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Abstract

We give sharp regularity results for the solution to the stochastic wave equation
with linear fractional-colored noise. We apply these results in order to establish upper
and lower bound for the hitting probabilities of the solution in terms of the Hausdorff
measure and of the Newtonian capacity.
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1 Introduction

The recent development of the stochastic calculus with respect to the fractional
Brownian motion (fBm) naturally led to the study of stochastic partial differential equations
(SPDEs) driven by this Gaussian process. The motivation comes from the wide area of
applications of the fBm. We refer, among others, to [10], [11], [14], [16] and [18]. The
purpose of our paper is to study the stochastic wave equation driven by fractional-colored
Gaussian noise. Our work is situated somehow in the continuation of the line of research
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which concerns SPDEs driven by the fBm but in the same time it follows the l research
initiated by Dalang in [4] which treats equations with white noise in time and correlated in
space. More precisely, we consider a system of k stochastic wave equations

∂2ui
∂t2

(t, x) = ∆ui(t, x) + Ẇi(t, x), t ∈ [0, T ], x ∈ R
d (1)

with initial condition ui(t, x) = 0 and ∂ui

∂t (0, x) = 0 for every x ∈ R
d and for every i = 1, ..., k.

The driving Gaussian process behaves as a fractional Brownian motion in time and has
spatial covariance given by the Riesz kernel. More precisely

E(Wi(t, A)Wj(s,B)) = δi,jRH(t, s)

∫

A

∫

B
f(x− y)dxdy

for every t, s ∈ [0, T ] and A,B Borel sets in R
d where f : Rd → R+ is the Fourier transform

of a non-negative tempered measure µ on R
d whose density with respect to the Lebesque

measure is |ξ|−(d−β), 0 < β < d. Above δi,j denotes the Kronecker symbol.
The equation (1) has been recently studied in [2]. It is has been proven that (1)

admits a unique mild solution if and only if β < 2H + 1 which extends the result obtained
in [4] in the case H = 1

2 . The purpose of this work is to analyze further the solution of
(1). We will actually give sharp results for the regularity of it, in time and in space, and
we apply these regularity results to study the hitting probabilities for the solution u to
(1). More precisely, given a Borel set A ⊂ R

k we want to determine whether the process
(u(t, x), t ∈ [0, T ], x ∈ R

d) hits the set A with positive probability. Recently, there has been
several papers on hitting probabilities, and more generally speaking, on potential theory
for systems of SPDEs. We refer, among others, to [5], [6], [7], [8] or [13]. The study
of hitting probabilities for stochastic partial differential equations with fractional noise in
time is new. As far as we know, only the paper [15] treated this problem. Actually, in this
reference the authors give upper and lower bounds for the hitting times of solution to a
system of stochastic heat equations on the circle with fractional noise in time.

Our aim is to make a new step in this research direction. As we mentioned before
we make a potential analysis of the solution to the stochastic wave equation with fractional-
colored noise. That means, the noise behaves as the fractional Brownian motion with respect
to the time variable and it is a ”colored” non-white spatial covariance. In our work this
spatial covariance will be described by the Riesz kernel. It is know classical the fact that
in order to obtain results on the hitting times of a stochastic process, a detailed analysis
of the behavior of the increments of the process is needed. We address this question in
our paper and we find the following: the solution u(t, x), t ∈ [0, T ], x ∈ R

d to (1) is Hölder
continuous of order 2H +1− β, β ∈ (2H − 1, d∧ 2H +1) in time as well as with respect to
the space variable. This generalizes the result obtained in [8] and [9] for the wave equation
with white noise in time and Riesz covariance in space. Although the main lines of our
work follows the approach of [9], we stress that, as usually, the fractional cases involves
more complex calculation and the techniques used in the standard white noise case need to
be substantially adapted. this is mainly due to the nature of the noise and to the structure
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of the Gaussian space associated to the noise. We will point out later in our paper, how
the fractional noise involves more complexity than in e.g. [6] or [9]. Moreover, the study
of the solution to the wave equation is generally recognized to be more difficult that e.g.
the solution to the heat equation, due to the appearance of the trigonometric functions and
this is also the case in our work.

We mention that there are more or less general criteria to determine the hitting
times for a stochastic process. Such criteria have been given in [3], [6], [7] or [9] among
others. We will use the approach in [3] because it concerns Gaussian processes and fits well
with our context (note that the solution to (1) is Gaussian).

Our paper is structured as follows. Section 2 contains some preliminaries, we briefly
describe the basic properties of the Gaussian noise and its associated Hilbert space, we list
the elements of the potential theory that we will use in our paper and we will recall some
fact related to the solution to the stochastic wave equation with fractional-colored noise. In
Section 3 we analyze the Hölder regularity of the solution with respect to its time and space
variables. Section 4 is devoted to the study of the hitting probabilities for this solution,
based on a criterium in [3].

2 Preliminaries

This section is devoted to introduce the basic notion that we will need throughout the
paper. We first introduce the canonical Hilbert space associated to the fractional-colored
Gaussian noise. In the second part we present the basic elements related to the potential
theory that intervene in the last section.

2.1 The canonical Hilbert space

We denote by C∞
0 (Rd+1) the space of infinitely differentiable functions on R

d+1 with
compact support, and S(Rd) the Schwartz space of rapidly decreasing C∞ functions in R

d.
For ϕ ∈ L1(Rd), we let Fϕ be the Fourier transform of ϕ:

Fϕ(ξ) =

∫

Rd

e−iξ·xϕ(x)dx.

We begin by introducing the framework of [4]. Let µ be a non-negative tempered
measure on R

d, i.e. a non-negative measure which satisfies:

∫

Rd

(

1

1 + |ξ|2

)l

µ(dξ) <∞, for some l > 0. (2)

Since the integrand is non-increasing in l, we may assume that l ≥ 1 is an integer.
Note that 1 + |ξ|2 behaves as a constant around 0, and as |ξ|2 at ∞, and hence (2) is
equivalent to:

∫

|ξ|≤1
µ(dξ) <∞, and

∫

|ξ|≥1
µ(dξ)

1

|ξ|2l
<∞, for some integer l ≥ 1. (3)
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Let f : Rd → R+ be the Fourier transform of µ in S ′(Rd), i.e.

∫

Rd

f(x)ϕ(x)dx =

∫

Rd

Fϕ(ξ)µ(dξ), ∀ϕ ∈ S(Rd).

Simple properties of the Fourier transform show that for any ϕ,ψ ∈ S(Rd),

∫

Rd

∫

Rd

ϕ(x)f(x− y)ψ(y)dxdy =

∫

Rd

Fϕ(ξ)Fψ(ξ)µ(dξ).

An approximation argument shows that the previous equality also holds for indicator
functions ϕ = 1A, ψ = 1B , with A,B ∈ Bb(R

d), where Bb(R
d) is the class of bounded Borel

sets of Rd:
∫

A

∫

B
f(x− y)dxdy =

∫

Rd

F1A(ξ)F1B(ξ)µ(dξ). (4)

Now we introduce the fractional Brownian motion (fBm) with Hurst index H ∈
(0, 1). This is a zero-mean Gaussian process (BH

t )t∈[0,T ] with covariance

RH(t, s) :=
1

2

(

t2H + s2H − |t− s|2H
)

, t, s ∈ [0, T ].

Let us denote by H the canonical Hilbert space associated with this Gaussian pro-
cess. This canonical Hilbert space is defined as the closure of the linear space generated by
the indicator functions 1[0,t], t ∈ [0, T ] with respect to the inner product

〈1[0,t], 1[0,s]〉H = RH(t, s).

It is well known that for H > 1/2 we have the expression

RH(t, s) = αH

∫ t

0

∫ s

0
|u− v|2H−2dudv (5)

for every s, t ∈ [0, T ] with αH := H(2H − 1). More generally, for H > 1/2 and every
ψ, φ ∈ H = H ([0, T ]) we have

〈ψ, φ〉H = αH

∫ T

0

∫ T

0
ψ(u)φ(v)|u − v|2H−2dudv (6)

As in [1], on a complete probability space (Ω,F , P ), we consider a zero-mean Gaus-
sian process W = {Wt(A); t ≥ 0, A ∈ Bb(R

d)} with covariance:

E(Wt(A)Ws(B)) = RH(t, s)

∫

A

∫

B
f(x− y)dxdy =: 〈1[0,t]×A, 1[0,s]×B〉HP . (7)

Let E be the set of linear combinations of elementary functions 1[0,t]×A, t ≥ 0, A ∈

Bb(R
d), and HP be the Hilbert space defined as the closure of E with respect to the inner

4



product 〈·, ·〉HP . (Alternatively, HP can be defined as the completion of C∞
0 (Rd+1), with

respect to the inner product 〈·, ·〉HP ; see [1].)
The map 1[0,t]×A 7→ Wt(A) is an isometry between E and the Gaussian space HW

of W , which can be extended to HP. We denote this extension by:

ϕ 7→W (ϕ) =

∫ ∞

0

∫

Rd

ϕ(t, x)W (dt, dx).

In the present work, we assume that H > 1/2. Hence, (5) holds. From (4) and (5),
it follows that for any ϕ,ψ ∈ E ,

〈ϕ,ψ〉HP = αH

∫ ∞

0

∫ ∞

0

∫

Rd

∫

Rd

ϕ(u, x)ψ(v, y)f(x − y)|u− v|2H−2dx dy du dv

= αH

∫ ∞

0

∫ ∞

0

∫

Rd

Fϕ(u, ·)(ξ)Fψ(v, ·)(ξ)|u− v|2H−2µ(dξ) du dv.

Moreover, we can interchange the order of the integrals dudv and µ(dξ), since for
indicator functions ϕ and ψ, the integrand is a product of a function of (u, v) and a function
of ξ. Hence, for ϕ,ψ ∈ E , we have:

〈ϕ,ψ〉HP = αH

∫

Rd

∫ ∞

0

∫ ∞

0
Fϕ(u, ·)(ξ)Fψ(v, ·)(ξ)|u− v|2H−2du dv µ(dξ). (8)

The space HP may contain distributions, but contains the space |HP| of measurable
functions ϕ : R+ × R

d → R such that

‖ϕ‖2|HP| := αH

∫ ∞

0

∫ ∞

0

∫

Rd

∫

Rd

|ϕ(u, x)||ϕ(v, y)|f(x − y)|u− v|2H−2dx dy du dv <∞.

2.2 Elements of the potential theory

Our aim is to analyze the probability

P (u(I) ∩A) 6= ∅

where u is the solution to (1), I is a Borel set included in [0, T ] × R
d and A is a Borel set

in R
k. Here u(I) means the image of I under the random map (t, x) → u(t, x).

We will briefly present the notion of the potential theory that we will need in our
paper. For all Borel sets F ⊂ R

d we define P(F ) to be the set of all probability measures
with compact support included in F . For all µ ∈ P(Rd), let us denote by Iβ(µ) the so-called
β-energy of the measure µ defined by

Iβ(µ) =

∫

Rd

∫

Rd

Kβ(‖x− y‖)µ(dx)µ(dy) (9)
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where

Kβ(r) =











r−β if β > 0;

log
(

N0

r

)

if β = 0;

1 if β < 0.

(10)

Here N0 is a constant.
For all β ∈ R and F ∈ B(Rd) we define the β-dimensional capacity of F by

Capβ(F ) =

[

inf
µ∈P(F )

Iβ(µ)

]−1

(11)

with the convention 1/∞ := 0. The β-dimensional Hausdorff measure of the set F ∈ B(Rd)
is given by

Hβ(F ) = lim
ε→0+

inf

[

∞
∑

i=1

(2ri)
β; F ⊂

∞
⋃

i=1

B(xi, ri), sup
i≥1

ri ≤ ε

]

(12)

where B(x, r) denotes the Euclidean ball of radius r > 0 centered at x ∈ R
d. When β < 0,

the β-dimensional Hausdorff measure of F is infinite by definition.

2.3 The stochastic wave equation with linear fractional-colored noise

Consider the linear stochastic wave equation driven by an infinite-dimensional fractional
Brownian motion W with Hurst parameter H ∈ (0, 1). That is

∂2u

∂t2
(t, x) = ∆u(t, x) + Ẇ (t, x), t > 0, x ∈ R

d (13)

u(0, x) = 0, x ∈ R
d

∂u

∂t
(0, x) = 0, x ∈ R

d.

Here ∆ is the Laplacian on R
d and W = {Wt(A); t ≥ 0, A ∈ Bb(R

d)} is a centered Gaussian
field with covariance

E(Wt(A)Ws(B)) = RH(t, s)

∫

A

∫

B
f(x− y)dxdy,

where RH is the covariance of the fractional Brownian motion and f is the Riesz kernel.
Let G1 be the fundamental solution of utt −∆u = 0. It is known that G1(t, ·) is a

distribution in S ′(Rd) with rapid decrease, and

FG1(t, ·)(ξ) =
sin(t|ξ|)

|ξ|
, (14)
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for any ξ ∈ R
d, t > 0, d ≥ 1 (see e.g. [19]). In particular,

G1(t, x) =
1

2
1{|x|<t}, if d = 1

G1(t, x) =
1

2π

1
√

t2 − |x|2
1{|x|<t}, if d = 2

G1(t, x) = cd
1

t
σt, if d = 3,

where σt denotes the surface measure on the 3-dimensional sphere of radius t.
The solution of (13) is a square-integrable process u = {u(t, x); t ≥ 0, x ∈ R

d}
defined by:

u(t, x) =

∫ t

0

∫

Rd

G1(t− s, x− y)W (ds, dy). (15)

By definition, u(t, x) exists if and only if the stochastic integral above is well-defined,
i.e. gtx := G1(t− ·, x− ·) ∈ HP. In this case, E|u(t, x)|2 = ‖gtx‖

2
HP .

The following result has been proved in [2].

Theorem 1 The stochastic wave equation (13) admits an unique mild solution (u(t, x))t∈[0,T ],x∈Rd

if and only if
∫

Rd

(

1

1 + |ξ|2

)H+ 1

2

µ(dξ) <∞. (16)

Remark 1 Note that (16) is equivalent to:

∫

|ξ|≤1
µ(dξ) <∞, and

∫

|ξ|≥1
µ(dξ)

1

|ξ|2H+1
<∞. (17)

As mentioned in the Introduction, we will consider throughout the paper that the
spatial covariance of the noise W is given by the Riezs kernel. That means the measure µ
is

dµ(ξ) = |ξ|−d+βdξ with β ∈ (0, d).

In this case the kernel f is given by

f(ξ) = |ξ|−β with β ∈ (0, d).

Note that in the case of the Riesz kernel, condition (16) is equivalent to

β ∈ (0, d ∧ (2H + 1)). (18)

Remark 2 Since H > 1
2 and so 2H + 1 ∈ (2, 3), for dimension d = 1, 2 we have β ∈ (0, d)

while for d ≥ 3 we have β ∈ (0, 2H + 1).
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3 Regularity of the solution

3.1 Time regularity

In this part we will focus our attention on the behavior of the increments of the
solution u(t, x) with respect to the variable t. We will give upper and lower bounds for the
L2-norm of this increment. Usually, obtaining upper bounds is recognized to be easier than
obtaining lower bounds, this is also the case in our work. Actually, to get the sharpness
of the regularity of u with respect to the time variable, we need to impose a stronger
assumption than (18) on the parameters β and H (condition (19) below). This is due to
the characteristics of the scalar product in the HP .

We will start with the following useful lemma that gives an explicit expression for
the H norm of the cosinus and sinus functions. These norms will widely appear further in
our computations.

Lemma 1 Let f(x) = cos(x) and g(x) = sinx for x ∈ R. Then for every a, b ∈ R, a < b

‖f1(a,b)‖
2
H = αH

∫ b−a

0
dv cos(v)v2H−2(b−a−v)+αH cos(a+b)

∫ b−a

0
dvv2H−2 sin(b−a−v).

and

‖g1(a,b)‖
2
H = αH

∫ b−a

0
dv cos(v)v2H−2(b−a−v)−αH cos(a+b)

∫ b−a

0
dvv2H−2 sin(b−a−v).

Proof: Using the expression of the scalar product in the Hilbert space H and the trigono-
metric identities

cos(u± v) = cos u cos v ∓ sinu sin v and

sin(x)− sin(y) = 2cos(
x+ y

2
)sin(

x− y

2
)

we can write

‖f1(a,b)‖
2
H + ‖g1(a,b)‖

2
H = αH

∫ b

a

∫ b

a
|u− v|2H−2 (cos u cos v + sinu sin v) dudv

= αH

∫ b

a
du

∫ b

a
dv|u− v|2H−2 cos(u− v)

= 2αH

∫ b

a
du

∫ u−a

0
dv cos(v)v2H−2

= 2αH

∫ b−a

0
dv cos(v)v2H−2(b− a− v)
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where we made the change of variables ṽ = u− v in the integral dv above and we computed
the integral du. Similarly

‖f1(a,b)‖
2
H − ‖g1(a,b)‖

2
H = αH

∫ b

a
du

∫ b

a
dv|u− v|2H−2 (cos u cos v − sinu sin v)

= αH

∫ b

a

∫ b

a
|u− v|2H−2 cos(u+ v)dudv

and by the change of variable ṽ = u− v in the integral dv,

‖f1(a,b)‖
2
H − ‖g1(a,b)‖

2
H = 2αH

∫ b

a
du

∫ u−a

0
dv cos(2u− v)v2H−2

= 2αH

∫ b−a

0
dvv2H−2

∫ b

v+a
du cos(2u− v)

= αH

∫ b−a

0
dvv2H−2 (sin(2b− v)− sin(2a+ v))

= 2αH cos(a+ b)

∫ b−a

0
dvv2H−2 sin(b− a− v).

Remark 3 As a consequence of the Lemma 1 we deduce the following

i. For any x > 0 the quantity
∫ x
0 v

2H−2 cos(v)(x − v)dv is positive (it is the sum of two
norms).

ii. For every a, b ∈ R, a < b

‖f1(a,b)‖
2
H ≤ 2αH

∫ b−a

0
dv cos(v)v2H−2(b− a− v)

iii. For every a, b ∈ R, a < b

‖f1(a,b)‖
2
H ≥ 2αH cos(a+ b)

∫ b−a

0
dvv2H−2 sin(b− a− v).

Later, we use also the following lemma.

Lemma 2 For every a, b ∈ R with a < b,

∫ b

a

∫ b

a
dudv sin(u− v)|u− v|2H−2 = 0.
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Proof: This follows from the trivial equality

∫ b

a

∫ b

a
sin(u) cos(v)|u− v|2H−2dudv =

∫ b

a

∫ b

a
sin(v) cos(u)|u− v|2H−2dudv.

Concretely, we will prove the following result concerning the time regularity of the
solution to (13). We mention that, in the rest of our paper, c, C... will denote generic
positive constants that may change from line to line.

Proposition 1 Assume that

β ∈ (2H − 1, d ∧ (2H + 1)). (19)

Let t0,M > 0 and fix x ∈ [−M,M ]d. Then there exists a positive constants c1, c2 such that
for every s, t ∈ [t0, T ]

c1|t− s|2H+1−β ≤ E |u(t, x)− u(s, x)|2 ≤ c2|t− s|2H+1−β.

Proof: Let h > 0 and let us estimate the L2(Ω)-norm of the increment u(t+h, x)−u(t, x).
Splitting the interval [0, t+ h] into the intervals [0, t] and [t, t+h], and using the inequality
|a+ b|2 ≤ 2(a2 + b2), we obtain:

E|u(t+ h, x)− u(t, x)|2 ≤ 2{‖(gt+h,x − gt,x)1[0,t]‖
2
HP + ‖gt+h,x1[t,t+h]‖

2
HP}

=: 2[E1,t(h) + E2(h)]. (20)

The first summand can be handled in the following way.

E1,t(h) = αH

∫

Rd

µ(dξ)

∫ t

0

∫ t

0
dvdv|u− v|2H−2F(gt+h,x − gtx)(u, ·)(ξ)

×F(gt+h,x − gtx)(v, ·)(ξ)

= αH

∫

Rd

µ(dξ)

∫ t

0

∫ t

0
dudv|u− v|2H−2[FG1(u+ h, ·)(ξ) −FG1(u, ·)(ξ)]

×FG1(v + h, ·)(ξ) −FG1(v, ·)(ξ)

= αH

∫ t

0

∫ t

0
dudv|u− v|2H−2Ih,

where

Ih =

∫

Rd

µ(dξ)[FG1(u+ h, ·)(ξ) −FG1(u, ·)(ξ)][FG1(v + h, ·)(ξ) −FG1(v, ·)(ξ)]

=

∫

Rd

µ(dξ)
(sin((u+ h)|ξ|)− sin(u|ξ|))

|ξ|

(sin((v + h)|ξ|) − sin(v|ξ|))

|ξ|
.
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Using the last trigonometric identity presented before we obtain

E1,t(h) = αH

∫ t

0

∫ t

0
dudv|u − v|2H−2

∫

Rd

µ(dξ)
sin(h|ξ|2 )2

|ξ|2
cos(

(2u+ h)|ξ|

2
) cos(

(2v + h)|ξ|

2
)

= cαH

∫ t

0

∫ t

0
dudv|u − v|2H−2

∫

Rd

dξ

|ξ|d−β+2
sin(h|ξ|)2 cos((2u+ h)|ξ|) cos((2v + h)|ξ|),

and by making the change of variables ũ = (2u+ h)|ξ|, ṽ = (2v + h)|ξ|,

E1,t(h) = c · αH

∫

Rd

dξ

|ξ|d−β+2H+2
sin(h|ξ|)2

∫ (2t+h)|ξ|

h|ξ|

∫ (2t+h)|ξ|

h|ξ|
dudv|u − v|2H−2 cos u cos v

= c

∫

Rd

dξ

|ξ|d−β+2H+2
sin(h|ξ|)2‖ cos(·)1(h|ξ|,(2t+h)|ξ|)(·)‖

2
H, (21)

and using Lemma 1,

E1,t(h) = c

∫

Rd

dξ

|ξ|d−β+2H+2
sin(h|ξ|)2 ×

[

∫ 2t|ξ|

0
cos(v)v2H−2(2t|ξ| − v)dv

+cos(2t|ξ|+ 2h|ξ|)

∫ 2t|ξ|

0
v2H−2(sin(2t|ξ| − v))

]

= c

∫

Rd

dξ

|ξ|d−β+2H+2
sin(h|ξ|)2 ×

[

2t|ξ|

∫ 2tξ|

0
cos(v)v2H−2dv

− sin(2t|ξ|)(2t|ξ|)2H−1 + (2H − 1)

∫ 2t|ξ|

0
sin(v)v2H−2dv

+cos(2t|ξ|+ 2h|ξ|)

∫ 2t|ξ|

0
v2H−2(sin(2t|ξ| − v))

]

(22)

where we use integration by parts. By Remark 3, point ii. we have the upper bound

E1,t(h) ≤ c · αH

∫

Rd

dξ

|ξ|d−β+2H+2
sin(h|ξ|)2

×

[

2t|ξ|

∫ 2tξ|

0
cos(v)v2H−2dv − sin(2t|ξ|)(2t|ξ|)2H−1

+(2H − 1)

∫ 2t|ξ|

0
sin(v)v2H−2dv

]

.
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We will treat separately the three summands above. Concerning the first one,

∫

Rd

dξ

|ξ|d−β+2H+2
sin(h|ξ|)22t|ξ|

∫ 2t|ξ|

0
cos(v)v2H−2dv

= ct,Hh
2H+1−β

∣

∣

∣

∣

∣

∫

Rd

dξ

|ξ|d−β+2H+1
sin(|ξ|)2

∫
2t|ξ|
h

0
cos(v)v2H−2dv

∣

∣

∣

∣

∣

≤ ct,Hh
2H+1−β

∫

Rd

dξ

|ξ|d−β+2H+1
sin(|ξ|)2

∣

∣

∣

∣

∣

∫
2t|ξ|
h

0
cos(v)v2H−2dv

∣

∣

∣

∣

∣

≤ ct,Hh
2H+1−β

using condition (18) and the fact that the integral
∫∞
0 cos(v)v2H−2dv is convergent (this

implies that the function x ∈ [0,∞) →
∫ x
0 cos(v)v2H−2dv admits a limit at infinity and it is

therefore bounded). On the other hand

∫

Rd

dξ

|ξ|d−β+2H+2
sin(h|ξ|)2 sin(2t|ξ|)(2t|ξ|)2H−1 = cth

3−β

∫

Rd

dξ

|ξ|d−β+3
sin(|ξ|)2 sin

(

2t|ξ|

h

)

= cth
3−β

∫

|ξ|≤1

dξ

|ξ|d−β+3
sin(|ξ|)2 sin

(

2t|ξ|

h

)

+ cth
3−β

∫

|ξ|>1

dξ

|ξ|d−β+3
sin(|ξ|)2 sin

(

2t|ξ|

h

)

.

The second part over the region |ξ| ≥ 1 is bounded by ch3−β simply by majorizing sinus by
one. The second integral has a singularity for |ξ| close to zero. Using that sin(x) ≤ x for
all x ≥ 0, we will bound it above by

h3−β

∫

|ξ|≤1

dξ

|ξ|d−β+3
sin(|ξ|)2 sin

(

2t|ξ|

h

)

≤ cth
3−β

∫

|ξ|≤1

dξ

|ξ|d−β+3
|ξ|2

∣

∣

∣

∣

sin

(

2t|ξ|

h

)∣

∣

∣

∣

2−2H ∣
∣

∣

∣

sin

(

2t|ξ|

h

)∣

∣

∣

∣

2H−1

≤ cth
2H+1−β

∫

|ξ|≤1

dξ

|ξ|d−β+2H−1

where we bounded
∣

∣

∣
sin
(

2t|ξ|
h

)
∣

∣

∣

2−2H
by ct(|ξ|h

−1)2−2H and
∣

∣

∣
sin
(

2t|ξ|
h

)
∣

∣

∣

2H−1
by 1. The last

12



integral is finite since β > 2H − 1 (assumption (19)). Finally

∫

Rd

dξ

|ξ|d−β+2H+2
sin(h|ξ|)2

∫ 2t|ξ|

0
sin(v)v2H−2dv

= h2H+2−β

∫

Rd

dξ

|ξ|d−β+2H+2
sin(|ξ|)2

∫
2t|ξ|
h

0
sin(v)v2H−2dv

= h2H+2−β

∫

|ξ|≤1

dξ

|ξ|d−β+2H+2
sin(|ξ|)2

∫
2t|ξ|
h

0
sin(v)v2H−2dv

+h2H+2−β

∫

|ξ|≥1

dξ

|ξ|d−β+2H+2
sin(|ξ|)2

∫
2t|ξ|
h

0
sin(v)v2H−2dv

≤ h2H+2−β

∫

|ξ|≤1

dξ

|ξ|d−β+2H+2
|ξ|2

∫
2t|ξ|
h

0
| sin v|v2H−2dv

+h2H+2−β

∫

|ξ|≥1

dξ

|ξ|d−β+2H+2

∫
2t|ξ|
h

0
sin(v)v2H−2dv.

(23)

Using again the fact that
∫∞
0 sin(v)v2H−2dv is convergent is easy to see that the integral

over the region |ξ| ≥ 1 is bounded by cth
2H+2−β . For the intgral over |ξ| ≤ 1 we make the

change of variables ṽ = vh
ξ and we get

h3−β

∫

|ξ|≤1

dξ

|ξ|d−β+1

∫ 2t

0
| sin

(

v|ξ|

h

)

| v2H−2dv

= h3−β

∫

|ξ|≤1

dξ

|ξ|d−β+1

∫ 2t

0

∣

∣

∣

∣

sin

(

v|ξ|

h

)
∣

∣

∣

∣

2−2H ∣
∣

∣

∣

sin

(

v|ξ|

h

)
∣

∣

∣

∣

2H−1

v2H−2dv

≤ cth
2h+1−β

∫

|ξ|≤1

dξ

|ξ|d−β+2H−1
,

where we have made the same considerations as for the second summand in the decompo-
sition of E1,t(h). In this way, we obtained the upper bound for the summand E1,t(h) in
(20)

E1,t(h) ≤ Ch2H+1−β. (24)

We study now the term E2(h) in (20) (its notation E2(h) instead of E2,t(h) is due to
the fact that it does not depend on t, see below). Using successively the change of variables
ũ = u

h , ṽ = v
h in the integral dudv and ξ̃ = hξ in the integral dξ, the summand E2(h) can

13



be written as

E2(h) = αH

∫

Rd

∫ t+h

t

∫ t+h

t
FG1(t+ h− u, ·)(ξ)FG1(t+ h− v, ·)(ξ)|u− v|2H−2du dv µ(dξ)

= αH

∫

Rd

µ(dξ)

|ξ|2

∫ h

0

∫ h

0
sin(u|ξ|) sin(v|ξ|)|u − v|2H−2dudv

= αHh
2H

∫

Rd

µ(dξ)

|ξ|2

∫ 1

0

∫ 1

0
sin (u|ξ|h) sin (v|ξ|h) |u− v|2H−2dudv

= αHh
2H+2−β

∫

Rd

µ(dξ)

|ξ|2

∫ 1

0

∫ 1

0
sin(u|ξ|) sin(v|ξ|)|u − v|2H−2dudv.

Let us use the following notation:

Nt(ξ) =
αH

|ξ|2

∫ t

0

∫ t

0
sin(u|ξ|) sin(v|ξ|)|u − v|2H−2dudv, t ∈ [0, T ], ξ ∈ R

d. (25)

By Proposition 3.7 in [2] the term

N1(ξ) =
αH

|ξ|2

∫ 1

0

∫ 1

0
sin(u|ξ|) sin(v|ξ|)|u − v|2H−2dudv

satisfies the inequality

N1(ξ) ≤ CH

(

1

1 + |ξ|2

)H+1/2

,

with CH a positive constant not depending on h. Consequently the term E2(h) is bounded
by

E2(h) ≤ Ch2H+2−β

∫

Rd

(

1

1 + |ξ|2

)H+ 1

2

µ(dξ) (26)

and this is clearly finite due to (18). Relations (24) and (26) give the first part of the
conclusion.

Let us analyze now the lower bound of the increments of u(t, x) with respect to the
variable t. Let h > 0, x ∈ [−M,M ]d and t ∈ [t0, T ] such that t + h ∈ [t0, T ]. From the
decomposition

E |u(t+ h, x)− u(t, x)|2 = ‖ (gt+h,x − gt,x) 1[0,t]‖
2
HP + ‖gt+h,x1[t,t+h]‖

2
HP

+2〈(gt+h,x − gt,x) 1[0,t], gt+h,x1[t,t+h]〉HP

we immediately obtain, since the second summand in the right-hand side is positive,

E |u(t+ h, x)− u(t, x)|2 ≥ ‖ (gt+h,x − gt,x) 1[0,t]‖
2
HP + 2〈(gt+h,x − gt,x) 1[0,t], gt+h,x1[t,t+h]〉HP

:= E1,t(h) + E3,t(h).

14



We can assume, without any loss of the generality, that t = 1
2 . Denote E1, 1

2

(h) := E1(h).

We first prove that
E1(h) ≥ ch2H+1−β − c′h2H+2−β . (27)

for h small enough. Recall that we have an exact expression for E1(h) (see (22)). Actually,

E1(h) =

∫

Rd

dξ

|ξ|d−β+2H+2
sin(h|ξ|)2‖ cos(·)1(h|ξ|,h|ξ|+|ξ|)‖

2
H

= αH

∫

Rd

dξ

|ξ|d−β+2H+2
sin(h|ξ|)2

∫ (1+h)|ξ|

h|ξ|

∫ (1+h)|ξ|

h|ξ|
dudv|u − v|2H−2 cos u cos v

= αH

∫

Rd

dξ

|ξ|d−β+2H+2
sin(h|ξ|)2

∫ |ξ|

0

∫ |ξ|

0
dudv cos(u+ h|ξ|) cos(v + h|ξ|)|u − v|2H−2.

By the trigonomtric formula cos(x+ y) = cos(x) cos(y)− sin(x) sin(y) we can write

E1(h) =

∫

Rd

dξ

|ξ|d−β+2H+2
sin(h|ξ|)2

[

cos(h|ξ|)2
∫ |ξ|

0

∫ |ξ|

0
dudv cosu cos v|u− v|2H−2

−2 sin(h|ξ|) cos(h|ξ|)

∫ |ξ|

0

∫ |ξ|

0
dudv sinu cos v|u− v|2H−2

+sin(h|ξ|)2
∫ |ξ|

0

∫ |ξ|

0
dudv sinu sin v|u− v|2H−2

]

:= A+B + C.

We will neglect the first term since it is positive. We will bound the second one
above by ch2H+2−β . We have (we use Lemma 2 at the third line below)

sin(h|ξ|) cos(h|ξ|)

∫ |ξ|

0

∫ |ξ|

0
dudv sinu cos v|u− v|2H−2

≤ |sin(2h|ξ|)|

∣

∣

∣

∣

∣

∫ |ξ|

0

∫ |ξ|

0
dudv sinu cos v|u− v|2H−2

∣

∣

∣

∣

∣

=
1

2
|sin(2h|ξ|)|

∣

∣

∣

∣

∣

∫ |ξ|

0

∫ |ξ|

0
dudv sin(u+ v)|u− v|2H−2

∣

∣

∣

∣

∣

= c |sin(2h|ξ|)|

∣

∣

∣

∣

∣

∫ |ξ|

0
v2H−2(cos(v) − cos(2|ξ| − v))dv

∣

∣

∣

∣

∣
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and thus

B ≤ c

∫

Rd

dξ

|ξ|d−β+2H+2
sin(h|ξ|)2 |sin(2h|ξ|)|

∣

∣

∣

∣

∣

∫ |ξ|

0
v2H−2(cos(v)− cos(2|ξ| − v))dv

∣

∣

∣

∣

∣

≤ c

∫

Rd

dξ

|ξ|d−β+2H+2
sin(h|ξ|)2 |sin(2h|ξ|) sin(|ξ|)|

∣

∣

∣

∣

∣

∫ |ξ|

0
sin(v + |ξ|)v2H−2dv

∣

∣

∣

∣

∣

= c

∫

Rd

dξ

|ξ|d−β+2H+2
sin(h|ξ|)2 |sin(2h|ξ|) sin(|ξ|)|

×

∣

∣

∣

∣

∣

(

sin(|ξ|)

∫ |ξ|

0
cos vv2H−2dv + cos(|ξ|)

∫ |ξ|

0
sin vv2H−2dv

)∣

∣

∣

∣

∣

= c

∫

|ξ|≤1

dξ

|ξ|d−β+2H+2
sin(h|ξ|)2 |sin(2h|ξ|) sin(|ξ|)|

×

∣

∣

∣

∣

∣

(

sin(|ξ|)

∫ |ξ|

0
cos vv2H−2dv + cos(|ξ|)

∫ |ξ|

0
sin vv2H−2dv

)
∣

∣

∣

∣

∣

+ c

∫

|ξ|≥1

dξ

|ξ|d−β+2H+2
sin(h|ξ|)2 |sin(2h|ξ|) sin(|ξ|)|

×

∣

∣

∣

∣

∣

(

sin(|ξ|)

∫ |ξ|

0
cos vv2H−2dv + cos(|ξ|)

∫ |ξ|

0
sin vv2H−2dv

)
∣

∣

∣

∣

∣

.

The part over the set |ξ| ≤ 1 is bounded by ch3 by simply majorizing sin(x) by x and
∣

∣

∣

(

sin(|ξ|)
∫ |ξ|
0 cos vv2H−2dv + cos(|ξ|)

∫ |ξ|
0 sin vv2H−2dv

)
∣

∣

∣
by a constant. Concerning the part

over the region |ξ| ≥ 1 we bound again
∣

∣

∣

(

sin(|ξ|)
∫ |ξ|
0 cos vv2H−2dv + cos(|ξ|)

∫ |ξ|
0 sin vv2H−2dv

)
∣

∣

∣

by a constant and we use the change of variables ξ̃ = hξ. This part will by bounded by

h2H+2−β

∫

|ξ|≥h

dξ

|ξ|d−β+2H+2
sin(|ξ|)2 |sin(2|ξ|)|

≤ h2H+2−β

∫

Rd

dξ

|ξ|d−β+2H+2
sin(|ξ|)2 |sin(2|ξ|)|

≤ ch2H+2−β

since the last integral is convergent at infinity by bounded sinus by one and at zero by
bounding sin(x) by x and using the assumption β > 2H − 1. Therefore

B ≤ ch2H+2−β . (28)

We bound now the summand C below. In this summand the H norm of the sinus
function appear and this has been analyzed in [2]. We have, after the change of variables
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ũ = u
|ξ| , ṽ = v

|ξ| ,

C =

∫

Rd

dξ

|ξ|d−β+2
sin(h|ξ|)4

∫ 1

0

∫ 1

0
sin(|ξ|) sin(v|ξ|)|u − v|2H−2dudv

≥

∫

|ξ|≥1

dξ

|ξ|d−β+2
sin(h|ξ|)4

∫ 1

0

∫ 1

0
sin(|ξ|) sin(v|ξ|)|u − v|2H−2dudv.

We will use Proposition 3.8 in [2] (more precisely, we will use the inequality two lines before
the formula (34) in that paper with k = 0; we notice that the term sin(h|ξ|)4 does not
appear in this proof but by analyzing the step of the proof we can see that this term can
be added without problems). We will have that, for h small,

C ≥

∫

|ξ|≥1

dξ

|ξ|d−β
sin(h|ξ|)4

1

|ξ|2

∫ 1

0

∫ 1

0
sin(|ξ|) sin(v|ξ|)|u − v|2H−2dudv

≥

∫

|ξ|≥1

dξ

|ξ|d−β
sin(h|ξ|)4

1

|ξ|2H+1

= h2H+1−β

∫

|ξ|≥h

dξ

|ξ|d−β+2H+1
sin(h|ξ|)4

≥ h2H+1−β

∫

|ξ|≥1

dξ

|ξ|d−β+2H+1
sin(h|ξ|)4

= ch2H+1−β . (29)

Relations (28) and (29) imply (27). Now, from relation (27), for every t0 ≤ s < t < T
with s, t close enough

E1(t− s) ≥ c(t− s)2H+1−β − c′(t− s)2H+2−β ≥
c

2
(t− s)2H+1−β

if |t−s| ≤ c
2c′ . To extend the above inequality to arbitrary values of |t−s|, we proceed as in

[9], proof of Proposition 4.1. Notice that the function g(t, s, x, y) := E |u(t, x)− u(s, x)|2 is
positive and continuous with respect to all its arguments and therefore it is bounded below
on the set {(t, s, x, y) ∈ [t0, T ]

2 × [−M,M ]2d; |t− s| ≥ ε} by a constant depending on ε > 0.
Hence for |t− s| ≥ c

2c′ it also holds that

E1(t− s) ≥ c1|t− s|2H+1−β .

On the other side, from (21) and (26) and Cauchy-Schwarz inequality, we obtain

E3,t(h) = 〈(gt+h,x − gt,x) 1[0,t], gt+h,x1[t,t+h]〉HP

≤ ‖ (gt+h,x − gt,x) 1[0,t]‖HP‖gt+h,x1[t,t+h]‖HP

≤ ch
2H+1−β

2
+ 2H+2−β

2 .
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Consequently,

E |u(t+ h, x)− u(t, x)|2 ≥ Ch2H+1−β − C ′h
2H+1−β

2
+ 2H+2−β

2

and this implies that for every s, t ∈ [t0, T ] and x ∈ [−M,M ]d

E |u(t, x)− u(s, x)|2 ≥
C

2
|t− s|2H+1−β if |t− s| ≤

(

C

2C ′

)
1

2

.

Similarly as above, the previous inequality can be extended to arbitrary values of s, t ∈
[t0, T ].

Proposition (1) implies the following Hölder property for the solution to (13).

Corollary 1 Assume (19). Then for every x ∈ R
d the application

t→ u(t, x)

is almost surely Hölder continuous of order δ ∈
(

0, 2H+1−β
2

)

.

Proof: This is consequence of the relations (21) and (26) in the proof of Proposition 1
and of the fact that u is Gaussian.

Let us make some comments on the result in Proposition 1.

Remark 4

• Following the proof of Theorem 5.1 in [8] we can show that the mapping t → u(t, x) is
not Hölder continuous of order 2H+1−β

2 .

• When H = 1
2 the solution of the wave equation with fractional noise in time has the

same regularity in time as the solution of the wave equation with white noise in time
(see [9], [8]).

3.2 Space regularity

Let us discuss the behavior of the solution u to the equation (13) with respect to
the spatial variable. We have

Proposition 2 Assume (19), fix M > 0 and t ∈ [t0, T ]. Then there exist positive constants
c3, c4 such that for any x, y ∈ [−M,M ]d

c3|x− y|2H+1−β ≤ E |u(t, x)− u(t, y)|2 ≤ c4|x− y|2H+1−β.
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Proof: Let z ∈ R
d. We compute

E|u(t, x+ z)− u(t, x)|2 = ‖gt,x+z − gt,x‖
2
HP

= αH

∫

Rd

∫ t

0

∫ t

0
F(gt,x+z − gt,x)(u, ·)(ξ)F(gt,x+z − gt,x)(v, ·)(ξ)|u− v|2H−2du dv µ(dξ)

= αH

∫ t

0

∫ t

0
|u− v|2H−2du dv

∫

Rd

|e−iξ·(x+z) − e−iξ·x|2FG1(u, ·)(ξ)FG1(v, ·)(ξ) µ(dξ)

= αH

∫ t

0

∫ t

0
|u− v|2H−2du dv

∫

Rd

|e−iξ·z − 1|2
sin(u|ξ|)

|ξ|
·
sin(v|ξ|)

|ξ|
µ(dξ)

=: E1,x(z) + E2,x(z),

where E1,x(z) and E2,x(z) are the integrals over the regions |ξ| < 1 and |ξ| ≥ 1 respectively.
For the first expresion is easy to see that, using the inequality |1− e−iξz|2 ≤ |ξ|2|z|2, we get
the bound

E1,x(z) ≤ C|z|2
∫

|ξ|≤1
µ(dξ).

Developing the second expresion we get

E2,x(z) = αH

∫ t

0

∫ t

0
|u− v|2H−2du dv

∫

|ξ|≥1
|e−iξ·z − 1|2

sin(u|ξ|)

|ξ|
·
sin(v|ξ|)

|ξ|
µ(dξ)

= 2αH

∫ t

0

∫ t

0
|u− v|2H−2du dv

∫

|ξ|≥1

dξ

|ξ|d−β
(1− cos(z · ξ))

sin(u|ξ|)

|ξ|
·
sin(v|ξ|)

|ξ|
,

where z · ξ means the scalar product in R
d. Again from Proposition 3.7 in [2] we have that

Nt(ξ) ≤ ct,H

(

1

1 + |ξ|2

)H+1/2

for any t > 0, |ξ| ≥ 1, where Nt(ξ) is given by (25). Hence, denoting by e = z
|z|

E2,x(z) ≤ C

∫

Rd

dξ

|ξ|d−β
(1− cos(z · ξ))

(

1

1 + |ξ|2

)H+ 1

2

= Cz2H+1−β

∫

Rd

dw

|w|d−β
(1− cos(w · e))

(

1

|w|2 + |z|2

)H+ 1

2

≤ C|z|2H+1−β ,

where we used the change of variables w = ξ|z|. This proves the upper bound.
Let us prove the sharpness of this bound (i.e. the lower bound). We can assume,

without losing the generality, that t = 1. We note that

E |u(1, x + z)− u(1, x)|2 ≥ F2(z)

:= 2αH

∫ 1

0

∫ 1

0
dudv|u − v|2H−2

∫

|ξ|≥1

dξ

|ξ|d−β
(1− cos(ξ · z))

sin(u|ξ|)

|ξ|
·
sin(v|ξ|)

|ξ|
.
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Condition (17) implies that

∫

|ξ|≥1

µ(dξ)

|ξ|3
≤

∫

|ξ|≥1

µ(dξ)

|ξ|2H+1
<∞.

We apply Proposition 3.8 in [2] (more precisely, the inequality two lines before (34)
in [2] with k = 0) and we get (note that the result in [2] is stated without the factor
(1 − cos(ξ · z)) but by analyzing the steps of the proof we can see that this factor may be
added without problems)

F2(z) ≥ C

∫

|ξ|≥1

dξ

|ξ|d−β+2H+1
(1− cos(ξ · z)).

and by the change of variables ξ|z| = w in the integral dξ

F2(z) ≥ Cz2H+1−β

∫

|w|≥|z|

dw

|w|d−β+2H+1
(1− cos(w · e).

As in the proof of Theorem 5.1 in [8], we obtain that the integral
∫

|w|≥|z|
dw

|w|d−β+2H+1 (1 −

cos(w · e)) is bounded below by a constant. (Notice that β > 2H − 1, implies that the first
integral above is convergent when z is zero, because 1− cos(x) ≈ x2 around zero). Thus, it
is immediate that

E |u(1, x+ z)− u(1, x)|2 ≥ Cz2H+1−β − C ′z2H+2−β

and this implies

E |u(1, x+ z)− u(1, x)|2 ≥
1

2
Cz2H+1−β

for |z| ≤ C
2C′ . It is a routine argument to extend the above inequality to arbitrary values of

|z| (see e.g. [9], page 22, see also the proof of Proposition 1 before).

We have the following result concerning the Hölder continuity in space. We mention
that it is a little bit more than an extension of Proposition 2.

Proposition 3 Assume (19). Then for any t ∈ [t0, T ] the application

x→ u(t, x)

is almost surely Hölder continuous of order δ ∈
(

0,
(

2H+1−β
2

)

∧ 1
)

.

Proof: We claim that

E |u(t, x)− u(t, y)|2 ≤ c|x− y|(2H+1−β)∧2 (30)
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for |x − y| small enough. From Proposition 2, (30) is true when β > 2H − 1. When
β ∈ (0, 2H − 1) then it suffices to regards the part of the quantity E |u(t, x+ z)− u(t, x)|2

over the region |ξ| ≤ 1 (the part over the region |ξ| > 1 is, as in the proof of Proposition 2,
bounded by cz2H+1−β so by cz2 for z small). It is immediate to see that, using the inequality
|1− e−iξz|2 ≤ |ξ|2|z|2 the considered part is less than C|z|2

∫

|ξ|≤1 µ(dξ). This concludes the

proof of (30).
The conclusion is a consequence of Proposition 2, the Gaussianity of u and the

Kolmogorov continuity theorem.

Remark 5

• When H = 1
2 the solution of the wave equation with fractional noise in time has the

same regularity in space as the solution of the wave equation with white noise in time
(see [9], [8]).

• We distinguish in Proposition 3 two cases: if β ∈ (0, 2H − 1) then the solution to (13)
has spatial Hölder continuity of order 1 (so, it is Lipschitz continuous in the space
variable) while if β ∈ (2H−1, d∧(2H+1)) the Hölder exponent is δ ∈ (0, 2H+1−β

2 ) < 1.

• There is another way to see why the cases β ∈ (0, 2H −1] and β ∈ (2H−1, d∧ (2H +1))
need to be separated. Denote by

gt(z) := E |u(t, x+ z)− u(t, x)|2

= 2αH

∫ t

0

∫ t

0
|u− v|2H−2du dv

∫

Rd

dξ

|ξ|d−β
(1− cos(z · ξ))

sin(u|ξ|)

|ξ|
·
sin(v|ξ|)

|ξ|

and let us study the behavior of gt around z = 0. Let us also assume that d = 1.
Notice first that gt(0) = 0 and

g′t(z) = 2αH

∫ t

0

∫ t

0
|u− v|2H−2du dv

∫

Rd

dξ

|ξ|d−β−1
sin(z · ξ)

sin(u|ξ|)

|ξ|
·
sin(v|ξ|)

|ξ|

and thus g′t(0) = 0 provided that β < 2H. Moreover

g′′t (z) = 2αH

∫ t

0

∫ t

0
|u− v|2H−2dudv

∫

Rd

dξ

|ξ|d−β−2
cos(z · ξ)

sin(u|ξ|)

|ξ|
·
sin(v|ξ|)

|ξ|

and

g′′t (0) = 2αH

∫ t

0

∫ t

0
|u− v|2H−2dudv

∫

Rd

dξ

|ξ|d−β−2

sin(u|ξ|)

|ξ|
·
sin(v|ξ|)

|ξ|

≤ Ct2αH

∫

Rd

dξ

|ξ|d−β−2

(

1

1 + |ξ|2

)H+ 1

2

which is a finite constant for β < 2H − 1. Therefore gt(z) behaves as Cz2 for z close
to zero.
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3.3 Joint regularity

Let us denote by ∆ the following metric on [0, T ] × R
d

∆((t, x); (s, y)) = |t− s|2H+1−β + |x− y|2H+1−β . (31)

From Propositions 1 and 2, we obtain the following result:

Theorem 2 Fix M > 0 and assume (19). For every t, s ∈ [t0, T ] and x, y ∈ [−M,M ]d

there exist positive constants C1, C2 such that

C1∆((t, x); (s, y)) ≤ E |u(t, x) − u(s, y)|2 ≤ C2∆((t, x); (s, y)) .

Proof: The upper bound can be easily obtained by using the upper bound in Propositions
1 and 2 since

E |u(t, x)− u(s, y)|2 ≤ 2E |u(t, x)− u(s, x)|2 + 2E |u(s, x)− u(s, y)|2

≤ C2

(

|t− s|2H+1−β + |x− y|2H+1−β
)

.

Concerning the lower bound, it suffices follow the lines of the proof of Lemma 2.1
in [15] (see also Steps 3 and 4 in the proof of Proposition 4.1 in [9]). We will briefly
explain the main lines of the proof. The demostration needs to be divided upon three cases:
|t−s|2H+1−β ≤ c3

4c2
|x−y|2H+1−β, |t−s|2H+1−β ≥ 4c4

c1
|x−y|2H+1−β and 4c4

c1
|x−y|2H+1−β ≥

|t−s|2H+1−β ≥ c3
4c2

|x−y|2H+1−β with the constants c1, c2, c3, c4 appearing in the statements
of Propositions 1 and 2. The first case can be handled as follows

E |u(t, x)− u(s, y)|2 ≥
1

2
E |u(t, x) − u(t, y)|2 −E |u(t, y)− u(s, y)|2

≥
1

2
c3|x− y|2H+1−β − c2|t− s|2H+1−β

≥
1

2
c3|x− y|2H+1−β −

1

4
c3|x− y|2H+1−β

=
1

4
c3|x− y|2H+1−β

≥
c3
8
|x− y|2H+1−β +

c3
8

4c2
c3

|t− s|2H+1−β

≥ C1∆((t, x); (s, y)) .

The other cases follows similarly from Lemma 3.1 in [15], by replacing their expo-
nents with our exponents.

Remark 6 The result of Theorem 2 can be stated also in the following form: Fix M > 0
and assume (19). For every t, s ∈ [t0, T ] and x, y ∈ [−M,M ]d with (t, x) close enough to
(s, y), there exist positive constants C1, C2 such that

C1 (|t− s|+ |x− y|)2H+1−β ≤ E |u(t, x) − u(s, y)|2 ≤ C2 (|t− s|+ |x− y|)2H+1−β .
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4 Hitting times

Let us discuss the upper and lower bounds for the hitting probabilities of the solution
u to equation (13). These bounds will be given in terms of the Newtonian capacity and
the Hausdorff measure of the hit set (see Section 2 for the definition). Let us recall the
notation: if V = (V (x), x ∈ R

m) is a R
k valued stochastic process then V (S) denote the

range of the Borel set S under the random mapping x→ V (x).
Our result is based on the following criteria for the hitting probabilities proven in

[3], Theorem 2.1.

Theorem 3 Let X = X(t), t ∈ R
N be a R

k-valued centered Gaussian process and fix
I ⊂ R

N . Assume that there exist positive constants a1, a2, a3, a4 such that

i. For every t ∈ I, E
[

X(t)2
]

≥ a1 > 0.

ii. There exists α1, ..., αN ∈ (0, 1) such that for every t = (t1, ..., tN ), s = (s1, ..., sN ) ∈ I
it holds that

a2

N
∑

j=1

|tj − sj|
2αj ≤ E |X(t) −X(s)|2 ≤ a3

N
∑

j=1

|tj − sj|
2αj .

iii. For every t = (t1, ..., tN ), s = (s1, ..., sN ) ∈ I

V ar(X(t)|X(s)) ≥ a4

N
∑

j=1

|tj − sj|
2αj .

Then there exist positive constants a5, a6 such that for every Borel set A in R
k

a5Capk−Q(A) ≤ P (X(I) ∩A 6= ∅) ≤ a6Hk−Q(A)

where Q =
∑N

j=1
1
αj
.

Next, we will show that the solution to (13) satisfies the assumptions of the previous
result. This will be done via several lemmas.

Lemma 3 Assume (19) and let u be the solution to (13). Then for every t ∈ [t0, T ] and
x ∈ R

d

Eu(t, x)2 ≥ C.
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Proof: Let σ2t,x be the variance of u(t, x). We need to give a lower bound for this variance.
Assume for simplicity t = 1. Then

σ21,x = E |u(1, x)|2

= αH

∫ 1

0

∫ 1

0
dudv|u − v|2H−2

∫

Rd

dξ

|ξ|d−β+2
sin(u|ξ|) sin(v|ξ|)

≥ αH

∫ 1

0

∫ 1

0
dudv|u − v|2H−2

∫

|ξ|≤1

dξ

|ξ|d−β+2
sin(u|ξ|) sin(v|ξ|)

≥ αH sin2 1

∫ 1

0

∫ 1

0
dudv|u − v|2H−2uv = C > 0

where we used the bound sinx ≥ x sin 1 for every x ∈ [0, 1]. The general case t ∈ [t0, T ]
follows in the same way by doing the change of variables ũ = u

t , ṽ = v
t and then working on

the domain D = {ξ ∈ R
d, |ξ| ≤ 1

ut}.

Now, we bound the conditional variance (condition iii. in Theorem 3).

Lemma 4 Assume (19) and fix t0,M > 0. Then for every s, t ∈ [t0, T ] and x, y ∈
[−M,M ]d

V ar(u(t, x)|u(s, y)) ≥ C∆((t, x); (s, y))

where ∆ is the metric given by (31).

Proof: We will use the following formula: if (U, V ) is a centered Gaussian vector, then

V ar(U, V ) =
(ρ2U,V − (σU − σV )

2)((σU + σV )
2 − ρ2U,V )

4σ2V
(32)

where ρ2U,V = E(U − V )2, σ2U = EU2, σ2V = EV 2. Denote by

ρ2t,x,s,y = E |u(t, x)− u(s, y)|2 , σ2(t, x) = Eu(t, x)2, σ2s,y = Eu(s, y)2.

It suffices to show that

(ρ2t,x,s,y − (σt,x − σs,y)
2)((σt,x + σs,y)

2 − ρ2t,x,s,y) ≥ c∆((t, x); (s, y))

for every s, t ∈ [t0, T ] and x, y ∈ [−M,M ]d. By Theorem 2 the second factor in the left-hand
side above is bounded below by a constant. So it remains to check that

(ρ2t,x,s,y − (σt,x − σs,y)
2) ≥ c∆((t, x); (s, y))

but this has been done in [15], proof of Proposition 3.2. (see also [6], proof of Lemma 4.3).
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Remark 7 Using the previous result we can give a bound on the joint density pt,x,s,y of
the vector (u(t, x), u(s, y)). Actually, one can show that for every t ∈ [t0, T ] and x, y ∈
[−M,M ]d we have the inequality

pt,s,x,y(z1, z2) ≤ C1∆((t, x); (s, y))−
1

2 exp

(

−
C2|z1 − z2|

2

∆((t, x); (s, y))

)

for every z1, z2 ∈ [−N,N ]k, where ∆ is the metric defined by (31). It suffices to follow the
lines of Proposition 3.2 in [15].

We can state now the main result of this section.

Theorem 4 Let us consider I, J non-trivial compacts sets in [t0, T ] and [−M,M ]d respec-
tively. Fix N > 0 and let u be the solution to the system (1). Then for every Borel set A
contained in [−N,N ]k it holds that

C−1Capk−γ ≤ P (u(I × J) ∩A 6= ∅) ≤ CHk−γ(A)

with

γ = k −
2(d + 1)

2H + 1− β
.

Proof: The proof is a consequence of Theorem 3 and of the preceding two lemmas.

Remark 8

• Of course, for H close to 1
2 , our result recovers the findings in [9].

• it is also possible to give some results concerning the probability that, for fixed t, x, the
sets u({t} × J) and u(I × {x}) (as before I, J non-trivial compacts sets in [t0, T ] and
in [−M,M ]d respectively) to hit a given Borel set A contained in [−N,N ]k. Actually,
by routine arguments we will have

C−1Capk− 2d
2H+1−β

(A) ≤ P (u({t} × J) ∩A 6= ∅) ≤ CHk− 2d
2H+1−β

(A)

and
C−1Capk− 2

2H+1−β
(A) ≤ P (u(I × {x}) ∩A 6= ∅) ≤ CHk− 2

2H+1−β
(A).
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