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Abstract

The aim of this paper is to discuss homogeneity testing of the exponential distribution.

We introduce the exact likelihood ratio test of homogeneity in the subpopulation model,

ELR, and the exact likelihood ratio test of homogeneity against the two-components

subpopulation alternative, ELR2. The ELR test is asymptotically optimal in the Bahadur

sense when the alternative consists of sampling from a fixed number of components. Thus

in some setups the ELR is superior to frequently used tests for exponential homogeneity

which are based on the EM algorithm (like the MLRT, the ADDS test, and the D-

tests). One important example of superiority of ELR and ELR2 tests is the case of

lower contamination. We demonstrate this fact by both theoretical comparisons and

simulations.
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1 Introduction

The exponential distribution Exp(θi) is one of the most widely used lifetime distributions in

reliability engineering. It has a density of the form

f(yi|θi) = θi exp(−θiyi), yi > 0,

where 1/θi > 0 is a scale parameter and a constant hazard rate θi. There is a big body of

literature on the theory and applications of the exponential distribution (see Balakrishnan and

Basu, 1996). The problem of testing for heterogeneity or overdispersion has received more

attention than tests of the number of components (see Susko, 2003).

Lifetime data with an observed decreasing hazard rate rate can be modelled by a mixture

distribution of exponential components. Such a model can be interpreted by competing risks:

The components in the mixture correspond to the distinct causes of failure which are taken to

act in a mutually exclusive manner. For example, Choi (1979) used a two-component mixture

model to study the toxicity of chemical agents. For a survey of mixtures of exponentials see

McLachlan (1995).

The aim of this paper is to introduce the exact procedure for testing exponential homogene-

ity against alternatives of exponential heterogeneity. The likelihood-ratio decision procedure

for the hypothesis H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 \Θ0, ∅ 6= Θ0 ⊂ Θ1 ⊂ Θ, is based on the ratio

supθ∈Θ0
Ly(θ)

supθ∈Θ1
Ly(θ)

,

where Θ0 ⊂ Θ1, θ is the parameter of interest and Ly(θ) is the likelihood of θ under the observed

data y and requires specification of the null and the alternative.

When we consider the null hypothesis of exponential homogeneity, different specifications

of the alternative lead to different likelihood ratio tests. The most popular alternative to

homogeneity is the mixture model with exponential components. A certain drawback of the LR

test for the mixture model alternative is that it requires ML estimates of the model parameters.

This is not the case when the alternative is the subpopulation model, which is the alternative

of the exact likelihood ratio (ELR) tests considered in this paper.

We compare these procedures with other competitive tests and show, in particular, its

superiority in some setups (e.g. in the lower contamination case, which can be of interest for

insurance applications, among others).
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The ELR-test is asymptotically optimal in the Bahadur sense when the alternative consists

of the subpopulation model with a finite number of populations (see Stehĺık, 2006; Rubĺık,

1989a,b). The ELR test and ELR2 test, which tests the alternative of two subpopulations, have

nonstandard asymptotic distributions but their exact distribution can be easily simulated.

The rest of this paper is organized as follows. The difference between mixture and subpopu-

lation models is discussed in Section 2. In section 3 the exact likelihood ratio homogeneity tests

ELR and ELR2 are introduced and discussed. In section 4 a comparative power study of tests

for homogeneity is provided together with the theoretical explanation of the obtained results.

The following tests for homogeneity in exponential mixtures are considered: the dispersion

score (DS) test, also known under the name C(α)-tests; (see chapter 4 of Lindsay (1995); the

modified likelihood ratio test (MLRT) introduced by Chen et al. (2001), which is a penalized

LRT and has standard chi-square asymptotics; the ADDS test by Mosler and Seidel (2001), a

combination ... procedure; several variants of the D-test by Charnigo and Sun (2004), that is

based on the L2 distance between the estimated densities of a homogeneous and a heterogeneous

model. All tables and proofs are collected in the Appendix.

2 The subpopulation model and mixture alternative

2.1 Subpopulation and mixture models

Consider a sample of independent observations y1, . . . , yN , and the null hypothesis of exponen-

tial homogeneity, that is

f(y1, . . . , yN) =
N∏

i=1

θ exp(−θyi)

For testing this null hypothesis, many different alternatives may be specified. The most general

alternative says that the distributions of the yi are heterogeneous and/or non-exponential, which

comprises alternatives like homogeneous and non-exponential, heterogeneous and exponential

in subgroups, heterogeneous and non-exponential in at least one subgroup, among others. In

the sequel, we investigate the following alternative: each observation yi is generated by an

exponential distribution but the parameter is not identical for all observations.

Alternatives to homogeneity are often specified as mixture models. The joint density of a

3
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sample y1, . . . , yN of iid observations from a 2-component mixture is given as

f(y1, . . . , yN) =
N∏

i=1

[pθ1 exp(−θ1yi) + (1− p)θ2 exp(−θ2yi)] , 0 < p < 1,

and the joint density of a sample from a general k − component mixture of exponential com-

ponents is

f(y1, . . . , yN) =
N∏

i=1

(
k∑

j=1

pjθj exp(−θjyi)

)
,

where 0 < pj < 1,
∑

j pj = 1. For the mixture alternative, there exists a strong justification for

using the likelihood ratio test: It is consistent against all alternatives with decreasing failure

rate (see Randles, 1982; Tchirina, 2005).

In this paper we consider tests for homogeneity against somewhat different alternatives,

which are specified as subpopulation models. In the subpopulation model the number of sub-

populations has to be specified. The general subpopulation model which is the alternative

tested in the exact likelihood ratio test for homogeneity (ELR) proposed by Stehĺık (2003)

assumes that each observation follows an exponential distribution with its own parameter. The

joint density of the sample is given as

f(y1, . . . , yN) =
N∏

i=1

θi exp(−θiyi), (1)

θi 6= θj for i 6= j.

A more specific case of a subpopulation model is inhomogeneity with an unobserved clus-

tering and a given number of clusters k, this is the alternative of the exact likelihood ratio test

for k subpopulations ELRk introduced in (Stehĺık and Ososkov, 2003). The ELR2 test uses

the alternative of two subpopulations, which can be specified by (1) and the existence of two

nonempty index sets M1,M2 such that

M1 ∪M2 = {1, ..., N},M1 ∩M2 = ∅ (2)

∀j ∈ M1 : θj = θ1,∀j ∈ M2 : θj = θ2, θ1 6= θ2. (3)

An even more restrictive alternative within the subpopulation model is inhomogeneity with

a fixed number of clusters and observed clustering (see Hönig et al. (2010)). Such a situation

may appear in some specific, e.g. biological applications.

4
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Both the mixture and the subpopulation model can be used to model unobserved cluster-

ing. To illustrate the difference between these models we consider the related data generating

processes for sampling from two exponential distributions Exp(θi), i = 1, 2; θ1 6= θ2. A scheme

where the number of draws N1, 0 < N1 < N, from Exp(θ1) is fixed before sampling can be

described by the subpopulation model. If the component Exp(θi) from which each element of

the sample is drawn is determined by a random experiment the mixture model results. Under

H1 in the 2-subpopulation model the sample contains at least one element of each compo-

nent, whereas this need not be the case for samples from the two-component mixture model.

We might therefore interpret the alternative in the subpopulation model as exponential het-

erogeneity in the sample, whereas the mixture alternative can be interpreted as exponential

heterogeneity in the population. The mixture alternative is more commonly used in testing

homogeneity, but the subpopulation alternative appears to be a useful surrogate.

The reason why we consider the subpopulation model is, besides simplicity, the fact that as

soon the difference between the number of components in the mixture model under H0 and H1

respectively is greater than 1, the likelihood ratio tests involves nonstationary random fields, for

which very few theoretical results are available (see Garel, 2007). The ELR-test is asymptoti-

cally optimal in the Bahadur sense when the alternative consists of the subpopulation model

with a finite number of populations (see Stehĺık, 2006; Rubĺık, 1989a,b). ELR and ELR2 tests

have nonstandard asymptotic distributions but their exact distribution can easily be simulated.

Generalization to testing for k subpopulations by the ELRk test is easy to implement, however

simulation of critical values is computationally expensive and computational cost increases with

k, as a min or max over all possible partitions of a sample (y1, . . . , yn) into k subsets has to

be computed. Application of permutation principles will be worth further investigation. Some

applications of ELRk can be found in physics, see e.g. Efimova et al. (1989).

Our setup encompasses also the case of the Weibull distribution with known shape pa-

rameter. Tests for homogeneity when the shape parameter of the Weibull is unknown have

been developed by Mosler and Scheicher (2008); for a comparison of procedures, see Mosler

and Haferkamp (2009). Tests for exponentiality against a Weibull alternative are given in

Meintanis (2007) and Henze and Meintanis (2005).

5
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2.2 Asymptotic approaches to testing for homogeneity

When the sample size is increasing, we consider the following setup for the m-subpopulation

model. The set of overall parameters Θ consists of the m-tuples θ = (θ1, ..., θm), where θj is

the parameter of the j-th population. Let us suppose that in the k-th experiment the size

of the sample from the j-th population is n
(j)
k , j = 1, ..., m and k = 1, 2, .... Let the product

measure P∞
θj

correspond to the (infinite) sampling from the distribution Pθj
(in our case Pθj

has density θj exp(−θjyj), yj > 0 with respect to Lebesgue measure). The product measure

Pθ = P∞
θ1
× ...×P∞

θm
, can be used to describe the limiting distribution of independent sampling

from these m populations. Thus nk =
∑m

j=1 n
(j)
k is the total sample size in the k-th experiment.

Here we employ the assumption of a finite subpopulation plan given by Rubĺık (1989b) which

together with other regularity conditions guarantees the asymptotical optimality in the Bahadur

sense (AOBS) of the ELR test:

i) if k 6= l then n
(j)
k 6= n

(j)
l for some j

ii) limk→∞ nk = +∞
iii) limk→∞

n
(j)
k

nk
= pj ∈ (0, 1], j = 1, ..., m

For θ = (θ1, ..., θm), θ? = (θ?
1, ..., θ

?
m) ∈ Θ let K(θ, θ?) =

∑m
j=1 pjK(θj, θ

?
j ), where the

Kullback-Leibler information is defined by the formula

K(θj, θ
?
j ) :=





∫
ln

dPθj

dPθ?
j

dPθj
if Pθj

<< Pθ?
j
,

+∞, otherwise.

Let Θ0 ⊂ Θ1 ⊂ Θ. Then according to the Bahadur-Raghavachari inequality for the exact

slope the inequality cT (θ) ≤ 2K(θ, Θ0) holds. Here K(θ, Θ0) := inf{K(θ, θ?) : θ? ∈ Θ0}. If

cT (θ) = 2K(θ, Θ0) for all θ ∈ Θ1 \ θ0, then the statistic is called AOBS.

For the alternative of the two-component mixture form, i.e. for the testing problem

H0 : θ0 exp(−θ0x) versus HA : pθ0 exp(−θ0x) + (1− p)θ exp(−θx), θ > θ0, 0 < p ≤ 1, (4)

where θ0 is known and θ, p are unknown parameters we will get a similar asymptotical be-

havior as Hartigan (1985). He discovered the divergence of the LR test statistics for homo-

geneity testing in normal mean mixture models with an unbounded mean parameter. The

classical chi-squared limiting distributional result of Wilks (1938) is not applicable. For ex-

ponential mixtures, the likelihood ratio test converges in distribution to the sup of a square

6
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Gaussian process (see Ciuperca (2002)). Liu et al. (2003) have proved in the setup (4) that

limN→∞ P (2ΛN − ln ln N + ln(16π2) ≤ x) = exp(− exp(−x/2)). They also try to determine

whether it is feasible to approximate 2ΛN− ln ln N +ln(16π2) by the extreme value distribution

for a large N. Unfortunately, as they reported in Liu et al. (2003) this approximation is quite

poor even for a sample size as large as 5000. The difficulties with regularity conditions under

the homogeneity hypothesis have been recently investigated by Li et al. (2009).

3 Exact Likelihood Ratio Tests of Homogeneity

3.1 The ELR test

For a sample of N independent observations y = (y1, . . . , yN), where yi ∼ Exponential (θi) we

consider the LR homogeneity test against the alternative (1) (subpopulation model), i.e.

H0 : θ1 = . . . = θN versus nonH0.

The exact distribution of the LR test for homogeneity against the alternative (1), the ELR

test, was derived in Stehĺık (2006) for the exponential and Weibull distribution and for the

generalized gamma distribution in Stehĺık (2008). LR tests have good properties (see e.g.

Lehmann, 1964; Manoukian, 1986) and are optimal in regular cases.

The LR statistics has the form (see Theorem 3 of Stehĺık (2006))

− ln ΛN = N ln(
N∑

i=1

yi)−N ln N −
N∑

i=1

ln yi. (5)

A very important property of the LR test for homogeneity is its scale invariance, i.e. the

distribution of the test statistic under H0 is independent of the unknown scale parameter.

This is an advantage compared to some asymptotic tests and tests depending on the true but

unknown value of θ. The critical values c1−α are easy to obtain by simulation, e.g. from

the standard exponential or the Dirichlet distribution. Table 1 gives the critical values for

N = 20, 50, 100, 500 obtained by simulation. M = 1000000 samples of size N were generated

yielding a sample of c1, . . . , cM for the test statistic (5) under homogeneity. The values c1−α are

determined as the respective order statistic c1−α = c(
M(1−α)

). These values are used throughout

the paper.
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Table 1: Critical values for the ELR

N α = 0.1 α = 0.05 α = 0.01

10 8.5279 9.7994 12.4814

20 15.7276 17.3881 20.7894

50 35.7658 38.2121 43.0112

100 67.6812 70.9487 77.4036

500 311.3698 318.2312 331.4319

1000 609.4173 619.1025 637.3055

Under homogeneity the statistics (5) is a monotonous function of the statistic
(

N
y1+...+yN

)N ∏N
i=1 yi

which is clearly scale independent. The LR homogeneity statistic (5) is also a monotonous

transformation of the so called Moran’s statistics T+
N and T−

N , where

T+
N = C +

1

N

N∑
i=1

ln
yi

ȳ
,

T−
N = −T+

N , C ≈ 0.57721566 is the Euler constant and ȳ is the arithmetic mean. This is a scale-

free exponentiality test that has been studied in Tchirina (2005). The ELR test for homogeneity

provided in this paper is asymptotically optimal in the Bahadur sense (see Rubĺık, 1989a,b;

Stehĺık, 2003) when the underlying distribution is exponential and when the alternative of the

homogeneity consists of sampling from a fixed number m of populations with relative sample

sizes nj/N tending to positive limits pj (subpopulation model).

3.1.1 Simulation Study

A simulation study was carried out to determine the power of the test for a mixture of two

exponential components with pdf

f(y) = p exp(−y) + (1− p)θ exp(−θy),

for θ = 1, 2, . . . , 10 and different component weights p = 0.1, 0.5, 0.9. We used two different

sizes of the test, namely α = 0.01 and α = 0.05 and N = 20, 50, 100. For each parameter

combination M = 100000 samples were generated and the proportion of rejections of the ELR

test was determined.

8
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Results given in Table 2 show that the ELR test holds the chosen size α also for small

samples. The power of the ELR test increases with θ. For fixed θ the highest power is obtained

for equal component weights, whereas for p = 0.9 the power can be rather low, in particular

considerably lower than for p = 0.1. This behaviour of the power is not specific to the ELR

test but has been noted for different homogeneity tests in Mosler and Haferkamp (2007). It can

be explained by interpreting the mixture as a contaminated distribution: if p = 0.1 the density

of the second component with parameter θ is predominant. The mixture with component 1

leads to a modification of the Exponential (θ) in the tail region. If however p = 0.9, the first

component is predominant, and mixing has an impact on the density close to the mode which

is 0. Mosler and Haferkamp (2007) refer to the first case as ’upper’ and to the second case

as ’lower’ contamination. For a given θ lower contamination (p = 0.9) is harder to detect

than upper contamination (p = 0.1) as overdispersion measured by the squared coefficient of

variation is higher for upper contamination

3.2 The ELR2 test

In this section we will discuss the efficient testing procedure of the number of components k in

the exponential mixture for k = 2, introduced by Stehĺık and Ososkov (2003). Here we consider

LR homogeneity testing with a more complex alternative H1, which is the approximation to

a finite scale mixture. In physics, such testing corresponds to the testing of the number k

of secondary particles obtained after the collision: Homogeneity corresponds to one particle

(k = 1), and k > 1 corresponds to k particles (cf Efimova et al., 1989; Stehĺık and Ososkov,

2003). We consider the alternative of the form H1 : k = 2. The hypothesis

H0 : k = 1 versus H1 : k = 2 (6)

in the mixture model can be approximated (following Stehĺık and Ososkov (2003)) by the

hypothesis of the subpopulation model

H0 : θ1 = ... = θn versus H1 : ∃ non-empty M1,M2,M1 ∪M2 = {1, ..., N}, (7)

where (2) and (3) hold. We construct the LR test of the hypothesis (7) which approximates

the hypothesis (6).

9
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Table 2: Simulated power for the ELR-test

θ 1 2 3 4 5 6 7 8 9 10

α = 0.05

p = 0.1

N=20 0.0548 0.0665 0.1200 0.1532 0.2459 0.2874 0.3337 0.3797 0.4328 0.4704

N=50 0.0455 0.0734 0.1594 0.2844 0.4038 0.5070 0.6012 0.6479 0.7265 0.7470

N=100 0.0596 0.0980 0.2331 0.4174 0.5860 0.6976 0.8123 0.8660 0.9081 0.9300

N=1000 0.0562 0.2871 0.8401 0.9941 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

p = 0.5

N=20 0.0470 0.0906 0.1844 0.3077 0.3793 0.5057 0.5842 0.6543 0.7383 0.7618

N=50 0.0547 0.1243 0.3125 0.5339 0.7271 0.8338 0.9196 0.9546 0.9750 0.9921

N=100 0.0514 0.1738 0.5017 0.7740 0.9357 0.9797 0.9982 0.9970 1.0000 0.9994

N=1000 0.0570 0.7254 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

p = 0.9

N=20 0.0561 0.0617 0.0723 0.1003 0.1109 0.1200 0.1378 0.1579 0.1713 0.1800

N=50 0.0448 0.0787 0.0950 0.1293 0.1575 0.1886 0.2211 0.2496 0.2805 0.2942

N=100 0.0490 0.0807 0.1176 0.1851 0.2288 0.3100 0.3498 0.3950 0.4362 0.4632

N=1000 0.0517 0.1826 0.4694 0.7505 0.8980 0.9667 0.9881 0.9961 0.9993 0.9998

α = 0.01

p = 0.1

N=20 0.0100 0.0148 0.0333 0.0600 0.0896 0.1502 0.1876 0.2261 0.2577 0.3086

N=50 0.0100 0.0173 0.0437 0.1223 0.2205 0.3167 0.4105 0.5180 0.5619 0.6407

N=100 0.0114 0.0314 0.0844 0.2162 0.3838 0.5412 0.6382 0.7607 0.8048 0.8699

N=1000 0.0114 0.1063 0.6518 0.9718 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000

p = 0.5

N=20 0.0098 0.0225 0.0642 0.1053 0.1718 0.2523 0.3255 0.3891 0.4555 0.5232

N=50 0.0126 0.0286 0.1172 0.2680 0.4778 0.6055 0.7537 0.8414 0.8891 0.9375

N=100 0.0102 0.0651 0.2288 0.5462 0.7764 0.9062 0.9723 0.9903 0.9976 0.9982

N=1000 0.0103 0.4746 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

p = 0.9

N=20 0.0141 0.0135 0.0184 0.0213 0.0262 0.0298 0.0389 0.0433 0.0461 0.0517

N=50 0.0080 0.0160 0.0213 0.0379 0.0446 0.0619 0.0693 0.0886 0.1014 0.1193

N=100 0.0103 0.0229 0.0374 0.0627 0.0844 0.1149 0.1379 0.1716 0.2074 0.2461

N=1000 0.0120 0.0575 0.2211 0.4998 0.7301 0.8692 0.9450 0.9766 0.9893 0.9957
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Let y1, ..., yN be independently distributed with exponential densities. Suppose that {yi1 , .., yiK},
0 < K < N are the observations from the exponential distribution with scale parameter θ1 and

the other observations are distributed according to the exponential distribution with scale pa-

rameter θ2. Then following Stehĺık and Ososkov (2003) we obtain the formula for likelihood

ratio

ΛN(y) = min
0<K<N,p∈P (K)

{ NN

KK(N −K)N−K

(yi1 + ... + yiK )K(yiK+1
+ ... + yiN )N−K

(y1 + ... + yN)N
}, (8)

where P (K) denotes all partitions of {1, .., K} in two nonempty subsets. The main advantage

of the test statistic (8) is that it does not depend on the unknown value of the parameter θ

under the null hypothesis. The exact distribution of the LR test statistic ΛN given by formula

(8) is derived in Stehĺık and Ososkov (2003) under the null hypothesis.

The following Lemma provides some notes on the determination of the ELR2 test statistics.

The proof is given in the Appendix 6.1.

Lemma 1 The likelihood-ratio statistic of the ELR2 test

− ln ΛN(y) = −min0<K<N,p∈P (K){N ln N −K ln K − (N −K) ln(N −K) +

+K ln(
∑K

n=1 yin) + (N −K) ln(
∑N−K

n=1 yin)−N ln(
∑N

n=1 yn)},

can be determined as

ln ΛN(y) = N ln N −N ln(
N∑

n=1

yn) + Hmin,

where

Hmin = min
0<K<N

{
−K ln K − (N −K) ln(N −K) + K ln(

K∑
i=1

y(i)) + (N −K) ln(
N∑

i=K+1

y(i))

}
.

Hmin can be determined very simply as only sums of order statistics are involved. Critical values

can be obtained similarly to the ELR test by generating M samples of size N from the standard

exponential distribution, computing the test statistic for each sample and determining c1−α by

the respective order statistic c1−α = c(M(1−α)).

11

Page 12 of 26

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

4 A comparative power study of different homogeneity

tests

4.1 Simulation setup

A simulation study with a similar setup as in Mosler and Haferkamp (2007) was performed to

compare the power of the exact likelihood ratio tests ELR and ELR2 to other different tests

for the hypotheses

H0 : y1, . . . , yN ∼ Exponential (θ) (9)

against the alternative

H1 : y1, . . . , yN follow a mixture of two exponential components (10)

To be consistent with the simulation setup in Mosler and Haferkamp (2007) we generate

proportions N1, N−N1 in such a way that N1 ∼ Binomial(N, p). We used three typical mixture

proportions, p = 0.1, 0.5, 0.9 and the sample sizes N = 10, 100 and N = 1000. The parameter

of the first mixture component is θ1 = 1 and for θ2 several values greater than θ1 were chosen.

These settings correspond to upper contamination (p = 0.1), fifty-fifty mixtures and lower

contamination (p = 0.9). For each parameter setting M = 10000 samples of N observations

from the mixture distribution with density

f(y) = p exp(−y) + (1− p)θ exp(−θy),

were generated. We compared the proportion of rejections of the null hypothesis for the follow-

ing tests: the modified likelihood ratio test of Chen et al. (2001) (MLRT); the D-test introduced

by Charnigo and Sun (2004) (DTEST) and two weighted variants of the D-test (W1D and

W2D); the Anderson Darling test (AD), the Dispersion Score test (DST), the combination of

AD and DS-test introduced by Mosler and Seidel (2001) (ADDS) and the exact likelihood ratio

tests against the alternative (1) (ELR) and for testing against the 2-component subpopulation

model (ELR2).

We also made comparisons to the penalized D-test (PenD), but PenD does not hold the size

for N < 1000 and then it starts to hold it only approximately. Therefore we decided to delete

it from our comparisons. Furthermore, as personally communicated by Richard Charnigo, the
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Figure 1: Proportion of rejections of the null hypothesis for different homogeneity tests for

N = 10, α = 0.05 and p = 0.1 (left), p = 0.5 (middle) and p = 0.9 (right)

PenD test is rather anticonservative, especially when looking at data from other (i.e., non-

exponential) distributions. However this phenomenon dissipates with larger sample sizes. For

small N the same problem occurs for the D-test because of estimating the nuisance scale

parameter. Here we can take an advantage of the scale invariance of the ELR and the ELR2

test.

Critical values for the AD and DS were determined by simulation from M = 50000 samples

as in Mosler and Haferkamp (2007). The ADDS-test uses critical values for the AD and the

DS-test.

4.2 Results

The simulated powers of the different homogeneity tests (α = 0.01) of exponential mixtures

are reported in Tables 3– 5 (see Appendix 6.2) ordered by decreasing powers. In Figure 1 the

results are displayed for N = 10 and Figure 2 shows the results in the lower contamination case

for N = 100 and N = 1000.

For upper contaminations the DST outperforms the other tests for all three sample sizes,

followed by W2D- and ADDS-test for N = 10 and ADDS and MRLT for N = 100 and

N = 1000. The ELR-tests are among those with lowest power, with ELR performing better

than ELR2. Only the D-test has smaller power than ELR for N = 10 and N = 1000.

In fifty-fifty mixtures MLRT performs well for all sample sizes. The weighted variants of the

D-tests (W1D and W2D) have relatively high power for large samples (N = 100 and N = 1000),
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Figure 2: Proportion of rejections of the null hypothesis for different homogeneity tests for

α = 0.01, p = 0.1 and N = 100 (left), and N = 1000 (right)

but only for smaller values of θ for N = 10. In small samples of mixtures with θ > 20 the

ELR2-test is the one attaining the highest power, but in larger samples the ELR tests again

are among those with lowest power.

All tests have problems to detect heterogeneity in the lower contamination case, in partic-

ular for small sample sizes. In this situation however the ELR tests clearly outperform their

competitors for larger θ. For N = 100 and small θ the D-Test and for N = 1000 its weighted

variants attain highest power among the compared tests. The dispersion score test is the test

with lowest power in a wide range of settings with dramatically lower power than the best test

for larger θ.

Particularly we can observe this behavior as a consequence of the subexponential model used

by the ELR tests and a mixture model by MLRT. All other tests use some kind of ’distance’

between the densities which is small for lower contamination.

4.3 Theoretical explanation of the test behavior

In our simulation setup, i.e. testing the null hypothesis (9) against the alternative (10), we

have the point of alternative θA = (1, θ) and θ? = (θ, θ) ∈ Θ0 with proportions p and 1 − p,

respectively. Thus K(θ, θ?) = pK(1, θ) + (1− p)K(θ, θ) = p(− ln θ + θ − 1), θ > 1. Notice that

the function K(θ, θ?) = p(− ln θ + θ − 1) is increasing for θ > 1 and thus also the exact slope

cT is increasing with θ, since ELR is AOBS (see Stehĺık, 2003; Rubĺık, 1989a,b). Notice also,

that the exact slope is increasing with p. It could be worth further consideration whether this
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is the reason why in the lower contamination ELR and ELR2 outperforms the other tests, at

least for large θ (see Figure 1 and Figure 3).

We can summarize our conclusions:

1) The power is increasing with θ.

2) The power of ELR and ELR2 tests is relatively better for lower contamination than for

upper contamination.

4.4 Comparison of ELR and ELR2 to the other tests through slopes

The interpretation of the behavior of the simulated power can be based on exact slopes of the

sequence of tests. To obtain the slopes of other tests, we can use the Theorem of Bahadur

(see Bahadur, 1967) and Groeneboom and Oosterhoff (see Groeneboom and Oosterhoff, 1977)

which says that if limn→∞ 1
n

ln Ln
Pθ→ −1

2
cT (θ) ∀ θ ∈ Θ1 then NT (α, β, θ) ∼ 2 ln 1

α

cT (θ)
for

α ↓ 0+. We can compute NT (α, β, θ) through simulation and then compare the simulated slopes

of other tests to exact slopes of ELR. Here NT (α, β, θ) denotes the sample size necessary for the

sequence {TN} in order to attain power β at the level α for a point θ ∈ Θ\Θ0 of the alternative

space.

To get an idea of the slopes of the different tests we tried to approximate NT (α, β, θ). We

simulated the power of each test at level α = 0.01 for different sample sizes N = 10, 11, .., 20, 25, ..., 100, 200, .., 500, 1000

and different values of θ. As an approximation to NT (α = 0.01, β = 0.5, θ) we used the mini-

mum sample size N∗(θ) where the simulated power β̂ was greater than 0.5. Figure 3 shows the

values c(θ) = −2 ln α/N∗(θ) as a function of θ.

Note that despite the multimodal alternatives, for which a good description of test behavior

can be obtained through the full variation metrics between distribution measures (see Hazan

et al., 2003), in our setup the alternatives (scale exponential mixtures) are unimodal. Here we

have found the Kullback-Leibler distance to be more adequate, since the ELR test is AOBS

under reasonable regularity conditions (i,ii, and iii). Also note, that the performed simulations

are not superfluous to the theoretical findings, since the justification of behavior 1) and 2)

is based on the asymptotical considerations (the nice behavior of ELR and ELR2 tests work

remarkably well also for small samples, e.g. N = 10 and N = 100 as it can be seen from the

Figures).
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Figure 3: Slopes of different tests

4.5 Comparison of the tests for two subpopulations

To gain further insight into the behavior of the different tests for various modalities of the

alternative we conducted a further simulation study. Samples of size N = 10 and N = 100

were generated from two subpopulations of size N1 and N −N1 respectively, where all integers

from 0 to N were considered for N1. The difference to the simulation in Section 4.1 where the

number of observations from the first mixture component N1 was generated from a binomial

distribution, is that N1 is fixed.

We used three different combinations for the parameters in the two subpopulations for each

sample size, namely θ1 = 0.1, 1, 10 and θ2 = c θ1. We chose c = 10 for N = 10 and c = 3

for N = 100. For each value of N1, M = 10000 samples were generated and the number of

rejections of the null hypothesis was counted. Figure 4 shows the proportion of rejections,

i.e. the simulated power of all tests as a function of the size of the first subpopulation N1 for

N = 10.

Note that for N1 = 0 and N1 = N the sample is drawn from a homogeneous population and

hence the proportion of rejections of the null hypothesis should approximately equal the size of

the test α = 0.05, which is indicated by a black line in Figure 4.

This simulation study provides some further insight in the properties of the different tests:

1. The D-Test obviously is not scale invariant under the null see Figure 4 right. This

2. The power of all tests is not symmetric in |N1−N/2| and is small for lower contamination.

3. No test dominates the others.
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Figure 4: Proportion of rejection of the null hypothesis for different homogeneity tests for

N = 10 and θ1 = 0.1; θ2 = 1 (left) and θ1 = 10; θ2 = 100 (right)

4. For fixed N and N1 the power seems – at least approximately – to be a function of θ1/θ2.

5 Conclusions

In the present paper we construct the efficient testing procedure for exponential homogeneity.

The ELR procedures studied here have some interesting properties under subpopulation alter-

natives, while in our simulations we employ these tests against mixture component alternatives

and compare them with other existing tests developed in the mixture component model. We

illustrate by simulations and try to explain also theoretically that the ELR-tests are best for

lower contamination but not for upper contamination. We also discuss the properties of such

tests and describe a procedure for the computation of the critical values. We compare the

performance of the exact likelihood ratio tests in the 2-component mixture alternative. In this

case the ELR can be used like the omnibus test for homogeneity and in some settings can

be superior to other tests proposed for homogeneity in a mixture model, among them mod-

ified likelihood ratio tests or dispersion score (DS) tests. While these approaches work well,

e.g. in normal mixtures, the diagnosis of exponential mixtures poses additional problems: the

modified likelihood ratio and the dispersion score tests have no power on a large class of alter-

natives (see Mosler and Seidel, 2001). Another widely used approach is to use a LRT statistic

2 ln θ = 2(l(θ̂1)− l(θ̂0)) where θ̂0 and θ̂1 are the ML estimates of the parameters under the null

and the alternative hypothesis respectively and θ denotes likelihood ratio. For this plug-in LRT
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parameter estimation is usually accomplished by the EM algorithm, however the calculation of

the test statistic and the Monte-Carlo simulation of its null distribution depend heavily on the

particular implementation of the EM algorithm (see Seidel et al., 2000). For the tests used in

this paper, in the software implementation D-Test, w1d, w2d and MLRT tests use estimates

from the EM Algorithm. The AD-test uses a scale estimate (mean) under the null. However,

this is not the case of ELR and ELRk tests.

The main reasons, why the ELR and ELRk tests should be considered for testing exponential

homogeneity are the following:

a) these tests are not dependent on the unknown common scale parameter under homo-

geneity (like other usual tests or EM based procedures)

b) the quantiles can be easily simulated.

Probably the main advantage of the ELRT is its computational simplicity for ELR and

ELR2, regarding both the test statistic and the critical values; in particular, no EM algorithm

has to be employed.
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6 Appendix

6.1 Proofs

Proof of Lemma 1 The determination of the likelihood-ratio statistic of the ELR2 test

− ln ΛN(y) = −min0<K<N,p∈P (K){N ln N −K ln K − (N −K) ln(N −K) +

+K ln(
∑K

n=1 yin) + (N −K) ln(
∑N−K

n=1 yin)−N ln(
∑N

n=1 yn)},

is not so straight forward as for the ELR, as the minimum of

N ln N −K ln K − (N −K) ln(N −K) + K ln(
K∑

n=1

yin) + (N −K) ln(
N−K∑
n=1

yin)−N ln(
N∑

n=1

yn),

over all possible classifications into 2 non-empty groups has to be found. For determining this

minimum

N ln N −N ln(
N∑

n=1

yn)

is irrelevant and therefore the minimum of

H(y, K) = {−K ln K − (N −K) ln(N −K) + K ln(
K∑

n=1

yin) + (N −K) ln(
N−K∑
n=1

yin)},

for 0 < K < N, p ∈ P (K) is of interest. For N observations there are 2N−1 − 1 different

classifications into 2 nonempty groups. Hence direct minimization over all classifications is

feasible only for small N. However minimizing first H(y|K) for fixed K = 1, . . . , N−1 and then

determining the minimum of these N −1 values poses no problem. Given the data y, their sum

S =
∑N

n=1 yi is fixed. For fixed K we therefore consider minimization of

H(x|K) = K ln x + (N −K) ln(S − x),

as a function of x. This function is continuous and strictly concave, as the second derivative

∂2H(x|K)

∂x2
= −

(K

x2
+

N −K

(S − x)2

)
,

is negative for 0 < x < S. The maximum of H(x|K) is attained at x = KS/N and the

minimum lies on one of the boundaries, see Figure 5. For the likelihood ratio statistic, x can
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Figure 5: The function H(x|K)

only take certain discrete values, as x =
∑K

n=1 yin . Miminum and maximum of x are the sum

of the smallest and largest K order statistics respectively:

min(x) =
K∑

i=1

y(i) max(x) =
K∑

i=1

y(N−i+1).

Due to the symmetry

K ln(
K∑

i=1

y(N−i+1)) + (N −K) ln(
N∑

i=K+1

y(N−i+1)) = K ′ ln(
K′∑
i=1

y(i)) + (N −K ′) ln(
N∑

i=K′+1

y(l)),

for K ′ = N −K the minimum value of H(x|K) is

Hmin = min
0<K<N

{
−K ln K − (N −K) ln(N −K) + K ln(

K∑
i=1

y(i)) + (N −K) ln(
N∑

i=K+1

y(i))

}
,

which can be determined very simply as only sums of order statistics are involved. The ELR2

test statistic is given as

ln ΛN(y) = N ln N −N ln(
N∑

n=1

yn) + Hmin.

¤

6.2 Tables
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Table 3: Simulated power for different tests for homogeneity in exponential mixtures n = 10

Rank Test Power Test Power Test Power Test Power Test Power

p = 0.1

θ = 1 θ = 5 θ = 10 θ = 20 θ = 50

1 adds ( 0.010 ) dst ( 0.111 ) dst ( 0.270 ) adds ( 0.426 ) adds ( 0.553 )

2 w1d ( 0.010 ) adds ( 0.099 ) adds ( 0.262 ) dst ( 0.425 ) w2d ( 0.549 )

3 elr2 ( 0.009 ) w2d ( 0.096 ) w2d ( 0.261 ) w2d ( 0.423 ) dst ( 0.547 )

4 mlrt ( 0.009 ) w1d ( 0.080 ) w1d ( 0.229 ) w1d ( 0.400 ) w1d ( 0.537 )

5 w2d ( 0.009 ) mlrt ( 0.072 ) mlrt ( 0.216 ) mlrt ( 0.388 ) mlrt ( 0.531 )

6 adt ( 0.009 ) adt ( 0.066 ) adt ( 0.208 ) adt ( 0.378 ) adt ( 0.526 )

7 dst ( 0.009 ) elr ( 0.049 ) elr2 ( 0.158 ) elr2 ( 0.324 ) elr2 ( 0.493 )

8 elr ( 0.008 ) elr2 ( 0.047 ) elr ( 0.154 ) elr ( 0.314 ) elr ( 0.488 )

9 dtest ( 0.006 ) dtest ( 0.016 ) dtest ( 0.056 ) dtest ( 0.175 ) dtest (0.392 )

θ = 1 θ = 5 θ = 10 θ = 20 θ = 50

1 adds ( 0.011 ) w1d ( 0.118 ) mlrt ( 0.316 ) mlrt ( 0.596 ) elr2 ( 0.847 )

2 dst ( 0.011 ) adds ( 0.116 ) w1d ( 0.313 ) adt ( 0.563 ) mlrt ( 0.829 )

3 adt ( 0.011 ) w2d ( 0.114 ) adt ( 0.290 ) elr2 ( 0.562 ) adt ( 0.823 )

4 elr ( 0.010 ) mlrt ( 0.112 ) adds ( 0.286 ) w1d ( 0.558 ) elr ( 0.811 )

5 mlrt ( 0.010 ) dst ( 0.103 ) elr2 ( 0.264 ) adds ( 0.536 ) adds ( 0.795 )

6 elr2 ( 0.010 ) adt ( 0.100 ) w2d ( 0.261 ) elr ( 0.507 ) w1d ( 0.756 )

7 w2d ( 0.009 ) elr2 ( 0.082 ) elr ( 0.232 ) w2d ( 0.417 ) dtest ( 0.738 )

8 w1d ( 0.009 ) elr ( 0.080 ) dst ( 0.204 ) dtest ( 0.381 ) w2d ( 0.540 )

9 dtest ( 0.007 ) dtest ( 0.035 ) dtest ( 0.132 ) dst ( 0.304 ) dst ( 0.404 )

p = 0.9

θ = 1 θ = 10 θ = 20 θ = 50 θ = 100

1 mlrt ( 0.011 ) mlrt ( 0.044 ) elr2 ( 0.066 ) elr2 ( 0.122 ) elr ( 0.184 )

2 adds ( 0.010 ) elr2 ( 0.042 ) elr ( 0.063 ) elr ( 0.118 ) elr2 ( 0.178 )

3 elr2 ( 0.010 ) elr ( 0.036 ) mlrt ( 0.063 ) mlrt ( 0.104 ) mlrt ( 0.136 )

4 adt ( 0.010 ) adt ( 0.036 ) adt ( 0.053 ) dtest ( 0.096 ) dtest ( 0.134 )

5 w1d ( 0.010 ) w1d ( 0.033 ) adds ( 0.047 ) adt ( 0.094 ) adt ( 0.125 )

6 elr ( 0.010 ) adds ( 0.032 ) w1d ( 0.045 ) adds ( 0.082 ) adds ( 0.108 )

7 dst ( 0.010 ) dtest ( 0.029 ) dtest ( 0.044 ) w1d ( 0.062 ) w1d ( 0.062 )

8 w2d ( 0.009 ) w2d ( 0.023 ) dst ( 0.028 ) w2d ( 0.030 ) dst ( 0.030 )

9 dtest ( 0.008 ) dst ( 0.020 ) w2d ( 0.028 ) dst ( 0.029 ) w2d ( 0.028 )
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Table 4: Simulated power for different tests for homogeneity in exponential mixtures n = 100

Rank Test Power Test Power Test Power Test Power Test Power

p = 0.1

θ = 1 θ = 2 θ = 3 θ = 5 θ = 10

1 dtest ( 0.016 ) dst ( 0.072 ) dst ( 0.293 ) dst ( 0.746 ) dst ( 0.978 )

2 adds ( 0.012 ) adds ( 0.058 ) adds ( 0.260 ) adds ( 0.711 ) adds ( 0.973 )

3 mlrt ( 0.011 ) mlrt ( 0.049 ) mlrt ( 0.220 ) mlrt ( 0.679 ) mlrt ( 0.965 )

4 adt ( 0.010 ) w2d ( 0.041 ) w2d ( 0.183 ) w2d ( 0.625 ) w2d ( 0.953 )

5 elr2 ( 0.010 ) w1d ( 0.028 ) w1d ( 0.108 ) w1d ( 0.494 ) w1d ( 0.919 )

6 dst ( 0.010 ) elr ( 0.024 ) adt ( 0.093 ) adt ( 0.461 ) adt ( 0.915 )

7 elr ( 0.010 ) dtest ( 0.021 ) elr ( 0.087 ) elr ( 0.367 ) elr ( 0.860 )

8 w2d ( 0.009 ) elr2 ( 0.020 ) elr2 ( 0.070 ) elr2 ( 0.301 ) dtest ( 0.826 )

9 w1d ( 0.009 ) adt ( 0.020 ) dtest ( 0.048 ) dtest ( 0.278 ) elr2 ( 0.808 )

p = 0.5

θ = 1 θ = 2 θ = 3 θ = 5 θ = 7

1 dtest ( 0.013 ) mlrt ( 0.098 ) mlrt ( 0.431 ) mlrt ( 0.922 ) mlrt ( 0.993 )

2 adds ( 0.011 ) dst ( 0.093 ) w2d ( 0.417 ) w1d ( 0.908 ) w1d ( 0.991 )

3 elr ( 0.010 ) w2d ( 0.093 ) w1d ( 0.371 ) w2d ( 0.907 ) adt ( 0.990 )

4 adt ( 0.010 ) adds ( 0.084 ) adds ( 0.341 ) adt ( 0.869 ) adds ( 0.987 )

5 mlrt ( 0.010 ) w1d ( 0.074 ) dst ( 0.328 ) adds ( 0.869 ) w2d ( 0.987 )

6 dst ( 0.009 ) dtest ( 0.059 ) adt ( 0.290 ) dtest ( 0.851 ) dtest ( 0.987 )

7 elr2 ( 0.009 ) adt ( 0.051 ) dtest ( 0.276 ) elr2 ( 0.833 ) elr2 ( 0.986 )

8 w1d ( 0.008 ) elr ( 0.051 ) elr2 ( 0.253 ) elr ( 0.785 ) elr ( 0.973 )

9 w2d ( 0.008 ) elr2 ( 0.050 ) elr ( 0.248 ) dst ( 0.755 ) dst ( 0.907 )

p = 0.9

θ = 1 θ = 2 θ = 5 θ = 10 θ = 30

1 dtest ( 0.014 ) dtest ( 0.024 ) dtest ( 0.120 ) dtest ( 0.272 ) elr ( 0.613 )

2 adt ( 0.010 ) mlrt ( 0.021 ) elr2 ( 0.095 ) elr2 ( 0.244 ) elr2 ( 0.514 )

3 adds ( 0.010 ) w2d ( 0.019 ) mlrt ( 0.092 ) elr ( 0.230 ) adt ( 0.474 )

4 elr2 ( 0.010 ) elr ( 0.018 ) w1d ( 0.088 ) mlrt ( 0.193 ) dtest ( 0.466 )

5 mlrt ( 0.010 ) dst ( 0.018 ) elr ( 0.082 ) adt ( 0.183 ) adds ( 0.423 )

6 dst ( 0.010 ) adds ( 0.018 ) adt ( 0.070 ) w1d ( 0.177 ) mlrt ( 0.411 )

7 elr ( 0.010 ) elr2 ( 0.017 ) w2d ( 0.068 ) adds ( 0.162 ) w1d ( 0.293 )

8 w1d ( 0.008 ) w1d ( 0.017 ) adds ( 0.065 ) w2d ( 0.104 ) w2d ( 0.105 )

9 w2d ( 0.007 ) adt ( 0.013 ) dst ( 0.041 ) dst ( 0.057 ) dst ( 0.072 )
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Table 5: Simulated power for different tests for homogeneity in exponential mixtures n = 1000

Test Power Test Power Test Power Test Power Test Power

p = 0.1

θ = 1 θ = 1.5 θ = 2 θ = 2.5 θ = 3

1 w1d ( 0.013 ) dst ( 0.056 ) dst ( 0.400 ) dst ( 0.861 ) dst ( 0.985 )

2 w2d ( 0.013 ) mlrt ( 0.041 ) mlrt ( 0.319 ) mlrt ( 0.802 ) mlrt ( 0.974 )

3 dtest ( 0.013 ) w2d ( 0.041 ) adds ( 0.311 ) adds ( 0.802 ) adds ( 0.974 )

4 dst ( 0.011 ) w1d ( 0.037 ) w2d ( 0.287 ) w2d ( 0.761 ) w2d ( 0.962 )

5 adt ( 0.011 ) adds ( 0.035 ) w1d ( 0.256 ) w1d ( 0.718 ) w1d ( 0.947 )

6 elr2 ( 0.010 ) dtest ( 0.030 ) dtest ( 0.215 ) dtest ( 0.656 ) dtest ( 0.923 )

7 mlrt ( 0.010 ) elr ( 0.022 ) adt ( 0.094 ) adt ( 0.421 ) adt ( 0.796 )

8 elr ( 0.010 ) elr2 ( 0.022 ) elr ( 0.093 ) elr ( 0.331 ) elr ( 0.647 )

9 adds ( 0.009 ) adt ( 0.019 ) elr2 ( 0.075 ) elr2 ( 0.246 ) elr2 ( 0.517 )

p = 0.5

θ = 1 θ = 1.2 θ = 1.5 θ = 2 θ = 2.5

1 adt ( 0.013 ) dst (0.022 ) dst ( 0.141 ) w2d ( 0.781 ) w2d ( 0.996 )

2 w1d ( 0.012 ) w1d ( 0.022 ) w2d ( 0.140 ) w1d ( 0.774 ) w1d ( 0.995 )

3 w2d ( 0.012 ) w2d ( 0.022 ) w1d ( 0.136 ) mlrt ( 0.767 ) mlrt ( 0.995 )

4 dtest ( 0.011 ) dtest ( 0.020 ) mlrt ( 0.131 ) dtest ( 0.756 ) dtest ( 0.995 )

5 elr2 ( 0.009 ) mlrt ( 0.019 ) dtest ( 0.123 ) dst ( 0.740 ) dst ( 0.988 )

6 dst ( 0.009 ) elr ( 0.015 ) adds ( 0.095 ) adds ( 0.676 ) adds ( 0.986 )

7 elr ( 0.009 ) elr2 ( 0.014 ) elr ( 0.068 ) adt ( 0.563 ) adt ( 0.978 )

8 mlrt ( 0.009 ) adds ( 0.013 ) elr2 ( 0.061 ) elr ( 0.464 ) elr ( 0.926 )

9 adds ( 0.008 ) adt ( 0.013 ) adt ( 0.059 ) elr2 ( 0.441 ) elr2 ( 0.923 )

p = 0.9

θ = 1 θ = 2 θ = 3 θ = 5 θ = 10

1 w1d ( 0.013 ) w1d ( 0.080 ) w1d ( 0.274 ) elr2 ( 0.776 ) elr ( 0.996 )

2 w2d ( 0.012 ) w2d ( 0.079 ) w2d ( 0.268 ) elr ( 0.724 ) elr2 ( 0.995 )

3 dtest ( 0.012 ) dtest ( 0.075 ) dtest ( 0.266 ) adt ( 0.715 ) adt ( 0.993 )

4 adt ( 0.011 ) mlrt ( 0.063 ) elr2 ( 0.255 ) adds ( 0.637 ) adds ( 0.985 )

5 elr ( 0.010 ) dst ( 0.057 ) elr ( 0.231 ) w1d ( 0.599 ) w1d ( 0.862 )

6 elr2 ( 0.010 ) elr ( 0.055 ) mlrt ( 0.225 ) dtest ( 0.595 ) dtest ( 0.861 )

7 mlrt ( 0.009 ) elr2 ( 0.053 ) adt ( 0.222 ) w2d ( 0.591 ) w2d ( 0.857 )

8 dst ( 0.008 ) adds ( 0.046 ) adds ( 0.186 ) mlrt ( 0.543 ) mlrt ( 0.842 )

9 adds ( 0.007 ) adt ( 0.042 ) dst ( 0.154 ) dst ( 0.347 ) dst ( 0.570 )
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Hönig, V., Stehĺı k, M., Danielová, V., Daniel, M., ˇ Svec, P., Grubhoffer, L., 2010. Tick host-

seeking activity and tick-borne encephalitis incidence: regression and homogeneity. Journal

of Applied Mathematics, Statistics and Informatics 6 (1), in press.

Lehmann, E., 1964. Testing Statistical Hypotheses. John Wiley & Sons, New York.

Li, P., Chen, J., Marriott, P., 2009. Non-finite fisher information and homogeneity: an em

approach. Biometrika 96 (2), 411–426.

Lindsay, B., 1995. Mixture models: Theory, geometry and applications. Institute of Mathemat-

ical Statistics, Hayward, Cal.

Liu, X., Pasarica, C., Shao, Y., 2003. Testing homogeneity in gamma mixture models. Scand.

J. Statist. 30, 227–239.

Manoukian, E., 1986. Modern concepts and theorems of mathematical statistics. Springer-

Verlag:Springer Series in Statistics, New York.

McLachlan, G., 1995. Mixtures - models and applications. the exponential distribution. In:

proc. Berkeley conference in honor of Jerzy Neyman and Jack Kiefer. Gordon & Breach,

Amsterdam, pp. 307–323.

Meintanis, S., 2007. Test for exponentiality against weibull and gamma decreasing hazard rate

alternatives. KYBERNETIKA 43 (3), 307–314.

Mosler, K., Haferkamp, L., 2007. Size and power of recent tests for homogeneity in exponential

mixtures. Communications in Statistics - Simulation and Computation 36, 493–504.

Mosler, K., Haferkamp, L., 2009. A comparison of recent procedures in weibull mixture testing.

In: Advances in Data Analysis. Birkhäuser, Boston.
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