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Abstract

We give sharp regularity results for the solution to the stochastic wave equation
with linear fractional-colored noise. We apply these results in order to establish upper
and lower bound for the hitting probabilities of the solution in terms of the Hausdorff
measure and of the Newtonian capacity.
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1 Introduction

The recent development of the stochastic calculus with respect to the fractional
Brownian motion (fBm) naturally led to the study of stochastic partial differential equations
(SPDEs) driven by this Gaussian process. The motivation comes from the wide area of
applications of the fBm. We refer, among others, to [10], [11], [14], [16] and [18]. The
purpose of our paper is to study the stochastic wave equation driven by fractional-colored
Gaussian noise. Our work is situated somehow in the continuation of the line of research
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t Associate member of the team Samm, Université de Paris 1 Panthéon-Sorbonne. Partially supported
by the ANR grant ”Masterie” BLAN 012103.



which concerns SPDEs driven by the fBm but in the same time it follows the | research
initiated by Dalang in [4] which treats equations with white noise in time and correlated in
space. More precisely, we consider a system of k£ stochastic wave equations

82ui
ot?

(t,z) = Au(t,z) + Wi(t,z), te[0,T],z € R? (1)
with initial condition u;(¢,2z) = 0 and 881?' (0,z) = 0 for every x € R% and for every i = 1, ..., k.
The driving Gaussian process behaves as a fractional Brownian motion in time and has
spatial covariance given by the Riesz kernel. More precisely

BVt A)W;(s, ) = 5,5 Ru(t,) | [ o~ y)dady

for every t, s € [0,T] and A, B Borel sets in R? where f : R? — R, is the Fourier transform
of a non-negative tempered measure p on R% whose density with respect to the Lebesque
measure is |¢|(@5) 0 < B < d. Above §; ; denotes the Kronecker symbol.

The equation (1) has been recently studied in [2]. It is has been proven that (1)
admits a unique mild solution if and only if 3 < 2H + 1 which extends the result obtained
in [4] in the case H = % The purpose of this work is to analyze further the solution of
(1). We will actually give sharp results for the regularity of it, in time and in space, and
we apply these regularity results to study the hitting probabilities for the solution u to
(1). More precisely, given a Borel set A C R* we want to determine whether the process
(u(t,x),t € [0,T], 2 € R?) hits the set A with positive probability. Recently, there has been
several papers on hitting probabilities, and more generally speaking, on potential theory
for systems of SPDEs. We refer, among others, to [5], [6], [7], [8] or [13]. The study
of hitting probabilities for stochastic partial differential equations with fractional noise in
time is new. As far as we know, only the paper [15] treated this problem. Actually, in this
reference the authors give upper and lower bounds for the hitting times of solution to a
system of stochastic heat equations on the circle with fractional noise in time.

Our aim is to make a new step in this research direction. As we mentioned before
we make a potential analysis of the solution to the stochastic wave equation with fractional-
colored noise. That means, the noise behaves as the fractional Brownian motion with respect
to the time variable and it is a ”colored” non-white spatial covariance. In our work this
spatial covariance will be described by the Riesz kernel. It is know classical the fact that
in order to obtain results on the hitting times of a stochastic process, a detailed analysis
of the behavior of the increments of the process is needed. We address this question in
our paper and we find the following: the solution wu(t,z),t € [0,T],z € R? to (1) is Holder
continuous of order 2H +1— 3, € (2H —1,d A2H + 1) in time as well as with respect to
the space variable. This generalizes the result obtained in [8] and [9] for the wave equation
with white noise in time and Riesz covariance in space. Although the main lines of our
work follows the approach of [9], we stress that, as usually, the fractional cases involves
more complex calculation and the techniques used in the standard white noise case need to
be substantially adapted. this is mainly due to the nature of the noise and to the structure



of the Gaussian space associated to the noise. We will point out later in our paper, how
the fractional noise involves more complexity than in e.g. [6] or [9]. Moreover, the study
of the solution to the wave equation is generally recognized to be more difficult that e.g.
the solution to the heat equation, due to the appearance of the trigonometric functions and
this is also the case in our work.

We mention that there are more or less general criteria to determine the hitting
times for a stochastic process. Such criteria have been given in [3], [6], [7] or [9] among
others. We will use the approach in [3] because it concerns Gaussian processes and fits well
with our context (note that the solution to (1) is Gaussian).

Our paper is structured as follows. Section 2 contains some preliminaries, we briefly
describe the basic properties of the Gaussian noise and its associated Hilbert space, we list
the elements of the potential theory that we will use in our paper and we will recall some
fact related to the solution to the stochastic wave equation with fractional-colored noise. In
Section 3 we analyze the Holder regularity of the solution with respect to its time and space
variables. Section 4 is devoted to the study of the hitting probabilities for this solution,
based on a criterium in [3].

2 Preliminaries

This section is devoted to introduce the basic notion that we will need throughout the
paper. We first introduce the canonical Hilbert space associated to the fractional-colored
Gaussian noise. In the second part we present the basic elements related to the potential
theory that intervene in the last section.

2.1 The canonical Hilbert space

We denote by C§°(R4*1) the space of infinitely differentiable functions on R4*! with
compact support, and S(R?) the Schwartz space of rapidly decreasing C°° functions in R
For ¢ € L'(RY), we let Fi be the Fourier transform of ¢:

Fol) = [ e pla)da.

We begin by introducing the framework of [4]. Let p be a non-negative tempered
measure on R, i.e. a non-negative measure which satisfies:

!
/Rd (ﬁ) u(d§) < oo,  for some [ > 0. (2)

Since the integrand is non-increasing in [, we may assume that [ > 1 is an integer.
Note that 1 + |£|? behaves as a constant around 0, and as |£]? at oo, and hence (2) is
equivalent to:

1
/ pu(dé) < oo, and / p(d€) 57 < 00,  for some integer [ > 1. (3)
él<t €l>1 i
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Let f: R? — R, be the Fourier transform of x in S'(R?), i.e.
[ f@pla)dn = [ Foloude), Ve S®RY,

Simple properties of the Fourier transform show that for any ¢, € S(R%),

[ [ oste - ptiaas = [ Foe Fi@mas

Rd

An approximation argument shows that the previous equality also holds for indicator
functions ¢ = 14,9 = 1g, with A, B € By(R?), where B, (R?) is the class of bounded Borel
sets of R%:

/ / f(@ - y)dedy = / FLu(OFIa@n(de). (4)
AJB R4

Now we introduce the fractional Brownian motion (fBm) with Hurst index H €
(0,1). This is a zero-mean Gaussian process (Bf )07 with covariance

Ry(t,s) == (T + 2 —jt —s*),  t,5€0,7).

DN | =

Let us denote by H the canonical Hilbert space associated with this Gaussian pro-
cess. This canonical Hilbert space is defined as the closure of the linear space generated by
the indicator functions 1y 4, € [0, T] with respect to the inner product

(Ljo,g: Ljo.s))n = Rult, s).
It is well known that for H > 1/2 we have the expression
t s
Ry(t,s) = aH/ / lu — v* 2 dudv (5)
0 JO

for every s,t € [0,T] with ay := H(2H — 1). More generally, for H > 1/2 and every
Y, € H=H([0,T]) we have

T T
W, S = an /0 /0 b))l — v[2H~2dudy (6)

As in [1], on a complete probability space (£2, F, P), we consider a zero-mean Gaus-
sian process W = {W;(A);t > 0, A € By(R%)} with covariance:

E(W,(A)W,(B)) = Ru(t, ) /A /B fla = y)dady =: Qo Losxs)rr. (1)

Let & be the set of linear combinations of elementary functions 1jg 4.4, t > 0,A €
By(RY), and HP be the Hilbert space defined as the closure of £ with respect to the inner



product (-,-)p. (Alternatively, HP can be defined as the completion of C§°(R4*1), with
respect to the inner product (-, -)gp; see [1].)

The map 1jgyxa — Wi(A) is an isometry between £ and the Gaussian space H"
of W, which can be extended to HP. We denote this extension by:

= Wi(p / / (t,x)W(dt,dz).
R4

In the present work, we assume that H > 1/2. Hence, (5) holds. From (4) and (5),
it follows that for any ¢, v € &£,

otur = an [ [ [ [ plwaritvns@ - plu—oP e dy du do
o [ [ Pt TR o () doc

Moreover, we can interchange the order of the integrals dudv and u(d§), since for
indicator functions ¢ and v, the integrand is a product of a function of (u,v) and a function
of £&. Hence, for ¢,y € £, we have:

(o, Byap = o / / / Foo(u, O F0(0, O Ju— v 2du dv p(de).  (8)

The space HP may contain distributions, but contains the space |HP| of measurable
functions ¢ : R, x R — R such that

" / / / / lo(w, @) l0(v,9)|F (& — y)[u — v ~2dz dy du dv < oo.
0 0 R4 JRA

2.2 Elements of the potential theory

Our aim is to analyze the probability
Pu(I)mA)#0

where u is the solution to (1), I is a Borel set included in [0,7] x R? and A is a Borel set
in R¥. Here u(I) means the image of I under the random map (¢, z) — u(t, x).

We will briefly present the notion of the potential theory that we will need in our
paper. For all Borel sets F' C R? we define P(F) to be the set of all probability measures
with compact support included in F. For all u € P(R?), let us denote by Ig(u) the so-called
B-energy of the measure i defined by

1) = [ [ sl = ylhutdontay )



where

rP if 8> 0;
Kg(r) = < log (%) if 5=0; (10)
1 if 8 <0.

Here Ny is a constant.
For all 8 € R and F € B(R?) we define the S-dimensional capacity of F' by

-1
Cany(F) = | inf15(0)] (11)

HEP(F)

with the convention 1/00 := 0. The S-dimensional Hausdorff measure of the set F' € B(R%)
is given by

Hp(F) = lim inf [2(27%‘)6; F C U B(xi,r;), supr; <e (12)

+ .
e—0 i—1 i—1 i>1

where B(x,r) denotes the Euclidean ball of radius r > 0 centered at x € R?. When 8 < 0,
the g-dimensional Hausdorff measure of F' is infinite by definition.
2.3 The stochastic wave equation with linear fractional-colored noise

Consider the linear stochastic wave equation driven by an infinite-dimensional fractional
Brownian motion W with Hurst parameter H € (0,1). That is

0%u .

Sz tr) = Aulta)+Wte), t>0z¢ R4 (13)
u(0,2) = 0, zeR?

%(05 CC) = 0, T e Rd.

Here A is the Laplacian on R and W = {W;(A);t > 0, A € By(R%)} is a centered Gaussian
field with covariance

E(W,(A)W.(B)) = Ru(t,s) /A /B f(x — y)dudy,

where Ry is the covariance of the fractional Brownian motion and f is the Riesz kernel.
Let G be the fundamental solution of uy — Au = 0. It is known that G1(¢,-) is a
distribution in S’(R?) with rapid decrease, and

FGr(t,)(6) = gL,

(14)



for any ¢ € R%, ¢t > 0,d > 1 (see e.g. [19]). In particular,

1 .
Git,z) = Sla<y, Hd=1
Cr(t, ) 11 if d = 2
x = e — 1 _=
1\ 2 \/m {|$|<t}?
1
Gi(t,z) = €430t if d =3,

where o; denotes the surface measure on the 3-dimensional sphere of radius .
The solution of (13) is a square-integrable process u = {u(t,z);t > 0,z € R%}
defined by:

u(t,x) = /0 y Gi(t — s,x — y)W(ds, dy). (15)

By definition, u(t, x) exists if and only if the stochastic integral above is well-defined,
ie. g :=Gi(t —-,x—-) € HP. In this case, Elu(t,2)|* = || gt ||3,p-
The following result has been proved in [2].

Theorem 1 The stochastic wave equation (13) admits an unique mild solution (u(t, ))sc(0,1) zcrd

if and only if
1 \Ftz
/Rd (W) pu(d€) < oo. (16)

Remark 1 Note that (16) is equivalent to:

1
/|£|§1u(d§) < oo, and /521 ,u(df)szH < 0. (17)

As mentioned in the Introduction, we will consider throughout the paper that the
spatial covariance of the noise W is given by the Riezs kernel. That means the measure p

1S
dp(§) = €|~ d¢ with 8 € (0,d).

In this case the kernel f is given by
J(€) = |77 with B € (0,d).
Note that in the case of the Riesz kernel, condition (16) is equivalent to
B €(0,dA(2H +1)). (18)

Remark 2 Since H > % and so 2H + 1 € (2,3), for dimension d = 1,2 we have 8 € (0,d)
while for d > 3 we have B € (0,2H + 1).



3 Regularity of the solution

3.1 Time regularity

In this part we will focus our attention on the behavior of the increments of the
solution (¢, z) with respect to the variable t. We will give upper and lower bounds for the
L?-norm of this increment. Usually, obtaining upper bounds is recognized to be easier than
obtaining lower bounds, this is also the case in our work. Actually, to get the sharpness
of the regularity of u with respect to the time variable, we need to impose a stronger
assumption than (18) on the parameters § and H (condition (19) below). This is due to
the characteristics of the scalar product in the HP.

We will start with the following useful lemma that gives an explicit expression for
the H norm of the cosinus and sinus functions. These norms will widely appear further in
our computations.

Lemma 1 Let f(x) = cos(z) and g(xz) = sinx for x € R. Then for every a,b € R, a <b

b—a b—a
flanl?, = an dv cos(v)v* 2 (b—a—v)+ o cos(a+b dov? =2 sin(b—a—v).
(a,b) 1M
0 0
and
b—a b—a
9liaml? = an dv cos(v)v*H~2(b—a—v) —apy cos(a+b dvv* =2 sin(b—a—v).
(a,0) 1M
0 0

Proof: Using the expression of the scalar product in the Hilbert space H and the trigono-
metric identities

cos(u £v) = cosucosvFsinusinv and
sin(z) — sin(y) = 2005(36 ;_ y)sin(x g y)

we can write
1 Loy I+ a3 = o / / Ju — /=2 (cos ucos v + sin usin v) dudv
= aH/ du/ dv|u — v|*72 cos(u — v)

= QQH/ du/ dv cos(v)v?H 2
a 0

b—a
= 2ap / dv cos(v) v 72(b — a — v)
0



where we made the change of variables ¥ = u — v in the integral dv above and we computed
the integral du. Similarly

b b
aH/ du/ dv|u — v[*172 (cos ucos v — sin usin v)
a a

b b
= aH/ / lu — v|*H =2 cos(u + v)dudv
a a

and by the change of variable ¥ = u — v in the integral dwv,

1 L 15 = 192 I3

b u—a
170 e~ lotay B = 200 [ du [ dvcos(zu - 0)u?-2
a 0
b—a b
= 2aH/ dvaH_Q/ du cos(2u — v)
0 v+a

b—a
= apg / dvv*72 (sin(2b — v) — sin(2a + v))
0

b—a
= 2« cos(a+b) / dvv* =2 sin(b — a — v).
0

Remark 3 As a consequence of the Lemma 1 we deduce the following

i. For any x > 0 the quantity [ v*~2cos(v)(x — v)dv is positive (it is the sum of two

norms).

1. For every a,b € R, a <b
b—a
11 (a,p) 13, < 2aH/ dv cos(v)v*172(b — a — v)
0
114 For every a,b € R, a < b
b—a
I f1ap) 13, > 207 cos(a + b) / dvv* T2 sin(b — a — v).
0

Later, we use also the following lemma.

Lemma 2 For every a,b € R with a < b,

b b
/ / dudv sin(u — v)|u — 0?72 = 0.



Proof: This follows from the trivial equality

//sm ) cos(v)|u — v~ 2dudv—//sm ) cos(u)|u — v|*H 2 dudv.

Concretely, we will prove the following result concerning the time regularity of the
solution to (13). We mention that, in the rest of our paper, ¢, C... will denote generic
positive constants that may change from line to line.

Proposition 1 Assume that
Be(2H —1,dAN(2H +1)). (19)

Let tg, M > 0 and fix x € [—M, M]®. Then there exists a positive constants cy,cy such that
for every s,t € [to, T

arlt = sPPHP <Elu(t, ) — uls, z)[* < caft — 5P

Proof: Let h > 0 and let us estimate the L?(2)-norm of the increment u(t+h, ) —u(t, x).
Splitting the interval [0, ¢ + h] into the intervals [0, ¢] and [¢, ¢ + h], and using the inequality
la + b|? < 2(a® + b?), we obtain:

A

Elu(t +h,z) —u(t,2)” < 2{|(ge+he — Ge2) Lo lep + 9erno it ern 3ep}
=: 2[E1(h) + E2(h)]. (20)

The first summand can be handled in the following way.

B = a [ tde) [ [ dodolu— o g = g O
Forne )09
=y [ () [ [ dudvlu o EG 1) - G )6
FC T+ )@~ FC )6

= aH/ / dudv|u — v|*" 721y,

where
I = /R p(dE)[FG1(u+ h, ) (&) — FG1(u, ) (IFGr(v + h,-)(€) — FG1(v,-)(§)]
= [ iy il RIED —sn(le) ni (o I sl
R €] €]

10



Using the last trigonometric identity presented before we obtain

t ot . hlg]\2 h )
Eii(h) = aH/O /0 dudv|u—v|2HQ/Rd,u(dg)smfgﬁ) cos((2u+2 )|f|)cos((2v+2 )|f|)

= coay /Ot /Ot dudv|u — v|*H 2 /Rd mdd% sin(h|€])? cos((2u + h)|€]) cos((2v + h)|€]),

and by making the change of variables @ = (2u + h)|¢|,0 = (2v + h)[¢],

Evi(h) e D T
L = con Teld—B12H+2 S udv|u — v COS U COS ¥
' R4 ’5‘(1 A+2H+2 hl¢| R¢|
£ 2
= ¢ o, ez SUAIED I eos() L auiel e myien (e (21)

and using Lemma 1,
d§ . 2t¢| )
El,t(h) = C/Rd WWSIH(}LEDQ X [/0 COS(fU)/UZH 2(2t|£| _ ’U)dv
2t[¢]
+cos(2t¢] +2h|§|)/ V=2 i (21 _v))]
0
s i 2 24l 2H -2
- C/Rd e Sn(hIE])” < 275|5|/0 cos(v)v2H~2dy
2t[¢]
—sin(2t[¢]) (2t + (2H — 1) / sin(v) 022y
0

2t[¢]
+eos(2tle] +2hig) [ o 2(sinarl] - v))] 22
0
where we use integration by parts. By Remark 3, point ii. we have the upper bound

d
Ei(h) < c-aH/RdW%sin(h\a)?
2t¢|
X [21?\5]/ cos(v)v* T 2dv — sin(2t|€]) (2t|¢])*T 1
0

2t¢]
+(2H — 1)/ sin(v)v*?2dv| .
0

11



We will treat separately the three summands above. Concerning the first one,

dg o enzore [0 212,
RdWSI(KD [3 ; cos(v)v v

dé’ 2t}F‘
. 2 2H—2
/]Rd 7|£|d—6+2H+1 sin(|¢]) /0 cos(v)v dv

2t

/ " cos(v)v* 1 2dv
0

_ cthh2H+175

IN

_ d§
2H+1 : 2
gt [ ey sin(e)

< cthh2H+175

using condition (18) and the fact that the integral [ cos(v)v*?~2dv is convergent (this
implies that the function x € [0,00) — [ cos(v)v*~2dv admits a limit at infinity and it is
therefore bounded). On the other hand

p d 2t
| e (bl sing e = et [ sin(il)?sin (%)

d 2t d 2t
= e hP /|§|<1 7‘§’d—§6+3 sin(!{\)2 sin <%> +eh® P /§>1 7’5‘11—%4—3 Sin(’é“)Q sin <%> .

The second part over the region || > 1 is bounded by ch3~8 simply by majorizing sinus by
one. The second integral has a singularity for |{| close to zero. Using that sin(z) < z for
all x > 0, we will bound it above by

d 2t
" /5<1 IEICI% sin(|¢])? sin (%)

_ d§ [ 2t¢]
3-8 2
< cth /| 7’d—6+3 |€]7 |sin <—h

g<1 1€
d§
< cth2H+15/
€<t [E[FFRI

2H-1

2—2H 'Sin <%>
h

2—2H 2H-1
where we bounded ‘sin <%>‘ by ¢ (|¢|h~1)272H and ‘sin <%)‘ by 1. The last

12



integral is finite since § > 2H — 1 (assumption (19)). Finally

dg e [P s
Rd‘é_ld_ﬁwsln( ‘g’) ) Sln(?})?} v
2t[¢]

_ d¢ L i
= pHres T gaaas S 2 . 2H—2
=" /Rd |¢|d—B+2H+2 sin([¢]) /0 sin(v)v dv

2t|¢]
. d§ TheL _
= p2H+2 B/|<1WWSIH(|£|)2/0 sin(v)v* ~2dv
d¢ 5
+h2H+2_5/>1Wsin(lf\)2/o sin(v)v*2dv

2t\§\

§h2H+25/ 7615 ]{\2/ \smv\vQH*QdU
13

g|<1 [§|4AT2H+2

2t|¢]
_ d§ h _
2H+2-8 . 2H—2
+h /£>1 A2 /0 sin(v)v dv.

(23)
Using again the fact that fooo sin(v)v??=2dv is convergent is easy to see that the integral

over the region [¢| > 1 is bounded by ¢;h?#+278, For the intgral over |¢| < 1 we make the

change of variables v = % and we get

_ dg . £ -
" B/ el 61T 6+1/ [sin <#>’H v
_ o ds__ [ ( |£|> (vl
=h /|g|§1 |£|d6+1/0 sin sin 5

< cth2h+1—5/ d§

g|<1 [§]d-AT2A=L

2H—-1
02H72dv

where we have made the same considerations as for the second summand in the decompo-
sition of Eq(h). In this way, we obtained the upper bound for the summand E;(h) in
(20)

Ey4(h) < Cp2HH1I=8, (24)

We study now the term Ey(h) in (20) (its notation Es(h) instead of Es4(h) is due to
the fact that it does not depend on ¢, see below). Using successively the change of variables
@ = 3,0 = ¢ in the integral dudv and { = h¢ in the integral d¢, the summand E3(h) can

13



be written as

t+h t+h
Ey(h) = ag /Rd/ FGi(t+h—u,-)(E)FGi(t+h—v,)(E)|u—v[*2du dv pu(de)

/ G / / sin(ulé|) sin(v|€])|u — v|*H 2 dudv
R4
= aHhQH/ NG / / sin (u|€|h) sin (v]€|h) [u — v[2 ~2dudv
Rd
= aHh2H+25/ T //sm ulé]) sin(v|€))|u — v/ 2dudv.
Rd

Let us use the following notation:

N (& |£|2/ / sin(u|€|) sin(v|€])|u — v|* 2dudv, t € [0,T],¢ € R% (25)

By Proposition 3.7 in [2] the term

Ny(€ ‘5’2/ / sin(ul€|) sin(v|€])|u — v|*H 2 dudv

satisfies the inequality

1 H+1/2
o < o)

with C a positive constant not depending on h. Consequently the term Fy(h) is bounded
by

1\ te
Ba) < o2t [ (TW) lde) (26)

and this is clearly finite due to (18). Relations (24) and (26) give the first part of the
conclusion.

Let us analyze now the lower bound of the increments of u(¢, z) with respect to the
variable t. Let h > 0,7 € [-M, M]? and t € [ty,T] such that ¢t + h € [tg,T]. From the
decomposition

E|u(t+h,z) —u(t,z)” = | (Gtrhz — 9t2) Loy 5ep + I gt+h,2 1t e4n) 37
+2((Gt+h,z — Gt.2) 1[0,4]s Gt-thw Lit, 1)) 1P

we immediately obtain, since the second summand in the right-hand side is positive,

Elu(t+hz)—ut,2)]* > | (Gehe — 9ta) Loallap + 2{(9trne — 9tw) Lo Gt+hoa Lt ern))wp

= El,t(h) + E37t(h).
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We can assume, without any loss of the generality, that t = 2. Denote E, 1(h) := Ey(h).
)
We first prove that
El(h) > Ch2H+lfB _ C/h2H+275‘ (27)

for h small enough. Recall that we have an exact expression for Ej(h) (see (22)). Actually,
Bi) = [ e sin(Alg])?cos( )1 E
1 T Jpa [ BTRHET2 (hl€],hlg+EN 1A

d¢ . ) /(1+h)|£| /(1+h)|£| _—
= ag ————————sin(h|¢ dudv|u — v COS U COS V
/Rd ramres M) e Hle] v

d¢ . &l plel 3
= aH/Rdstm(h\ﬂ)z/o /0 dudv cos(u + h|€]) cos(v + h|€|)|u — v 172,

By the trigonomtric formula cos(z + y) = cos(x) cos(y) — sin(x) sin(y) we can write
d¢ . ) , (1€ rlel o
Ei(h) = o e sin(h|¢])” |cos(h|]) o dudv cos u cos v|u — v
&l rlel
—2sin(h\§])cos(h]§\)/ / dudv sin u cos v|u — v|*1 2
0 0

&l rlel
—i—sin(h|§|)2/ / dudvsinusinv|u—v|2H_2]
0 0
= A+ B+C.

We will neglect the first term since it is positive. We will bound the second one
above by ch?#+2-8_ We have (we use Lemma 2 at the third line below)

&l rlel
Sin(h|£|)cos(h|§|)/0 /0 dudv sin u cos v|u — v|*1 2

IN

€l plel
|sin(2h[€])] ‘/ / dudv sin u cos v|u — v[*7 2
o Jo

1 &l rlél
= 3 |sin(2h[€])] '/ / dudv sin(u + v)|u — v|*772
o Jo

4
= c|sin(2h/¢])| '/0 v?H 2 (cos(v) — cos(2|¢] — v))dv

15



and thus

IN

d ]
C/Rd W% sin(h¢])? [sin(2h[¢])] '/O v 2 (cos(v) — cos(2/€] — v))dv

d €l
C/Rd W%sin(hm)z |sin(2h|¢]) sin(|€])] '/o sin(v + ‘5’)021{_2@
d
C/Rd W% sin(R[¢])? [sin(2h[¢]) sin([€])]
€| ¢
" (Sin(|§|)/0 COSUUzHQdU+COS(|f|)/O Sinvv2H2dv>
d
c/£<1 W% sin(h|¢])? |sin(2h|€]) sin(|€])]
i €| €l
0 0
i . |
/5 e ramrs S(hIE])* [sin(2hIE) sin(l¢])]

€] 1€l
(sin(!{\)/ cos vv* 12y + cos(\ﬂ)/ sin vv2H2dv> ‘ .
0 0

X

The part over the set || < 1 is bounded by ch® by simply majorizing sin(z) by z and

over the region || > 1 we bound again

<sin(|£|) 0‘5‘ cos vu?H=2dy + cos(|¢)) Olfl sin vaH_de> ‘ by a constant. Concerning the part

(sin(lél) Jo! cos 002 ~2dv + cos(lg]) o sinve2!~2dv)

by a constant and we use the change of variables € = h¢. This part will by bounded by

d . .
(. /|£|>h W% sin([€])* Isin(2¢))

d
<D | e sin(€]) sin (21

< cp2H+2-8

since the last integral is convergent at infinity by bounded sinus by one and at zero by
bounding sin(x) by z and using the assumption 8 > 2H — 1. Therefore

B < ch?H+2-8, (28)

We bound now the summand C' below. In this summand the H norm of the sinus
function appear and this has been analyzed in [2]. We have, after the change of variables

16




|2

“@z
I
|

<
I

™|
™|

Q

1 1
- /Rdmf%ﬂn(hlsl)”‘/o /0 sin(|¢]) sin(v|¢])|u — v[222dudv

d 1,1
> /5>1’5‘d%sm(h‘§’)4/o /0 Sin(m)sm(”\ﬂ)’u—U\QH’zdudv.

We will use Proposition 3.8 in [2] (more precisely, we will use the inequality two lines before
the formula (34) in that paper with k& = 0; we notice that the term sin(h|¢|)* does not
appear in this proof but by analyzing the step of the proof we can see that this term can
be added without problems). We will have that, for h small,

d§ )
C > /|£|21 |£|d_ sin h’é.‘ |£|2/ / sin ’f‘ sin 0‘5’)’ U‘2H 2dudv

e
/ml e S e’ A

_ d€
3 2H41 . 4
= h B /|£|>h 7‘§’d—6+2H+1 sin(h|¢])

_ d¢
2H+1-8 : 4
e )

ch?+1=5, (29)

v

Relations (28) and (29) imply (27). Now, from relation (27), for every tg < s <t < T
with s, close enough

Ei(t—s) > c(t—s)? 18 _ (4 — 5)2H+2-0 > g(t — 5)2H+1=0

if |t —s| < 557. To extend the above inequality to arbitrary values of |t — s|, we proceed as in

[9], proof of Proposmon 4.1. Notice that the function g(t,s,z,y) = E|u(t,z) — u(s, z)|* is
positive and continuous with respect to all its arguments and therefore it is bounded below
on the set {(t,s,2,y) € [to, T)> x [-M, M]?%;|t — s| > €} by a constant depending on & > 0.
Hence for [t — s| > 55 it also holds that

Ei(t—s) > c|t — s|?HH15,
On the other side, from (21) and (26) and Cauchy-Schwarz inequality, we obtain
Esi(h) = ((9tne — 9t2) Lo, Gevna Lt eh)) 1P

<N (9trne — 9e.2) Yo gl |94 ne Lt ern 1
< Ch2H+1 ﬁ+2H+2 8

17



Consequently,

2H+1-8 | 2H+42-5
2

E|u(t + h,z) —u(t,z)? > CRHH=P _o'p==2

and this implies that for every s,t € [to,T] and x € [~M, M]¢

1

C C
B e - G peHY18 <
E|u(t,z) —u(s,x)]” > 5 |t — s if |[t—s| < <—2C’>

Similarly as above, the previous inequality can be extended to arbitrary values of s,t €
[tO, T] :
|

Proposition (1) implies the following Holder property for the solution to (13).
Corollary 1 Assume (19). Then for every x € R? the application
t — u(t,x)

is almost surely Hélder continuous of order § € <O, 721{"'21_6) )

Proof: This is consequence of the relations (21) and (26) in the proof of Proposition 1
and of the fact that u is Gaussian. |

Let us make some comments on the result in Proposition 1.
Remark 4

e Following the proof of Theorem 5.1 in [8] we can show that the mapping t — u(t,x) is
not Hoélder continuous of order w

o When H = % the solution of the wave equation with fractional noise in time has the
same reqularity in time as the solution of the wave equation with white noise in time

(see [9], [8]).

3.2 Space regularity

Let us discuss the behavior of the solution u to the equation (13) with respect to
the spatial variable. We have

Proposition 2 Assume (19), fit M > 0 and t € [to,T]. Then there exist positive constants
c3, ¢4 such that for any x,y € [—M, M]?

esle — yPPTP < Blut,z) — u(t,y)|* < eqlz — y|?HH5.

18



Proof: Let z € R?. We compute

E|u(t,z + z) — u(t x)| lgt,z+2 — gt:vHHP

e [ [ [ Floiare = 000 F s — 900 0@ — o o )

:O‘H/ / fu— o dudv | e = TETREG (u, ) (O F G (v, )(€) m(de)

o [ [ o / e IRELCLI
= El,a:( )+E27$( ),

where E ;(z) and Ej ;(2) are the integrals over the regions |£| < 1 and [£| > 1 respectively.
For the first expresion is easy to see that, using the inequality |1 — e~%%|2 < |£]2|2|2, we get
the bound

Bia2) < Ol [ plde).

1€1<1
Developing the second expresion we get

t ot . .
E27m(2) — aH/O /0 |u _ ,U|2H72du dv /£>1 |67i§-z _ 1|251n(u|£|) . Sm(v|£|),u(d£)

€] €]
t ot ) )
= 2aH/ / lu — v|2H 2 du dv/ Cffﬁ(l — cos(z - 5))Sm(u‘§’) _ Sm(”’f‘)’
0 Jo e>1 €] I3 €|
where z - £ means the scalar product in RY, Again from Proposition 3.7 in [2] we have that
1 H+1/2
N, < -
t(§) S CLH (1 n |£|2>

for any t > 0, || > 1, where Ny(§) is given by (25). Hence, denoting by e = &

|2]
. 1 H+}
Es.(z) < C » K‘Tgﬁ(l —cos(z-§)) (W)

d 1 Htg
= (OB /Rd \w\%ﬁ(l — cos(w - e)) <7>

w]* + 2]
< C|Z|2H+176

)

where we used the change of variables w = £|z|. This proves the upper bound.
Let us prove the sharpness of this bound (i.e. the lower bound). We can assume,
without losing the generality, that ¢ = 1. We note that

E|u(l,z + 2) —u(l,z)]* > Fy(z)

bt _ dg sin(ul¢]) sin(v|¢])
= dudv|u — v[*12 —— (1 — - - .
A g A i ™

19



Condition (17) implies that

pudS) ()
/|£|z1 €] - /521 P <%

We apply Proposition 3.8 in [2] (more precisely, the inequality two lines before (34)
in [2] with £ = 0) and we get (note that the result in [2] is stated without the factor
(1 — cos(& - 2)) but by analyzing the steps of the proof we can see that this factor may be
added without problems)

dg

FQ(Z) Z C ‘£‘>1 W(l - COS(£ . Z))

and by the change of variables {|z| = w in the integral d¢

_ dw
FQ(Z) Z CZ2H+1 B /|w>|z| W(l — COS(U} . 6).

As in the proof of Theorem 5.1 in [8], we obtain that the integral f‘w|>‘z‘ Iw‘dff,%(l -

cos(w - €)) is bounded below by a constant. (Notice that 5 > 2H — 1, implies that the first
integral above is convergent when z is zero, because 1 — cos(x) =~ 2% around zero). Thus, it
is immediate that

E |u(1,x + Z) — u(1,$)|2 Z CZ2H+175 _ C/ZQH+275

and this implies

E|u(l,z+ 2) —u(l,z)> > ZC2H+1-F

DO =

for |z| < QLC' It is a routine argument to extend the above inequality to arbitrary values of
|z| (see e.g. [9], page 22, see also the proof of Proposition 1 before).
|

We have the following result concerning the Hélder continuity in space. We mention
that it is a little bit more than an extension of Proposition 2.

Proposition 3 Assume (19). Then for anyt € [tg,T] the application
x — u(t,x)
is almost surely Holder continuous of order § € <O, <W) A 1).

Proof: We claim that

E|u(t,z) — u(t,y)|” < c|z — y|FHH=H2 (30)
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for |x — y| small enough. From Proposition 2, (30) is true when 8 > 2H — 1. When
B € (0,2H — 1) then it suffices to regards the part of the quantity E |u(t,z + z) — u(t, z)|?
over the region |£| < 1 (the part over the region |£| > 1 is, as in the proof of Proposition 2,
bounded by cz?7+178 50 by ¢2? for 2 small). It is immediate to see that, using the inequality
|1 — 2|2 < |€]2|2|? the considered part is less than C|z|? f\£\<1 p(d€). This concludes the
proof of (30). -

The conclusion is a consequence of Proposition 2, the Gaussianity of v and the

Kolmogorov continuity theorem.
|

Remark 5

o When H = % the solution of the wave equation with fractional noise in time has the
same reqularity in space as the solution of the wave equation with white noise in time

(see [9], [8]).

e We distinguish in Proposition 3 two cases: if B € (0,2H — 1) then the solution to (13)

has spatial Holder continuity of order 1 (so, it is Lipschitz continuous in the space

variable) while if 5 € (2H—1,dN(2H+1)) the Hélder exponent is 6 € (0, W) < 1.

e There is another way to see why the cases f € (0,2H —1] and § € (2H —1,d A (2H +1))
need to be separated. Denote by

g(z) = E|u(t,x+z)—u(t,x)|2
_ L ARy ¢ o sin(ulé]) sin(vlé])
= 2aH/0 /0 lu — | du dv/Rd |£|d—ﬁ(1 cos(z - §)) €] €]

and let us study the behavior of g+ around z = 0. Let us also assume that d = 1.
Notice first that g,(0) =0 and

e dg sin(ul¢])  sin(v|¢])
/ 2H 2 .
9:(2) 2204H/ / lu — o™ du dv/ T sin(z - §) :
' 0 Jo R [§]T71 €] €]
and thus g;(0) = 0 provided that 8 < 2H. Moreover

/ [ - 3 sin(ulg]) sin(vlé)
g¢ (2) = 2aH/O /0 ]u — U‘QH 2 dudv /Rd W cos(z - g) ’5‘ . ’5‘

and

" _ Lt L 12H-2 3 sin(u\ﬁl).sin(v\ﬁl)
0 = 2 [ [P | e g g

1
dé 1 H+l
< 2
= Gon /R €[r—2 <1 n |£|2>

which is a finite constant for B < 2H — 1. Therefore g;(2) behaves as Cz> for z close
to zero.
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3.3 Joint regularity
Let us denote by A the following metric on [0, 7] x R?
A((ta); (s,y) = |t = sPIHF o —y PP, (31)
From Propositions 1 and 2, we obtain the following result:

Theorem 2 Fiz M > 0 and assume (19). For every t,s € [to,T] and x,y € [—M, M]?
there exist positive constants Cq,Cy such that

C1A((t,2): (s,9)) < Eu(t,z) — u(s,y)|* < CoA ((t,2); (s,9)) .

Proof: The upper bound can be easily obtained by using the upper bound in Propositions
1 and 2 since

E[u(t,x) — u(s,y)[*

IN

2E ‘U(t, 1’) - ’LL($7 .%')‘2 + 2E ”I,L(,S’ .%') - U(S, y)’2
s (|t _ S|2H+176 tlz— y|2H+1—5> .

IN

Concerning the lower bound, it suffices follow the lines of the proof of Lemma 2.1
in [15] (see also Steps 3 and 4 in the proof of Proposition 4.1 in [9]). We will briefly
explain the main lines of the proof. The demostration needs to be divided upon three cases:
‘t— S‘2H+17B < C_S‘x_y‘QHJrl*ﬁ ‘t— S‘2H+17B > &‘x_yPHJrlfB and &’m_yPHHfﬁ >

— 4co ) = c1 =
|t —s|2H+1=8 > L3 |p |2H+1-6 with the constants ¢y, ¢o, ¢3, ¢4 appearing in the statements

= 4c
of Propositions 1 2and 2. The first case can be handled as follows

Blut,o) ~uls.p) > SBlultx) — ult,y) ~ Blutt,y) - uls,)P
1

> Segle —yPHHIS — ot — o210
1 _ 1 _
> Zegly —yPHHTF - Segly — yPHTIR
2 4
1 _
— ZC3|$_y|2H+1 B
c c3 4e
> Bl y’2H+1—5 + _3_2“_ SIQHH’ﬁ
8 8 ¢

> CiA((t2); (s,9)) -

The other cases follows similarly from Lemma 3.1 in [15], by replacing their expo-
nents with our exponents.
|

Remark 6 The result of Theorem 2 can be stated also in the following form: Fix M > 0
and assume (19). For every t,s € [to,T] and z,y € [—~M, M]% with (t,x) close enough to
(s,y), there exist positive constants Cy,Cy such that

Cr(jt = sl + |z = y)*77 < Blult,) —uls,y)|* < Ca (|t — 5| + |z —y])* 77
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4 Hitting times

Let us discuss the upper and lower bounds for the hitting probabilities of the solution
u to equation (13). These bounds will be given in terms of the Newtonian capacity and
the Hausdorfl measure of the hit set (see Section 2 for the definition). Let us recall the
notation: if V = (V(z),z € R™) is a R¥ valued stochastic process then V(S) denote the
range of the Borel set S under the random mapping = — V().

Our result is based on the following criteria for the hitting probabilities proven in
[3], Theorem 2.1.

Theorem 3 Let X = X(t),t € RN be a RF-valued centered Gaussian process and fix
I c RN, Assume that there exist positive constants ay,as,as,as such that

i. Foreverytel, E[X(t)? >a; >0.

it. There exists aq,...,an € (0,1) such that for every t = (t1,...,tn),s = (s1,...,sn) € I
it holds that

N N
az Y |t — s SEIX(t) = X(s)* <ag Y |t — s,
i=1 j=1

iii. For everyt = (t1,....,tn),s = (81,...,8n) € I

N
Var(X(1)|X(s)) > as Y [t; — ;9.
j=1

Then there exist positive constants as,ag such that for every Borel set A in R*
asCapy_o(A) < P(X(I)NA#0) < agMHir—(A)
where @ = Z;V:1 a—lj

Next, we will show that the solution to (13) satisfies the assumptions of the previous
result. This will be done via several lemmas.

Lemma 3 Assume (19) and let u be the solution to (13). Then for every t € [to,T] and
r € R4
Eu(t,z)*> > C.
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Proof: Let aﬁx be the variance of u(t,xz). We need to give a lower bound for this variance.
Assume for simplicity t = 1. Then

ot, = Eu,z)
][1][1 2H 2 dg
= « dudv|u —v|*7~ / ————— sin(u|&|) sin(v|£
H o Jo ’ ‘ Rd ’é-‘d_ﬁ_i_Q ( ‘ ’) ( ’ ‘)

1 1 d£
> aH/ / dudv]u—v\2H2/ ————— sin(u|¢]) sin(v|¢])
o Jo gj<1 [€1977+2
1 1
> apsin® 1/ / dudv|u — v|* 2w = C > 0
0o Jo

where we used the bound sinx > wzsinl for every x € [0,1]. The general case t € [ty,T]
follows in the same way by doing the change of variables 4 = ¥,0 = 3 and then working on
the domain D = {¢ € RY,|¢] < L} [ |

Now, we bound the conditional variance (condition iii. in Theorem 3).

Lemma 4 Assume (19) and fix to, M > 0. Then for every s,t € [to,T] and z,y €
[_M’M]d
Var(u(t, z)lu(s,y)) = CA((, 2); (s,y))

where A is the metric given by (31).

Proof: We will use the following formula: if (U, V) is a centered Gaussian vector, then

(pQU,V —(ov —ov)*)((ov + ov)* - IOQU,V)
40‘2,

Var(U,V) = (32)

where p7;\, = E(U = V)?,0f, = BU?, 07, = EV?. Denote by
p?,x,&y =E|u(t,x) — u(s,y)]z, 02(t,x) = Eu(t,x)Q, aiy = Eu(s,y)Q.
It suffices to show that

(p?,m,s,y - (0-121 - O-S,y)2)((o-t7$ + Us,y)2 - p?,:v,s,y) > CA((t’ x); (S’ y))

for every s,t € [to, T] and x,y € [~ M, M]?. By Theorem 2 the second factor in the left-hand
side above is bounded below by a constant. So it remains to check that

(p?,a:,s,y - (Ut,l“ - 0-8731)2) > CA((tv 1’); (87 y))

but this has been done in [15], proof of Proposition 3.2. (see also [6], proof of Lemma 4.3).
|
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Remark 7 Using the previous result we can give a bound on the joint density p; . s, of
the vector (u(t,z),u(s,y)). Actually, one can show that for every t € [to,T] and z,y €
[—M, M]? we have the inequality

_1 02|21 — 22|2
Praalin22) < G (62 (s.9)) Fexp (-
! A((t,2); (s,y))
for every z1, 29 € [N, N|¥, where A is the metric defined by (31). It suffices to follow the
lines of Proposition 3.2 in [15].

We can state now the main result of this section.

Theorem 4 Let us consider I,.J non-trivial compacts sets in [to, T| and [—M, M]¢ respec-
tively. Fiz N > 0 and let u be the solution to the system (1). Then for every Borel set A
contained in [—N, N|* it holds that

C™'Capy,_, < P(u(I x J)N A #0) < CHy,_(A)

with
2(d+1)

LAy

Proof: The proof is a consequence of Theorem 3 and of the preceding two lemmas.
|

Remark 8

o Of course, for H close to %, our result recovers the findings in [9].

e it is also possible to give some results concerning the probability that, for fized t,x, the
sets u({t} x J) and u(I x {x}) (as before I, J non-trivial compacts sets in [to,T] and
in [—M, M]? respectively) to hit a given Borel set A contained in [—N, N|*. Actually,
by routine arguments we will have

C_lCapk_QHﬂ_ (A) < Pu{t} x J)NA#£0) < CH_ 24 (A)

B SH+1-8

and

C'Cap, 2> (A)<PuIx{z)NA£D) <CH, o (A).

2H+1-p 2H+1—3
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