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The aim of this paper is to discuss homogeneity testing of the exponential distribution. We introduce the exact likelihood ratio test of homogeneity in the subpopulation model, ELR, and the exact likelihood ratio test of homogeneity against the two-components subpopulation alternative, ELR2. The ELR test is asymptotically optimal in the Bahadur sense when the alternative consists of sampling from a fixed number of components. Thus in some setups the ELR is superior to frequently used tests for exponential homogeneity which are based on the EM algorithm. We demonstrate this fact by both theoretical comparisons and simulations.

Introduction

The exponential distribution Exp(θ i ) is one of the most widely used lifetime distributions in reliability engineering. It has a density of the form f (y i |θ i ) = θ i exp(-θ i y i ), y i > 0, where 1/θ i > 0 is a scale parameter and a constant hazard rate θ i . There is a big body of literature on the theory and applications of the exponential distribution (see [START_REF] Balakrishnan | The Exponential Distribution: Theory, Methods, and Applications[END_REF]. The problem of testing for heterogeneity or overdispersion has received more attention than tests of the number of components (see [START_REF] Susko | Weighted tests of homogeneity for testing the number of components in a mixture[END_REF].

Lifetime data with an observed decreasing hazard rate rate can be modelled by a mixture distribution of exponential components. Such a model can be interpreted by competing risks:

The components in the mixture correspond to the distinct causes of failure which are taken to act in a mutually exclusive manner. For example, [START_REF] Choi | Two-sample tests for compound distributions for homogeneity of mixing proportions[END_REF] used a two-component mixture model to study the toxicity of chemical agents. For a survey of mixtures of exponentials see [START_REF] Mclachlan | Mixtures -models and applications. the exponential distribution[END_REF].

The aim of this paper is to introduce the exact procedure for testing exponential homogeneity against alternatives of exponential heterogeneity. The likelihood-ratio decision procedure for the hypothesis H 0 : θ ∈ Θ 0 versus H 1 : θ ∈ Θ 1 \ Θ 0 , ∅ = Θ 0 ⊂ Θ 1 ⊂ Θ, is based on the ratio sup θ∈Θ 0 L y (θ) sup θ∈Θ 1 L y (θ) ,

where Θ 0 ⊂ Θ 1 , θ is the parameter of interest and L y (θ) is the likelihood of θ under the observed data y and requires specification of the null and the alternative.

When we consider the null hypothesis of exponential homogeneity, different specifications of the alternative lead to different likelihood ratio tests. The most popular alternative to homogeneity is the mixture model with exponential components. A certain drawback of the LR test for the mixture model alternative is that it requires ML estimates of the model parameters.

This is not the case when the alternative is the subpopulation model, which is the alternative of the exact likelihood ratio (ELR) tests considered in this paper.

We compare these procedures with other competitive tests and show, in particular, its superiority in some setups (e.g. in the lower contamination case, which can be of interest for insurance applications, among others). The ELR-test is asymptotically optimal in the Bahadur sense when the alternative consists of the subpopulation model with a finite number of populations (see [START_REF] Stehlík | Exact likelihood ratio scale and homogeneity testing of some loss processes[END_REF]Rublík, 1989a,b). The ELR test and ELR2 test, which tests the alternative of two subpopulations, have nonstandard asymptotic distributions but their exact distribution can be easily simulated.

The rest of this paper is organized as follows. The difference between mixture and subpopulation models is discussed in Section 2. In section 3 the exact likelihood ratio homogeneity tests ELR and ELR2 are introduced and discussed. In section 4 a comparative power study of tests for homogeneity is provided together with the theoretical explanation of the obtained results.

The following tests for homogeneity in exponential mixtures are considered: the dispersion score (DS) test, also known under the name C(α)-tests; (see chapter 4 of [START_REF] Lindsay | Mixture models: Theory, geometry and applications[END_REF]; the modified likelihood ratio test (MLRT) introduced by [START_REF] Chen | A modified likelihood ratio test for homogeneity in finite mixture models[END_REF], which is a penalized LRT and has standard chi-square asymptotics; the ADDS test by [START_REF] Mosler | Testing for homogeneity in an exponential mixture model[END_REF], a combination ... procedure; several variants of the D-test by [START_REF] Charnigo | Testing homogeneity in a mixture distribution via the l 2 distance between competing models[END_REF], that is based on the L 2 distance between the estimated densities of a homogeneous and a heterogeneous model. All tables and proofs are collected in the Appendix.

2 The subpopulation model and mixture alternative

Subpopulation and mixture models

Consider a sample of independent observations y 1 , . . . , y N , and the null hypothesis of exponential homogeneity, that is

f (y 1 , . . . , y N ) = N i=1 θ exp(-θy i )
For testing this null hypothesis, many different alternatives may be specified. The most general alternative says that the distributions of the y i are heterogeneous and/or non-exponential, which comprises alternatives like homogeneous and non-exponential, heterogeneous and exponential in subgroups, heterogeneous and non-exponential in at least one subgroup, among others. In the sequel, we investigate the following alternative: each observation y i is generated by an exponential distribution but the parameter is not identical for all observations.

Alternatives to homogeneity are often specified as mixture models. 

f (y 1 , . . . , y N ) = N i=1 [pθ 1 exp(-θ 1 y i ) + (1 -p)θ 2 exp(-θ 2 y i )] , 0 < p < 1,
and the joint density of a sample from a general k -component mixture of exponential components is

f (y 1 , . . . , y N ) = N i=1 k j=1 p j θ j exp(-θ j y i ) ,
where 0 < p j < 1, j p j = 1. For the mixture alternative, there exists a strong justification for using the likelihood ratio test: It is consistent against all alternatives with decreasing failure rate (see [START_REF] Randles | On the asymptotic normality of statistics with estimated parameters[END_REF][START_REF] Tchirina | Large deviations for a class of scale-free statistics under the gamma distribution[END_REF].

In this paper we consider tests for homogeneity against somewhat different alternatives, which are specified as subpopulation models. In the subpopulation model the number of subpopulations has to be specified. The general subpopulation model which is the alternative tested in the exact likelihood ratio test for homogeneity (ELR) proposed by [START_REF] Stehlík | Distributions of exact tests in the exponential family[END_REF] assumes that each observation follows an exponential distribution with its own parameter. The joint density of the sample is given as

f (y 1 , . . . , y N ) = N i=1 θ i exp(-θ i y i ), (1) 
θ i = θ j for i = j.
A more specific case of a subpopulation model is inhomogeneity with an unobserved clustering and a given number of clusters k, this is the alternative of the exact likelihood ratio test for k subpopulations ELRk introduced in [START_REF] Stehlík | Efficient testing of the homogeneity, scale parameters and number of components in the rayleigh mixture[END_REF]. The ELR2 test uses the alternative of two subpopulations, which can be specified by (1) and the existence of two

nonempty index sets M 1 , M 2 such that M 1 ∪ M 2 = {1, ..., N }, M 1 ∩ M 2 = ∅ (2) ∀j ∈ M 1 : θ j = θ 1 , ∀j ∈ M 2 : θ j = θ 2 , θ 1 = θ 2 . ( 3 
)
An even more restrictive alternative within the subpopulation model is inhomogeneity with a fixed number of clusters and observed clustering (see [START_REF] Hönig | Tick hostseeking activity and tick-borne encephalitis incidence: regression and homogeneity[END_REF]). Such a situation may appear in some specific, e.g. biological applications. Both the mixture and the subpopulation model can be used to model unobserved clustering. To illustrate the difference between these models we consider the related data generating processes for sampling from two exponential distributions Exp(θ i ), i = 1, 2; θ 1 = θ 2 . A scheme where the number of draws N 1 , 0 < N 1 < N, from Exp(θ 1 ) is fixed before sampling can be described by the subpopulation model. If the component Exp(θ i ) from which each element of the sample is drawn is determined by a random experiment the mixture model results. Under H 1 in the 2-subpopulation model the sample contains at least one element of each component, whereas this need not be the case for samples from the two-component mixture model.

4

F

We might therefore interpret the alternative in the subpopulation model as exponential heterogeneity in the sample, whereas the mixture alternative can be interpreted as exponential heterogeneity in the population. The mixture alternative is more commonly used in testing homogeneity, but the subpopulation alternative appears to be a useful surrogate.

The reason why we consider the subpopulation model is, besides simplicity, the fact that as soon the difference between the number of components in the mixture model under H 0 and H 1 respectively is greater than 1, the likelihood ratio tests involves nonstationary random fields, for which very few theoretical results are available (see [START_REF] Garel | Recent asymptotic results in testing for mixtures[END_REF]. The ELR-test is asymptotically optimal in the Bahadur sense when the alternative consists of the subpopulation model with a finite number of populations (see [START_REF] Stehlík | Exact likelihood ratio scale and homogeneity testing of some loss processes[END_REF]Rublík, 1989a,b). ELR and ELR2 tests have nonstandard asymptotic distributions but their exact distribution can easily be simulated.

Generalization to testing for k subpopulations by the ELRk test is easy to implement, however simulation of critical values is computationally expensive and computational cost increases with k, as a min or max over all possible partitions of a sample (y 1 , . . . , y n ) into k subsets has to be computed. Application of permutation principles will be worth further investigation. Some applications of ELRk can be found in physics, see e.g. [START_REF] Efimova | Expansion of transverse momenta in inelastic collisions of particles into rayleigh distributions[END_REF].

Our setup encompasses also the case of the Weibull distribution with known shape parameter. Tests for homogeneity when the shape parameter of the Weibull is unknown have been developed by [START_REF] Mosler | Homogeneity testing in a weibull mixture model[END_REF]; for a comparison of procedures, see [START_REF] Mosler | A comparison of recent procedures in weibull mixture testing[END_REF]. Tests for exponentiality against a Weibull alternative are given in [START_REF] Meintanis | Test for exponentiality against weibull and gamma decreasing hazard rate alternatives[END_REF] and [START_REF] Henze | Recent and classical tests for exponentiality: a partial review with comparisons[END_REF].

5 When the sample size is increasing, we consider the following setup for the m-subpopulation model. The set of overall parameters Θ consists of the m-tuples θ = (θ 1 , ..., θ m ), where θ j is the parameter of the j-th population. Let us suppose that in the k-th experiment the size of the sample from the j-th population is n (j) k , j = 1, ..., m and k = 1, 2, .... Let the product measure P ∞ θ j correspond to the (infinite) sampling from the distribution P θ j (in our case P θ j has density θ j exp(-θ j y j ), y j > 0 with respect to Lebesgue measure). The product measure

F
P θ = P ∞ θ 1 × ... × P ∞
θm , can be used to describe the limiting distribution of independent sampling from these m populations. Thus

n k = m j=1 n (j)
k is the total sample size in the k-th experiment. Here we employ the assumption of a finite subpopulation plan given by Rublík (1989b) which together with other regularity conditions guarantees the asymptotical optimality in the Bahadur sense (AOBS) of the ELR test:

i) if k = l then n (j) k = n (j) l for some j ii) lim k→∞ n k = +∞ iii) lim k→∞ n (j) k n k = p j ∈ (0, 1], j = 1, ..., m For θ = (θ 1 , ..., θ m ), θ = (θ 1 , ..., θ m ) ∈ Θ let K(θ, θ ) = m j=1 p j K(θ j , θ j ),
where the Kullback-Leibler information is defined by the formula

K(θ j , θ j ) :=      ln dP θ j dP θ j dP θ j if P θ j << P θ j , +∞, otherwise.
Let Θ 0 ⊂ Θ 1 ⊂ Θ. Then according to the Bahadur-Raghavachari inequality for the exact slope the inequality c T (θ) ≤ 2K(θ, Θ 0 ) holds. Here K(θ, Θ 0 ) := inf{K(θ, θ ) :

θ ∈ Θ 0 }. If c T (θ) = 2K(θ, Θ 0 ) for all θ ∈ Θ 1 \ θ 0 , then the statistic is called AOBS.
For the alternative of the two-component mixture form, i.e. for the testing problem

H 0 : θ 0 exp(-θ 0 x) versus H A : pθ 0 exp(-θ 0 x) + (1 -p)θ exp(-θx), θ > θ 0 , 0 < p ≤ 1, (4) 
where θ 0 is known and θ, p are unknown parameters we will get a similar asymptotical behavior as [START_REF] Hartigan | A failure of likelihood ratio asymptotics for normal mixtures[END_REF]. He discovered the divergence of the LR test statistics for homogeneity testing in normal mean mixture models with an unbounded mean parameter. The classical chi-squared limiting distributional result of [START_REF] Wilks | The large sample distribution of the likelihood ratio for testing composition hypotheses[END_REF] Gaussian process (see [START_REF] Ciuperca | Likelihood ratio statistic for exponential mixtures[END_REF]). [START_REF] Liu | Testing homogeneity in gamma mixture models[END_REF] have proved in the setup (4) that lim N →∞ P (2Λ Nln ln N + ln(16π 2 ) ≤ x) = exp(-exp(-x/2)). They also try to determine whether it is feasible to approximate 2Λ N -ln ln N + ln(16π 2 ) by the extreme value distribution for a large N. Unfortunately, as they reported in [START_REF] Liu | Testing homogeneity in gamma mixture models[END_REF] this approximation is quite poor even for a sample size as large as 5000. The difficulties with regularity conditions under the homogeneity hypothesis have been recently investigated by [START_REF] Li | Non-finite fisher information and homogeneity: an em approach[END_REF].

3 Exact Likelihood Ratio Tests of Homogeneity

The ELR test

For a sample of N independent observations y = (y 1 , . . . , y N ), where y i ∼ Exponential (θ i ) we consider the LR homogeneity test against the alternative (1) (subpopulation model), i.e.

H 0 : θ 1 = . . . = θ N versus nonH 0 .
The exact distribution of the LR test for homogeneity against the alternative (1), the ELR test, was derived in [START_REF] Stehlík | Exact likelihood ratio scale and homogeneity testing of some loss processes[END_REF] for the exponential and Weibull distribution and for the generalized gamma distribution in [START_REF] Stehlík | Homogeneity and scale testing of generalized gamma distribution[END_REF]. LR tests have good properties (see e.g. [START_REF] Lehmann | Testing Statistical Hypotheses[END_REF][START_REF] Manoukian | Modern concepts and theorems of mathematical statistics[END_REF] and are optimal in regular cases.

The LR statistics has the form (see Theorem 3 of [START_REF] Stehlík | Exact likelihood ratio scale and homogeneity testing of some loss processes[END_REF])

-ln Λ N = N ln( N i=1 y i ) -N ln N - N i=1
ln y i .

(5)

A very important property of the LR test for homogeneity is its scale invariance, i.e. the distribution of the test statistic under H 0 is independent of the unknown scale parameter.

This is an advantage compared to some asymptotic tests and tests depending on the true but unknown value of θ. The critical values c 1-α are easy to obtain by simulation, e.g. from the standard exponential or the Dirichlet distribution. Table 1 gives the critical values for Under homogeneity the statistics ( 5) is a monotonous function of the statistic

N = 20,
N y 1 +...+y N N N
i=1 y i which is clearly scale independent. The LR homogeneity statistic ( 5) is also a monotonous transformation of the so called Moran's statistics T + N and T - N , where

T + N = C + 1 N N i=1 ln y i ȳ , T - N = -T + N , C ≈ 0.
57721566 is the Euler constant and ȳ is the arithmetic mean. This is a scalefree exponentiality test that has been studied in [START_REF] Tchirina | Large deviations for a class of scale-free statistics under the gamma distribution[END_REF]. The ELR test for homogeneity provided in this paper is asymptotically optimal in the Bahadur sense (see Rublík, 1989a,b;[START_REF] Stehlík | Distributions of exact tests in the exponential family[END_REF] when the underlying distribution is exponential and when the alternative of the homogeneity consists of sampling from a fixed number m of populations with relative sample sizes n j /N tending to positive limits p j (subpopulation model).

Simulation Study

A simulation study was carried out to determine the power of the test for a mixture of two exponential components with pdf Results given in Table 2 show that the ELR test holds the chosen size α also for small samples. The power of the ELR test increases with θ. For fixed θ the highest power is obtained for equal component weights, whereas for p = 0.9 the power can be rather low, in particular considerably lower than for p = 0.1. This behaviour of the power is not specific to the ELR test but has been noted for different homogeneity tests in [START_REF] Mosler | Size and power of recent tests for homogeneity in exponential mixtures[END_REF]. It can be explained by interpreting the mixture as a contaminated distribution: if p = 0.1 the density of the second component with parameter θ is predominant. The mixture with component 1 leads to a modification of the Exponential (θ) in the tail region. If however p = 0.9, the first component is predominant, and mixing has an impact on the density close to the mode which is 0. [START_REF] Mosler | Size and power of recent tests for homogeneity in exponential mixtures[END_REF] refer to the first case as 'upper' and to the second case as 'lower' contamination. For a given θ lower contamination (p = 0.9) is harder to detect than upper contamination (p = 0.1) as overdispersion measured by the squared coefficient of variation is higher for upper contamination

f (y) = p exp(-y) + (1 -p)θ exp(-θy), for θ = 1, 2, . . . ,

The ELR2 test

In this section we will discuss the efficient testing procedure of the number of components k in the exponential mixture for k = 2, introduced by [START_REF] Stehlík | Efficient testing of the homogeneity, scale parameters and number of components in the rayleigh mixture[END_REF]. Here we consider LR homogeneity testing with a more complex alternative H 1 , which is the approximation to a finite scale mixture. In physics, such testing corresponds to the testing of the number k of secondary particles obtained after the collision: Homogeneity corresponds to one particle (k = 1), and k > 1 corresponds to k particles (cf [START_REF] Efimova | Expansion of transverse momenta in inelastic collisions of particles into rayleigh distributions[END_REF][START_REF] Stehlík | Efficient testing of the homogeneity, scale parameters and number of components in the rayleigh mixture[END_REF]. We consider the alternative of the form H 1 : k = 2. The hypothesis

H 0 : k = 1 versus H 1 : k = 2 (6)
in the mixture model can be approximated (following [START_REF] Stehlík | Efficient testing of the homogeneity, scale parameters and number of components in the rayleigh mixture[END_REF]) by the hypothesis of the subpopulation model

H 0 : θ 1 = ... = θ n versus H 1 : ∃ non-empty M 1 , M 2 , M 1 ∪ M 2 = {1, ..., N }, ( 7 
)
where ( 2) and (3) hold. We construct the LR test of the hypothesis (7) which approximates the hypothesis (6). 9 Let y 1 , ..., y N be independently distributed with exponential densities. Suppose that {y i 1 , .., y i K }, 0 < K < N are the observations from the exponential distribution with scale parameter θ 1 and the other observations are distributed according to the exponential distribution with scale parameter θ 2 . Then following [START_REF] Stehlík | Efficient testing of the homogeneity, scale parameters and number of components in the rayleigh mixture[END_REF] we obtain the formula for likelihood ratio

Λ N (y) = min 0<K<N,p∈P (K) { N N K K (N -K) N -K (y i 1 + ... + y i K ) K (y i K+1 + ... + y i N ) N -K (y 1 + ... + y N ) N }, ( 8 
)
where P (K) denotes all partitions of {1, .., K} in two nonempty subsets. The main advantage of the test statistic ( 8) is that it does not depend on the unknown value of the parameter θ under the null hypothesis. The exact distribution of the LR test statistic Λ N given by formula ( 8) is derived in [START_REF] Stehlík | Efficient testing of the homogeneity, scale parameters and number of components in the rayleigh mixture[END_REF] under the null hypothesis.

The following Lemma provides some notes on the determination of the ELR2 test statistics.

The proof is given in the Appendix 6.1.

Lemma 1 The likelihood-ratio statistic of the ELR2 test

-ln Λ N (y) = -min 0<K<N,p∈P (K) {N ln N -K ln K -(N -K) ln(N -K) + +K ln( K n=1 y i n ) + (N -K) ln( N -K n=1 y i n ) -N ln( N n=1 y n )},
can be determined as

ln Λ N (y) = N ln N -N ln( N n=1 y n ) + H min ,
where We also made comparisons to the penalized D-test (PenD), but PenD does not hold the size for N < 1000 and then it starts to hold it only approximately. Therefore we decided to delete it from our comparisons. Furthermore, as personally communicated by Richard Charnigo, the Critical values for the AD and DS were determined by simulation from M = 50000 samples as in [START_REF] Mosler | Size and power of recent tests for homogeneity in exponential mixtures[END_REF]. The ADDS-test uses critical values for the AD and the DS-test.

H min = min 0<K<N -K ln K -(N -K) ln(N -K) + K ln( K i=1 y (i) ) + (N -K) ln( N i=K+1 y (i) ) .

Results

The simulated powers of the different homogeneity tests (α = 0.01) of exponential mixtures are reported in Tables 345(see Appendix 6.2) ordered by decreasing powers. In Figure 1 between the densities which is small for lower contamination.

Theoretical explanation of the test behavior

In our simulation setup, i.e. testing the null hypothesis (9) against the alternative (10), we have the point of alternative θ A = (1, θ) and θ = (θ, θ) ∈ Θ 0 with proportions p and 1 -p,

respectively. Thus K(θ, θ ) = pK(1, θ) + (1 -p)K(θ, θ) = p(-ln θ + θ -1), θ > 1. Notice that the function K(θ, θ ) = p(-ln θ + θ -1
) is increasing for θ > 1 and thus also the exact slope c T is increasing with θ, since ELR is AOBS (see [START_REF] Stehlík | Distributions of exact tests in the exponential family[END_REF]Rublík, 1989a,b). Notice also, that the exact slope is increasing with p. It could be worth further consideration whether this is the reason why in the lower contamination ELR and ELR2 outperforms the other tests, at least for large θ (see Figure 1 and Figure 3). We can summarize our conclusions:

1) The power is increasing with θ.

2) The power of ELR and ELR2 tests is relatively better for lower contamination than for upper contamination.

Comparison of ELR and ELR2 to the other tests through slopes

The interpretation of the behavior of the simulated power can be based on exact slopes of the sequence of tests. To obtain the slopes of other tests, we can use the Theorem of Bahadur (see [START_REF] Bahadur | Rates of convergence of estimates and test statistics[END_REF] and Groeneboom and Oosterhoff (see [START_REF] Groeneboom | Bahadur efficiency and probabilities of large deviations[END_REF] which says that if lim n→∞

1 n ln L n P θ → -1 2 c T (θ) ∀ θ ∈ Θ 1 then N T (α, β, θ) ∼ 2 ln 1 α c T (θ)
for α ↓ 0 + . We can compute N T (α, β, θ) through simulation and then compare the simulated slopes of other tests to exact slopes of ELR. Here N T (α, β, θ) denotes the sample size necessary for the sequence {T N } in order to attain power β at the level α for a point θ ∈ Θ \ Θ 0 of the alternative space.

To get an idea of the slopes of the different tests we tried to approximate N T (α, β, θ). We simulated the power of each test at level α = 0.01 for different sample sizes N = 10, 11, .., 20, 25, ..., 100, 200, .., 5 and different values of θ. As an approximation to N T (α = 0.01, β = 0.5, θ) we used the minimum sample size N * (θ) where the simulated power β was greater than 0.5. Figure 3 shows the values c(θ) = -2 ln α/N * (θ) as a function of θ.

Note that despite the multimodal alternatives, for which a good description of test behavior can be obtained through the full variation metrics between distribution measures (see [START_REF] Hazan | Robustness via a mixture of exponential power distributions[END_REF], in our setup the alternatives (scale exponential mixtures) are unimodal. Here we have found the Kullback-Leibler distance to be more adequate, since the ELR test is AOBS under reasonable regularity conditions (i,ii, and iii). Also note, that the performed simulations are not superfluous to the theoretical findings, since the justification of behavior 1) and 2) is based on the asymptotical considerations (the nice behavior of ELR and ELR2 tests work remarkably well also for small samples, e.g. N = 10 and N = 100 as it can be seen from the Figures).

15 were generated from two subpopulations of size N 1 and N -N 1 respectively, where all integers from 0 to N were considered for N 1 . The difference to the simulation in Section 4.1 where the number of observations from the first mixture component N 1 was generated from a binomial distribution, is that N 1 is fixed.

We used three different combinations for the parameters in the two subpopulations for each sample size, namely θ 1 = 0.1, 1, 10 and θ 2 = c θ 1 . We chose c = 10 for N = 10 and c = 3

for N = 100. For each value of N 1 , M = 10000 samples were generated and the number of rejections of the null hypothesis was counted. Figure 4 shows the proportion of rejections, i.e. the simulated power of all tests as a function of the size of the first subpopulation N 1 for N = 10.

Note that for N 1 = 0 and N 1 = N the sample is drawn from a homogeneous population and hence the proportion of rejections of the null hypothesis should approximately equal the size of the test α = 0.05, which is indicated by a black line in Figure 4.

This simulation study provides some further insight in the properties of the different tests:

1. The D-Test obviously is not scale invariant under the null see Figure 4 right. This 2. The power of all tests is not symmetric in |N 1 -N/2| and is small for lower contamination. 4. For fixed N and N 1 the power seems -at least approximately -to be a function of θ 1 /θ 2 .

Conclusions

In the present paper we construct the efficient testing procedure for exponential homogeneity.

The ELR procedures studied here have some interesting properties under subpopulation alternatives, while in our simulations we employ these tests against mixture component alternatives and compare them with other existing tests developed in the mixture component model. We illustrate by simulations and try to explain also theoretically that the ELR-tests are best for lower contamination but not for upper contamination. We also discuss the properties of such tests and describe a procedure for the computation of the critical values. We compare the performance of the exact likelihood ratio tests in the 2-component mixture alternative. In this case the ELR can be used like the omnibus test for homogeneity and in some settings can be superior to other tests proposed for homogeneity in a mixture model, among them modified likelihood ratio tests or dispersion score (DS) tests. While these approaches work well, e.g. in normal mixtures, the diagnosis of exponential mixtures poses additional problems: the modified likelihood ratio and the dispersion score tests have no power on a large class of alternatives (see [START_REF] Mosler | Testing for homogeneity in an exponential mixture model[END_REF]. Another widely used approach is to use a LRT statistic 2 ln θ = 2(l( θ1 ) -l( θ0 )) where θ0 and θ1 are the ML estimates of the parameters under the null and the alternative hypothesis respectively and θ denotes likelihood ratio. For this plug-in LRT parameter estimation is usually accomplished by the EM algorithm, however the calculation of the test statistic and the Monte-Carlo simulation of its null distribution depend heavily on the particular implementation of the EM algorithm (see [START_REF] Seidel | A cautionary note on likelihood ratio tests in mixture models[END_REF]. For the tests used in this paper, in the software implementation D-Test, w1d, w2d and MLRT tests use estimates from the EM Algorithm. The AD-test uses a scale estimate (mean) under the null. However, this is not the case of ELR and ELRk tests. Probably the main advantage of the ELRT is its computational simplicity for ELR and ELR2, regarding both the test statistic and the critical values; in particular, no EM algorithm has to be employed. 

-ln Λ N (y) = -min 0<K<N,p∈P (K) {N ln N -K ln K -(N -K) ln(N -K) + +K ln( K n=1 y i n ) + (N -K) ln( N -K n=1 y i n ) -N ln( N n=1 y n )},
is not so straight forward as for the ELR, as the minimum of

N ln N -K ln K -(N -K) ln(N -K) + K ln( K n=1 y in ) + (N -K) ln( N -K n=1 y in ) -N ln( N n=1 y n ),
over all possible classifications into 2 non-empty groups has to be found. For determining this minimum

N ln N -N ln( N n=1 y n )
is irrelevant and therefore the minimum of

H(y, K) = {-K ln K -(N -K) ln(N -K) + K ln( K n=1 y i n ) + (N -K) ln( N -K n=1 y i n )},
for 0 < K < N, p ∈ P (K) is of interest. For N observations there are 2 N -1 -1 different classifications into 2 nonempty groups. Hence direct minimization over all classifications is feasible only for small N. However minimizing first H(y|K) for fixed K = 1, . . . , N -1 and then determining the minimum of these N -1 values poses no problem. Given the data y, their sum S = N n=1 y i is fixed. For fixed K we therefore consider minimization of

H(x|K) = K ln x + (N -K) ln(S -x),
as a function of x. This function is continuous and strictly concave, as the second derivative only take certain discrete values, as x = K n=1 y in . Miminum and maximum of x are the sum of the smallest and largest K order statistics respectively:

∂ 2 H(x|K) ∂x 2 = - K x 2 + N -K (S -x) 2 , is negative for 0 < x < S.
min(x) = K i=1 y (i) max(x) = K i=1 y (N -i+1) .
Due to the symmetry

K ln( K i=1 y (N -i+1) ) + (N -K) ln( N i=K+1 y (N -i+1) ) = K ln( K i=1 y (i) ) + (N -K ) ln( N i=K +1 y (l) ), for K = N -K the minimum value of H(x|K) is H min = min 0<K<N -K ln K -(N -K) ln(N -K) + K ln( K i=1 y (i) ) + (N -K) ln( N i=K+1 y (i) ) ,
which can be determined very simply as only sums of order statistics are involved. 

  50, 100, 500 obtained by simulation. M = 1000000 samples of size N were generated yielding a sample of c 1 , . . . , c M for the test statistic (5) under homogeneity. The values c 1-α are determined as the respective order statistic c 1-α = c M (1-α)

  10 and different component weights p = 0.1, 0.5, 0.9. We used two different sizes of the test, namely α = 0.01 and α = 0.05 and N = 20, 50, 100. For each parameter combination M = 100000 samples were generated and the proportion of rejections of the

H

  min can be determined very simply as only sums of order statistics are involved. Critical values can be obtained similarly to the ELR test by generating M samples of size N from the standard exponential distribution, computing the test statistic for each sample and determining c 1-α by the respective order statistic c 1-α = c (M (1-α)) with a similar setup as in[START_REF] Mosler | Size and power of recent tests for homogeneity in exponential mixtures[END_REF] was performed to compare the power of the exact likelihood ratio tests ELR and ELR2 to other different tests for the hypothesesH 0 : y 1 , . . . , y N ∼ Exponential (θ) (9)against the alternativeH 1 : y 1 , . . . , y N follow a mixture of two exponential components (10)To be consistent with the simulation setup in[START_REF] Mosler | Size and power of recent tests for homogeneity in exponential mixtures[END_REF] we generateproportions N 1 , N -N 1 in such a way that N 1 ∼ Binomial(N, p). We used three typical mixture proportions, p = 0.1, 0.5, 0.9 and the sample sizes N = 10, 100 and N = 1000. The parameter of the first mixture component is θ 1 = 1 and for θ 2 several values greater than θ 1 were chosen. These settings correspond to upper contamination (p = 0.1), fifty-fifty mixtures and lower contamination (p = 0.9). For each parameter setting M = 10000 samples of N observations from the mixture distribution with density f (y) = p exp(-y) + (1 -p)θ exp(-θy), were generated. We compared the proportion of rejections of the null hypothesis for the following tests: the modified likelihood ratio test of Chen et al. (2001) (MLRT); the D-test introduced by Charnigo and Sun (2004) (DTEST) and two weighted variants of the D-test (W1D and W2D); the Anderson Darling test (AD), the Dispersion Score test (DST), the combination of AD and DS-test introduced by Mosler and Seidel (2001) (ADDS) and the exact likelihood ratio tests against the alternative (1) (ELR) and for testing against the 2-component subpopulation model (ELR2).

Figure 1 :

 1 Figure 1: Proportion of rejections of the null hypothesis for different homogeneity tests for N = 10, α = 0.05 and p = 0.1 (left), p = 0.5 (middle) and p = 0.9 (right)

Figure 2 :

 2 Figure 2: Proportion of rejections of the null hypothesis for different homogeneity tests for α = 0.01, p = 0.1 and N = 100 (left), and N = 1000 (right)

Figure 3 :

 3 Figure 3: Slopes of different tests

Figure 4 :

 4 Figure 4: Proportion of rejection of the null hypothesis for different homogeneity tests for N = 10 and θ 1 = 0.1; θ 2 = 1 (left) and θ 1 = 10; θ 2 = 100 (right)

  The main reasons, why the ELR and ELRk tests should be considered for testing exponential homogeneity are the following: a) these tests are not dependent on the unknown common scale parameter under homogeneity (like other usual tests or EM based procedures) b) the quantiles can be easily simulated.

  The determination of the likelihood-ratio statistic of the ELR2 test

Figure 5 :

 5 Figure 5: The function H(x|K)

Table 1 :

 1 Critical values for the ELR

	N	α = 0.1 α = 0.05 α = 0.01
	10	8.5279	9.7994	12.4814
	20	15.7276 17.3881 20.7894
	50	35.7658 38.2121 43.0112
	100	67.6812 70.9487 77.4036
	500 311.3698 318.2312 331.4319
	1000 609.4173 619.1025 637.3055
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Table 2 :

 2 Simulated power for the ELR-test

	Page 11 of 26										
	θ	1	2	3	4	5	6	7	8	9	10
						α = 0.05				
						p = 0.1					
	N=20	0.0548 0.0665 0.1200 0.1532 0.2459 0.2874 0.3337 0.3797 0.4328 0.4704
	N=50	0.0455 0.0734 0.1594 0.2844 0.4038 0.5070 0.6012 0.6479 0.7265 0.7470
	N=100 0.0596 0.0980 0.2331 0.4174 0.5860 0.6976 0.8123 0.8660 0.9081 0.9300
	N=1000 0.0562 0.2871 0.8401 0.9941 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
						p = 0.5					
	N=20	0.0470 0.0906 0.1844 0.3077 0.3793 0.5057 0.5842 0.6543 0.7383 0.7618
	N=50	0.0547 0.1243 0.3125 0.5339 0.7271 0.8338 0.9196 0.9546 0.9750 0.9921
	N=100 0.0514 0.1738 0.5017 0.7740 0.9357 0.9797 0.9982 0.9970 1.0000 0.9994
	N=1000 0.0570 0.7254 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
						p = 0.9					
	N=20	0.0561 0.0617 0.0723 0.1003 0.1109 0.1200 0.1378 0.1579 0.1713 0.1800
	N=50	0.0448 0.0787 0.0950 0.1293 0.1575 0.1886 0.2211 0.2496 0.2805 0.2942
	N=100 0.0490 0.0807 0.1176 0.1851 0.2288 0.3100 0.3498 0.3950 0.4362 0.4632
	N=1000 0.0517 0.1826 0.4694 0.7505 0.8980 0.9667 0.9881 0.9961 0.9993 0.9998
						α = 0.01				
						p = 0.1					
	N=20	0.0100 0.0148 0.0333 0.0600 0.0896 0.1502 0.1876 0.2261 0.2577 0.3086
	N=50	0.0100 0.0173 0.0437 0.1223 0.2205 0.3167 0.4105 0.5180 0.5619 0.6407
	N=100 0.0114 0.0314 0.0844 0.2162 0.3838 0.5412 0.6382 0.7607 0.8048 0.8699
	N=1000 0.0114 0.1063 0.6518 0.9718 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000
						p = 0.5					
	N=20	0.0098 0.0225 0.0642 0.1053 0.1718 0.2523 0.3255 0.3891 0.4555 0.5232
	N=50	0.0126 0.0286 0.1172 0.2680 0.4778 0.6055 0.7537 0.8414 0.8891 0.9375
	N=100 0.0102 0.0651 0.2288 0.5462 0.7764 0.9062 0.9723 0.9903 0.9976 0.9982
	N=1000 0.0103 0.4746 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
						p = 0.9					
	N=20	0.0141 0.0135 0.0184 0.0213 0.0262 0.0298 0.0389 0.0433 0.0461 0.0517
	N=50	0.0080 0.0160 0.0213 0.0379 0.0446 0.0619 0.0693 0.0886 0.1014 0.1193
	N=100 0.0103 0.0229 0.0374 0.0627 0.0844 0.1149 0.1379 0.1716 0.2074 0.2461
	N=1000 0.0120 0.0575 0.2211 0.4998 0.7301 0.8692 0.9450 0.9766 0.9893 0.9957
						10					
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Table 3 :

 3 Simulated power for different tests for homogeneity in exponential mixtures n = 10

	The ELR2
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Table 4 :

 4 Simulated power for different tests for homogeneity in exponential mixtures n = 100

	Rank Test	Power	Test	Power	Test	Power	Test	Power	Test	Power
						p = 0.1				
			θ = 1		θ = 2		θ = 3		θ = 5		θ = 10
	1 dtest ( 0.016 )	dst	( 0.072 )	dst	( 0.293 )	dst	( 0.746 )	dst	( 0.978 )
	2 adds ( 0.012 ) adds ( 0.058 ) adds ( 0.260 ) adds ( 0.711 ) adds ( 0.973 )
	3 mlrt	( 0.011 )	mlrt	( 0.049 )	mlrt	( 0.220 )	mlrt	( 0.679 )	mlrt	( 0.965 )
	4	adt	( 0.010 )	w2d	( 0.041 )	w2d	( 0.183 )	w2d	( 0.625 )	w2d	( 0.953 )
	5 elr2	( 0.010 )	w1d	( 0.028 )	w1d	( 0.108 )	w1d	( 0.494 )	w1d	( 0.919 )
	6	dst	( 0.010 )	elr	( 0.024 )	adt	( 0.093 )	adt	( 0.461 )	adt	( 0.915 )
	7	elr	( 0.010 ) dtest ( 0.021 )	elr	( 0.087 )	elr	( 0.367 )	elr	( 0.860 )
	8 w2d	( 0.009 )	elr2	( 0.020 )	elr2	( 0.070 )	elr2	( 0.301 ) dtest ( 0.826 )
	9 w1d ( 0.009 )	adt	( 0.020 ) dtest ( 0.048 ) dtest ( 0.278 ) elr2 ( 0.808 )
						p = 0.5				
			θ = 1		θ = 2		θ = 3		θ = 5		θ = 7
	1 dtest ( 0.013 ) mlrt ( 0.098 ) mlrt ( 0.431 ) mlrt ( 0.922 ) mlrt ( 0.993 )
	2 adds ( 0.011 )	dst	( 0.093 )	w2d	( 0.417 )	w1d	( 0.908 )	w1d	( 0.991 )
	3	elr	( 0.010 )	w2d	( 0.093 )	w1d	( 0.371 )	w2d	( 0.907 )	adt	( 0.990 )
	4	adt	( 0.010 ) adds ( 0.084 ) adds ( 0.341 )	adt	( 0.869 ) adds ( 0.987 )
	5 mlrt	( 0.010 )	w1d	( 0.074 )	dst	( 0.328 ) adds ( 0.869 )	w2d	( 0.987 )
	6	dst	( 0.009 ) dtest ( 0.059 )	adt	( 0.290 ) dtest ( 0.851 ) dtest ( 0.987 )
	7 elr2	( 0.009 )	adt	( 0.051 ) dtest ( 0.276 )	elr2	( 0.833 )	elr2	( 0.986 )
	8 w1d	( 0.008 )	elr	( 0.051 )	elr2	( 0.253 )	elr	( 0.785 )	elr	( 0.973 )
	9 w2d ( 0.008 ) elr2 ( 0.050 )	elr	( 0.248 )	dst	( 0.755 )	dst	( 0.907 )
						p = 0.9				
			θ = 1		θ = 2		θ = 5		θ = 10		θ = 30
	1 dtest ( 0.014 ) dtest ( 0.024 ) dtest ( 0.120 ) dtest ( 0.272 )	elr	( 0.613 )
	2	adt	( 0.010 )	mlrt	( 0.021 )	elr2	( 0.095 )	elr2	( 0.244 )	elr2	( 0.514 )
	3 adds ( 0.010 )	w2d	( 0.019 )	mlrt	( 0.092 )	elr	( 0.230 )	adt	( 0.474 )
	4 elr2	( 0.010 )	elr	( 0.018 )	w1d	( 0.088 )	mlrt	( 0.193 ) dtest ( 0.466 )
	5 mlrt	( 0.010 )	dst	( 0.018 )	elr	( 0.082 )	adt	( 0.183 ) adds ( 0.423 )
	6	dst	( 0.010 ) adds ( 0.018 )	adt	( 0.070 )	w1d	( 0.177 )	mlrt	( 0.411 )
	7	elr	( 0.010 )	elr2	( 0.017 )	w2d	( 0.068 ) adds ( 0.162 )	w1d	( 0.293 )
	8 w1d	( 0.008 )	w1d	( 0.017 ) adds ( 0.065 )	w2d	( 0.104 )	w2d	( 0.105 )
	9 w2d ( 0.007 )	adt	( 0.013 )	dst	( 0.041 )	dst	( 0.057 )	dst	( 0.072 )
						22					

Table 5 :

 5 Simulated power for different tests for homogeneity in exponential mixtures n = 1000

		Test	Power	Test	Power	Test	Power	Test	Power	Test	Power
							p = 0.1				
			θ = 1		θ = 1.5		θ = 2		θ = 2.5		θ = 3
	1 w1d ( 0.013 )	dst	( 0.056 )	dst	( 0.400 )	dst	( 0.861 )	dst	( 0.985 )
	2 w2d	( 0.013 )	mlrt	( 0.041 )	mlrt	( 0.319 )	mlrt	( 0.802 )	mlrt	( 0.974 )
	3 dtest ( 0.013 )	w2d	( 0.041 ) adds ( 0.311 ) adds ( 0.802 ) adds ( 0.974 )
	4	dst	( 0.011 )	w1d	( 0.037 )	w2d	( 0.287 )	w2d	( 0.761 )	w2d	( 0.962 )
	5	adt	( 0.011 ) adds ( 0.035 )	w1d	( 0.256 )	w1d	( 0.718 )	w1d	( 0.947 )
	6 elr2	( 0.010 ) dtest ( 0.030 ) dtest ( 0.215 ) dtest ( 0.656 ) dtest ( 0.923 )
	7 mlrt	( 0.010 )	elr	( 0.022 )	adt	( 0.094 )	adt	( 0.421 )	adt	( 0.796 )
	8	elr	( 0.010 )	elr2	( 0.022 )	elr	( 0.093 )	elr	( 0.331 )	elr	( 0.647 )
	9 adds ( 0.009 )	adt	( 0.019 ) elr2 ( 0.075 ) elr2	( 0.246 )	elr2 ( 0.517 )
							p = 0.5				
			θ = 1		θ = 1.2		θ = 1.5		θ = 2		θ = 2.5
	1	adt	( 0.013 )	dst	(0.022 )	dst	( 0.141 ) w2d ( 0.781 ) w2d ( 0.996 )
	2 w1d	( 0.012 )	w1d	( 0.022 )	w2d	( 0.140 )	w1d	( 0.774 )	w1d	( 0.995 )
	3 w2d	( 0.012 )	w2d	( 0.022 )	w1d	( 0.136 )	mlrt	( 0.767 )	mlrt	( 0.995 )
	4 dtest ( 0.011 ) dtest ( 0.020 )	mlrt	( 0.131 ) dtest ( 0.756 ) dtest ( 0.995 )
	5 elr2	( 0.009 )	mlrt	( 0.019 ) dtest ( 0.123 )	dst	( 0.740 )	dst	( 0.988 )
	6	dst	( 0.009 )	elr	( 0.015 ) adds ( 0.095 ) adds ( 0.676 ) adds ( 0.986 )
	7	elr	( 0.009 )	elr2	( 0.014 )	elr	( 0.068 )	adt	( 0.563 )	adt	( 0.978 )
	8 mlrt	( 0.009 ) adds ( 0.013 )	elr2	( 0.061 )	elr	( 0.464 )	elr	( 0.926 )
	9 adds ( 0.008 )	adt	( 0.013 )	adt	( 0.059 ) elr2	( 0.441 )	elr2 ( 0.923 )
							p = 0.9				
			θ = 1		θ = 2		θ = 3		θ = 5		θ = 10
	1 w1d ( 0.013 ) w1d ( 0.080 ) w1d ( 0.274 ) elr2	( 0.776 )	elr	( 0.996 )
	2 w2d	( 0.012 )	w2d	( 0.079 )	w2d	( 0.268 )	elr	( 0.724 )	elr2	( 0.995 )
	3 dtest ( 0.012 ) dtest ( 0.075 ) dtest ( 0.266 )	adt	( 0.715 )	adt	( 0.993 )
	4	adt	( 0.011 )	mlrt	( 0.063 )	elr2	( 0.255 ) adds ( 0.637 ) adds ( 0.985 )
	5	elr	( 0.010 )	dst	( 0.057 )	elr	( 0.231 )	w1d	( 0.599 )	w1d	( 0.862 )
	6 elr2	( 0.010 )	elr	( 0.055 )	mlrt	( 0.225 ) dtest ( 0.595 ) dtest ( 0.861 )
	7 mlrt	( 0.009 )	elr2	( 0.053 )	adt	( 0.222 )	w2d	( 0.591 )	w2d	( 0.857 )
	8	dst	( 0.008 ) adds ( 0.046 ) adds ( 0.186 )	mlrt	( 0.543 )	mlrt	( 0.842 )
	9 adds ( 0.007 )	adt	( 0.042 )	dst	( 0.154 )	dst	( 0.347 )	dst	( 0.570 )
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