θ(r+2−2λ), (24)

where

ψ1k(r) = 2π

3∑
i=1

W1k(si)

A′(si)
sie

sir, (25)

ψ2k(r) = −4π2
3∑

i=1

[
rW2k(si) +W ′

2k(si)−W2k(si)
A′′(si)

A′(si)

]
esir

[A′(si)]2
. (26)
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Here, si are the three roots of A(s) ≡ −12η+A1s+A2s
2+A3s

3, the primes denote
derivatives with respect to s and the functions W1k(s) and W2k(s) are defined as

W10(s) ≡ 1−B0 +B1s, W11(s) ≡ B0 +B2s, (27a)

W20(s) ≡ s[W10(s)]
2, W22(s) ≡ s[W11(s)]

2, (27b)

W21(s) ≡ 2sW10(s)W11(s). (27c)

To close the proposal, we need to determine the parameters B0 and B2 by im-
posing two new conditions. An obvious condition is the continuity of the cavity
function at r = λ, what implies

g(λ−) = e−1/T ∗
g(λ+). (28)

From Equations (12) and (23), assuming λ < 2, one has

g(λ−) =
ψ10(λ− 1)

2πλ
, (29)

g(λ+) =
ψ10(λ− 1) + ψ11(0)

2πλ
. (30)

Thus, Equation (28) yields

ψ10(λ− 1) =
ψ11(0)

e1/T ∗ − 1
. (31)

Equations (13) and (17) imply ψ11(0) = 2πB2/A3. Therefore, making use of Equa-
tion (25), one gets

3∑
i=1

1−B0 +B1si
A1 + 2A2si + 3A3s2i

sie
si(λ−1) =

B2(
e1/T ∗ − 1

)
A3
. (32)

Note that, taking into account (31), Equations (29) and (30) can be rewritten as

g(λ−) =
B2

λ
(
e1/T ∗ − 1

)
A3
, (33)

g(λ+) =
B2

λ
(
1− e−1/T ∗

)
A3
. (34)

As an extra condition, we could enforce the continuity of the first derivative y′(r)
at r = λ [9]. However, this complicates the problem too much without any relevant
gain in accuracy. In principle, it might be possible to impose consistency with a
given equation of state, via either the virial route, the compressibility route, or
the energy route. But this is not practical since no simple equation of state for SS
fluids is at our disposal for wide values of density, temperature and range. As a
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compromise between simplicity and accuracy, we fix the parameter B0 at its exact
zero-density limit value, namely [5]

B0 = 1− e−1/T ∗
. (35)

Therefore, Equation (32) becomes a transcendental equation for B2 that needs to
be solved numerically.
In summary, Equations (18)–(21), (32) and (35) provide the coefficients A1, A2,

A3, B0, B1 and B2 as functions of η, T ∗ and λ. This in turn determines the
Laplace transform G(s) via Equations (4) and (17). The rdf g(r) can be obtained
by numerically inverting G(s) or, alternatively, by means of Equations (12) and
(13).
As a further asset of our present formulation, we must point out that, once G(s)

is determined, the static structure factor S(q) (where q is the wavevector ) of the
SS fluid may be readily obtained as

S(q) = 1 + ρ

∫
dr e−iq.r[g(r)− 1]

= 1− 2πρ
G(s)−G(−s)

s

∣∣∣∣
s=iq

, (36)

where i is the imaginary unit.
Finally, as proven in the Appendix, the RFA proposal (17) reduces to the exact

solution of the PY equation [44, 45] in three independent HS limits: (a) λ→ 1, (b)
T ∗ → ∞ and (c) T ∗ → 0.
Before closing this section a further comment is in order. Our RFA approach has

been based upon the exact rdf, gex(r), at zero density [cf. Equations (14)–(16)]. On
the other hand, it can be shown that, to first order in density, gRFA(r) differs from
gex(r) in the region 1 ≤ r ≤ λ. More specifically [5],

lim
η→0

∆g(r)

η
= e−1/T ∗

(
1− e−1/T ∗

)
(λ− 1)

×λ− r

r

[
(λ− 1)2 − 3(λ+ 1)(r − 1)

]
×Θ(r − 1)Θ(λ− r), (37)

where ∆g(r) ≡ gRFA(r) − gex(r). This drawback could be corrected by a modified
RFA (mRFA) of the form [46]

gmRFA(r) = gRFA(r) exp [−ηQ(r)Θ(λ− r)] (38)

with

Q(r) =
λ− r

r
[Q0 −Q1(r − 1)] , (39)

such that limη→0Q0 =
(
1− e−1/T ∗)

(λ− 1)3 and limη→0Q1 = 3
(
1− e−1/T ∗)

(λ2−
1). The coefficients Q0 and Q1 for finite η could be determined by imposing two
extra conditions, such as the continuity of y′(r) and y′′(r) at r = λ. Nevertheless,
since such conditions again lead to technical complications and their usefulness
is not known a priori, for the sake of simplicity we restrict ourselves here to the
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Figure 1. Radial distribution function g(r) as a function of distance r for an SS fluid having λ = 1.5,
T ∗ = 2 and η = 0.3142 (ρσ3 = 0.6) as obtained from the RFA approach (solid line), the PY equation
(dashed line), the HNC equation (dotted line) and simulation data from Ref. [40] (circles).

unmodified RFA described by Equations (4), (17)–(21), (32) and (35). The lim-
itations imposed by this restriction may be assessed from the examination of the
final results.

3. Comparison with simulation data and integral equation theories

In order to assess the value of our theoretical approximation for the structural
properties of SS fluids, in this section we perform a comparison between the results
obtained with our approach and those obtained both from simulation and from our
own numerical solution of the PY and HNC integral equations.
As far as we know, the available simulation data for the rdf of the SS fluid as

a function of distance at various packing fractions are those of Lang et al. [7],
Zhou and Solana [39] and Guillén-Escamilla et al. [40]. Although we have made a
comparison with all these data, in Figs. 1–8 we only show graphs of g(r) vs r for
some representative cases. Since our development is inspired by and reduces to the
form of the solution of the PY equation for HS fluids (see the Appendix), we have
also included in the figures the results that we have obtained from the numerical
solution of the PY equation for the SS fluid, as well as those stemming out of the
HNC equation for the same system.1

We start by fixing a shoulder width parameter λ = 1.5 and a relatively high
reduced temperature T ∗ = 2. Figures 1 and 2 show g(r) for packing fractions
η = 0.3142 and η = 0.4189, respectively. We observe a general good behavior
of the RFA, except that it underestimates the rdf near r = 1. Interestingly, the
performance of the RFA is clearly better than that of the numerical solution of
the PY integral equation. On the other hand, the numerical solution of the HNC
integral equation shows an excellent agreement with the simulation data.
The above features become much more apparent at a relatively low reduced

temperature T ∗ = 0.5, as Figs. 3 and 4 show. At η = 0.2094 the limitations of

1The numerical solutions were obtained by solving the system of algebraic equations resulting from the
discretisation of the integral equation. The convergence of the solutions was found to be acceptable for a
grid size of ∆r = 0.0125 and a cut-off distance rmax = 4.
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Figure 2. Radial distribution function g(r) as a function of distance r for an SS fluid having λ = 1.5,
T ∗ = 2 and η = 0.4189 (ρσ3 = 0.8) as obtained from the RFA approach (solid line), the PY equation
(dashed line), the HNC equation (dotted line) and simulation data from Ref. [40] (circles).
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r
Figure 3. Radial distribution function g(r) as a function of distance r for an SS fluid having λ = 1.5,
T ∗ = 0.5 and η = 0.2094 (ρσ3 = 0.4) as obtained from the RFA approach (solid line), the PY equation
(dashed line), the HNC equation (dotted line) and simulation data from Ref. [39] (circles).

the RFA are essentially restricted to the contact region r & 1. However, the RFA
becomes much less reliable at the larger density η = 0.4. Again, the PY is rather
poor, even at η = 0.2094, while the HNC keeps being very good.
It is interesting to analyse the influence of temperature for a fixed value of λ and

η. This can be achieved by comparing Figs. 2, 4 and 5 (even though the packing
fraction in the case of Fig. 2 is not exactly the same as that of Figs. 4 and 5). As
the temperature decreases, the contact value increases moderately and also g(r)
for r & 2 becomes more structured, especially when going from T ∗ = 1 (Fig. 5)
to T ∗ = 0.5 (Fig. 4). The strongest influence of temperature occurs in the region
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Figure 4. Radial distribution function g(r) as a function of distance r for an SS fluid having λ = 1.5,
T ∗ = 0.5 and η = 0.4 as obtained from the RFA approach (solid line), the PY equation (dashed line), the
HNC equation (dotted line) and simulation data from Ref. [7] (circles).
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Figure 5. Radial distribution function g(r) as a function of distance r for an SS fluid having λ = 1.5,
T ∗ = 1 and η = 0.4 as obtained from the RFA approach (solid line), the PY equation (dashed line), the
HNC equation (dotted line) and simulation data from Ref. [7] (circles).

r ≈ λ, the discontinuity at r = λ being much more accused as the temperature
decreases, as expected on physical grounds.
To assess the influence of the shoulder width we consider the choice λ = 1.2 in

Figs. 6 and 7, both at a common packing fraction η = 0.4. As before, the RFA
underestimates g(r) near r = 1, this effect being more important in the case of
the PY theory. However, the HNC solution is very reliable in that region. Upon
comparison between Figs. 5 and 6, on the one hand, and Figs. 4 and 7, on the
other hand, one may observe that shrinking the shoulder at fixed temperature and
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Figure 6. Radial distribution function g(r) as a function of distance r for an SS fluid having λ = 1.2,
T ∗ = 1, η = 0.4 and as obtained from the RFA approach (solid line), the PY equation (dashed line), the
HNC equation (dotted line) and simulation data from Ref. [7] (circles).
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Figure 7. Radial distribution function g(r) as a function of distance r for an SS fluid having λ = 1.2,
T ∗ = 0.5 and η = 0.4 as obtained from the RFA approach (solid line), the PY equation (dashed line), the
HNC equation (dotted line) and simulation data from Ref. [7] (circles).

density makes the RFA and, to a lesser extent, the PY approximation become more
reliable, while the HNC approximation is slightly less accurate.
The above conclusion is consistent with the fact that the SS model becomes

closer and closer to the HS model as the shoulder width decreases. In this HS limit
the RFA reduces to Wertheim–Thiele’s [44] exact solution of the PY equation (see
the Appendix) and it is well known that such a solution is much more accurate
than the HNC numerical solution for the HS fluid. Since the HS potential is also
reached from the the SS one in the high-temperature limit (T ∗ → ∞), a better
performance of both RFA and PY over HNC can be expected to hold for sufficiently
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Figure 8. Radial distribution function g(r) as a function of distance r for an SS fluid having λ = 1.3,
T ∗ = 5 and η = 0.4189 (ρσ3 = 0.8) as obtained from the RFA approach (solid line), the PY equation
(dashed line), the HNC equation (dotted line) and simulation data from Ref. [40] (circles).

high temperatures. This is confirmed by Fig. 8 in the case λ = 1.3, T ∗ = 5 and
η = 0.4189 (ρσ3 = 0.8). In this state, the HNC theory clearly overestimates the
contact value, a characteristic feature of the HS system. The SS model also becomes
equivalent to the HS model (this time with a hard-core diameter λσ) in the zero
temperature limit (T ∗ → 0). Therefore, again the RFA and PY predictions should
be superior to the HNC ones for sufficiently low temperatures. From a practical
point, however, this requires temperatures so low that g(r) ≈ 0 for 1 ≤ r ≤ λ,
what is obviously not the case of T ∗ = 0.5, as Figs. 3, 4 and 7 show.
In summary, from the analysis of the results it is clear that the RFA approach

represents a clear improvement as compared to the PY approximation. It also does
a fair job in comparison with the HNC equation, which is generally the best ap-
proximation. On the other hand, this latter becomes more inaccurate, particularly
at the contact value, as the HS limit is approached, in contrast to the good perfor-
mance of the RFA approach in this limit. Also worth mentioning is the fact that,
although not shown, the RFA also beats the numerical solution of the OZ relation
closed by the hard-core condition g(r) = 0 for r < 1 plus the parametrisation of the
direct correlation function for r > 1 proposed by Guillén-Escamilla et al. [40]. As
expected, although the RFA always underestimates the contact value, the present
approximation works particularly well at all distances for narrow shoulders at high
temperatures and low densities. As the shoulder width increases, for a fixed (rel-
atively high) temperature, the packing fraction at which deviations become more
pronounced decreases. In the case of low temperatures, the trend observed for low
densities is maintained but this time the region between contact and the shoulder
width is described more poorly, while for greater distances the approach seems to
capture rather well the subsequent oscillations of the rdf.

4. Concluding remarks

In this paper we have presented an (almost completely) analytical procedure to
obtain the structural properties of SS fluids. Although the derivation heavily relied

Page 12 of 16

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

January 8, 2011 19:14 Molecular Physics man˙subm

Molecular Physics 13

upon a parallel development for the SW fluid [5], the results could not be antici-
pated since the SW and SS potentials are physically quite different: while the SW
potential has an attractive part that allows for the existence of a vapor-liquid phase
transition ending at a critical point, the SS potential is purely repulsive.
Our procedure, which follows the same rationale that we have used for other

systems [42], is inspired on the analytical solution of the PY equation for HS
fluids [44, 45] (to which it reduces in the appropriate limits) and represents a good
alternative to the usual integral equation approach of liquid state theory, which
requires numerical work. As a matter of fact, as shown above, it clearly provides
an improvement over the results of the simplest such integral equation for SS fluids,
namely the OZ equation with the PY closure, and compares reasonably well with
the results of the HNC integral equation, which in particular it beats near the HS
limits.
The importance of analytical or semi-analytical approximations for the equi-

librium structural properties of simple fluids cannot be overemphasized. In this
respect, we find it especially remarkable the fact that our approach, which only
requires the solution of a single transcendental equation when the SS potential
differs from the HS one (i.e., if λ ̸= 1 and T ∗ is finite), behaves better than the PY
integral equation, whose solution in the same situation, however, involves much
more numerical work.
Through the comparison with the available simulation data [7, 39, 40], we have

been able to identify roughly the region in the (η, T ∗, λ) space that these data span
where the approximation for g(r) yields a reasonably good performance. The RFA
approach for SS fluids leads to rather accurate results at any fluid density if the
shoulder is sufficiently narrow (say λ ≤ 1.2), as well as for any width if the density
is small enough (η ≤ 0.4). However, as the width and/or the density increase, the
RFA predictions worsen, especially at low temperatures and in the region between
contact and λ. In any event, it is fair to insist on the advantage of the RFA quasi-
analyticity and its relative good numerical results at low and high fluid densities
for the SS fluid.
Apart from the rdf, our proposal allows the immediate computation of the static

structure factor, as shown by Equation (36). We are not aware of the existence of
simulation data for this structural property in the case of the SS interaction so a
comparison is not feasible at this stage. We hope that our work may serve as a
motivation to carry out such simulations. Also worth pointing out is the fact that
the availability of the rdf allows us to obtain an approximate direct correlation
function c(r) through inversion of the OZ equation in Fourier space. Once more,
we are not aware of any simulation results for the c(r) of this system one could
compare with. Given this situation and since these structural properties do not
exhibit any particular feature we have not presented plots of them. However they
may be easily produced upon request.
The present results suggest that the study of the structural properties of fluids

whose particles interact via discrete potentials composed of combinations of square
wells and square shoulders, and other piece-wise potentials, may be tackled in a
similar way. We plan to carry out some of these studies in future work. Finally,
we also plan to examine in the near future the prediction and discussion of the
thermodynamics of SS fluids which follows from our approach.
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Appendix A. The Hard-Sphere limit

In this appendix we will show that the proposal we have introduced for the structure
of the SS fluid reduces, in the appropriate limits, to the PY approximation for HS
fluids. We begin with the latter. For an HS fluid, the Laplace transform GHS(s; η)
of rgHS(r) in the PY approximation, where we have made it explicit that it depends
on both s and the packing fraction η, may be expressed as in Equation (4), where
the auxiliary function ΨHS(s; η) takes a form similar to that of Equation (17),
namely [43, 44]

ΨHS(s; η) =
1

2π

−12η +AHS
1 (η)s+AHS

2 (η)s2 +AHS
3 (η)s3

1 +B
HS
1 (η)s

, (A1)

with

B
HS
1 (η) =

1 + η/2

1 + 2η
, (A2)

AHS
1 (η) =

18η2

1 + 2η
, (A3)

AHS
2 (η) =

6η (1− η)

1 + 2η
, (A4)

and

AHS
3 (η) =

(1− η)2

1 + 2η
. (A5)

For the sake of clarity, it is convenient in the case of the SS fluid to include
explicitly the dependence on the packing fraction η, the interaction range λ, and the
temperature parameter T ∗ in the function G(s) through the notation G(s; η, λ, T ∗).

A.1. Limit λ → 1

We must clearly recover the HS case if λ = 1, in which case the SS potential
becomes equivalent to an HS interaction of diameter σ = 1, i.e.

G(s; η, 1, T ∗) = GHS(s; η). (A6)

It is straightforward to see from Equations (19)–(21) that in the limit λ → 1
one has Ai(η, λ, T

∗) → AHS
i (η), irrespective of the values of limλ→1B0(η, λ, T

∗)
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and limλ→1B2(η, λ, T
∗). On the other hand, the denominator of Equation (17)

becomes 1 + [B1(η, 1, T
∗) +B2(η, 1, T

∗)] s = 1 + B
HS
1 (η)s on account of Equation

(18). This completes the proof that Equation (17) reduces to Equation (A1) in the
limit λ→ 1 for arbitrary T ∗.

A.2. Limit T ∗ → ∞

The high-temperature limit T ∗ → ∞ can be understood as the limit ϵ→ 0 at finite
T , so the SS potential (2) trivially becomes that of HS. Consequently,

G(s; η, λ,∞) = GHS(s; η). (A7)

In the limit T ∗ → ∞ one has e1/T
∗ → 1, so that Equations (32) and (35) imply

B0(η, λ,∞) = B2(η, λ,∞) = 0. Next, Equations (18)–(21) yield B1(η, λ,∞) =

B
HS
1 (η) and Ai(η, λ,∞) = AHS

i (η) for any λ.

A.3. Limit T ∗ → 0

On the other hand, the low-temperature limit T ∗ → 0 corresponds to the limit
ϵ → ∞ at finite T . In that case, the SS potential becomes equivalent to an HS
interaction of diameter λσ = λ. This latter condition implies that

G(s; η, λ, 0) = λ2GHS(λs;λ3η), (A8)

which is a non-trivial scaling relation. In turn, taking into account the relationship
(4), Equation (A8) leads to

Ψ(s; η, λ, 0) =
e(λ−1)s

λ3
ΨHS(λs;λ3η). (A9)

From Equations (17) and (A1) it follows that Equation (A9) is satisfied if the
coefficients comply with the following conditions:

B0(η, λ, 0) = 1, (A10)

B1(η, λ, 0) = 0, (A11)

B2(η, λ, 0) = λB
HS
1 (λ3η), (A12)

A1(η, λ, 0) = λ−2AHS
1 (λ3η), (A13)

A2(η, λ, 0) = λ−1AHS
2 (λ3η), (A14)

A3(η, λ, 0) = AHS
3 (λ3η). (A15)

Equation (A10) is a direct consequence of Equation (35). Next, Equation (32) in
the limit T ∗ → 0 yields Equation (A11). Then, by imposing B1 = 0 in Equation
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(18) one gets Equation (A12). Finally, by inserting Equations (A10) and (A12) into
Equations (19)–(21) it is easy to check that Equations (A13)–(A15) are verified.
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[16]P. Orea, Y. Duda, V. C. Weiss, W. Schröer and J. Alejandre, J. Chem. Phys. 120, 11754 (2004).
[17]J. Largo, J. R. Solana, S. B. Yuste and A. Santos, J. Chem. Phys. 122, 084510 (2005).
[18]H. Liu, S. Garde and S. Kumar, J. Chem. Phys. 123, 174505 (2005).
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