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Introduction

The study of special classes of semigroups relies in many cases on properties of the set of idempotents, or of regular pairs of elements. In [11] a special weak inverse, called inverse along an element, was introduced, and in [12], it was interpreted as a kind of inverse modulo H. The aim of this article is to study special classes of semigroups defined in terms of these inverses modulo Green's relation H, or in terms of the set of group invertible elements, that can be seen as idempotents modulo H. Relations with known classes of semigroups will be investigated.

In this paper, S is a semigroup and S 1 denotes the monoid generated by S. E(S) denotes the set of idempotents, and Z(E(S)) = {x ∈ S, xe = ex ∀e ∈ E(S)} its centralizer.

We say a is (von Neumann) regular in S if a ∈ aSa. A particular solution to axa = a is called an associate, or inner inverse, of a. A solution to xax = a is called a weak (or outer) inverse. Finally, an element that satisfies axa = a and xax = x is called an inverse (or reflexive inverse, or relative inverse) of a. The set of all associates of a is denoted by A(a) and the set of all inverses of a by V (a). If a ′ ∈ V (a), we also say that (a, a ′ ) is a regular pair.

A commuting inverse, if it exists, is unique and denoted by a # . It is usually called the group inverse of a. We let H(S) denote the set of group invertible elements.

We will make use of the Green's preorders and relations in a semigroup [START_REF] Green | On the structure of semigroups[END_REF]. For elements a and b of S, Green's preorders ≤ L , ≤ R and ≤ H are defined by

a ≤ L b ⇐⇒ S 1 a ⊂ S 1 b ⇐⇒ ∃x ∈ S 1 , a = xb; a ≤ R b ⇐⇒ aS 1 ⊂ bS 1 ⇐⇒ ∃x ∈ S 1 , a = bx; a ≤ H b ⇐⇒ {a ≤ L b and a ≤ R b}.
If ≤ K is one of these preorders, then aKb ⇔ {a ≤ K b and b ≤ K a}, and K a = {b ∈ S, bKa} denotes the K-class of a.

We will use the following classical lemmas. Let a, b, c ∈ S. ca ≤ L a, ac ≤ R a, aca ≤ H a; a ≤ L b ⇒ ac ≤ L bc (Right congruence);

a ≤ R b ⇒ ca ≤ R cb (Left congruence).
Note that H is not a congruence in general. We recall the following characterization of group invertibility in terms of Green's relation H (see [START_REF] Green | On the structure of semigroups[END_REF], [START_REF] Miller | Regular D-Classes in Semigroups[END_REF]) and inverses: Lemma 1.5.

1. a # exists if and only if aHa 2 if and only if H a is a group.

2. Let (a, a ′ ) be a regular pair. Then aa ′ = a ′ a if and only if aHa ′ .

From this lemma, we get that the set of idempotents modulo H is precisely the set of group invertible (completely regular) elements, and can be characterized as the union of all (maximal) subgroups of S:

E(S)[H] = H(S) = e∈E(S)
H e .

Invertibility modulo H

In [11] a special weak inverse, called inverse along an element, was introduced, and in [12], it was interpreted as a kind of inverse modulo H. We recall the definition and properties of this inverse, and refer to [11] and [12] for the proofs. 1. a ′ a exists.

2. a ≤ R aa ′ and (aa ′ ) # exists.

3. a ≤ L a ′ a and (a ′ a) # exists.

4. aa ′ aHa (a ′ ∈ A(a)[H]). 5. a ≤ H aa ′ a.
In this case, b = a(a ′ a) ♯ = (aa ′ ) ♯ a.

In other words, a ′ ∈ A(a)[H] if and only if a ′ is invertible along a, or equivalently if and only if a ′ is an associate of an element in the H-class of a. It was remarked in [12] We will need the following characterization of reflexive inverses modulo H (see [11]). Recall that ab is a trace product if ab ∈ R a ∩ L b , or equivalently, by a theorem of Clifford [START_REF] Miller | Regular D-Classes in Semigroups[END_REF], if L a ∩ R b contains an idempotent.

Theorem 2.5. The following statements are equivalent:

1. a ′ ∈ V (a)[H];
2. (a ′ ) a exists and is an inverse of a ′ ((a ′ ) a ∈ V (a ′ )); 3. aa ′ and a ′ a are trace product.

In this case, it is known that the following equality hold [START_REF] Miller | Regular D-Classes in Semigroups[END_REF]:

H a H a ′ = H aa ′ = aH a ′ = H a a ′ .
Together with corollary 2.4 we get: Proposition 2.6. If, (a, a ′ ) is a regular pair modulo H, then

H a H a ′ H a = H a = aH a ′ a.
We now prove that all the classical properties of inverses remain true when working modulo H. Recall that for a ′ , a ′′ ∈ A(a), then a ′ a, aa ′ ∈ E(S) and a ′ aa ′′ ∈ V (a). Also, if a ′ ∈ V (a) then 

a ′ a = aa ′ ⇔ a ′ Ha. Proposition 2.7. Let a ′ , a ′′ ∈ A(a)[H]. Then a ′ a, aa ′ ∈ E(S)[H] and a ′ aa ′′ ∈ V (a)[H]. If moreover, a ′ ∈ V (a)[H], then a ′ aHaa ′ ⇔ a ′ Ha. Proof. By theorem 2.3, a ′ ∈ A(a)[H] implies a ′ a
a ′ aa ′′ ∈ A(a)[H].
To prove that a ′ aa ′′ ∈ V (a)[H], we have to prove that a ′ aa ′′ ≤ H a ′ aa ′′ aa ′ aa ′′ . We prove only ≤ R , for the other one is symmetric. We use the inverses of a ′ and a ′′ along a, b ′ = (a ′ ) a = a(a ′ a) # and b ′′ = (a ′′ ) a = a(a ′ a) # .

a ′ aa ′′ = a ′ aa ′′ (a ′′ ) a a ′′ = a ′ aa ′′ a(a ′′ a) # a ′′ = a ′ aa ′′ aa ′ (a ′ ) a (a ′′ a) # a ′′ = a ′ aa ′′ aa ′ a (a ′ a) # (a ′′ a) # a ′′ = a ′ aa ′′ aa ′ aa ′′ (a ′′ ) a (a ′ a) # (a ′′ a) # a ′′
and a ′ aa ′′ ≤ R a ′ aa ′′ aa ′ aa ′′ . Finally, suppose a ′ ∈ V (a)[H] and a ′ aHaa ′ . Pose b = (a ′ ) a . From bRa we get a ′ bRa ′ a (R is a left congruence). From aa ′ b = a we get a ≤ L a ′ b ≤ L b ≤ L a and finally, since a ′ aLa, a ′ bHa ′ a. Symmetrically, ba ′ Haa ′ , and finally a ′ bHba ′ . But a ′ b, ba ′ ∈ E(S). They are then idempotents in the same H-class, hence they are equal (corollary 1 in [START_REF] Miller | Regular D-Classes in Semigroups[END_REF]). It follows that a ′ is the group inverse of b ((a, b) is a regular pair from theorem 2.5). Finally H b = H a is a group that contains a ′ (and

a # ). Conversely, if a ′ ∈ V (a)[H] and a ′ Ha then H aa ′ = H a H a ′ = H a .H a = H a ′ H a = H a ′ a .
Finally, we study classical types of semigroups with respect to our new definitions. First, we show that regularity is the same as regularity modulo H.

Lemma 2.8. A semigroup is regular if and only ∀a ∈ S, A(a)[H] = ∅.

Proof. The implication is straightforward. For the converse, let a ′ ∈ A(a) [H], that is aa ′ aHa. Then (a ′ ) a exists and a = aa ′ (a ′ ) a = aa ′ (aa ′ ) ♯ a by theorem 2.3. Finally, a is regular.

Next theorem proves that inverse semigroups can also be defined in terms of inverses modulo H. Recall that S is an inverse semigroup if elements admit a unique inverse a -1 (or equivalently, S is regular and ∀a ∈ S, a ′ , a ′′ ∈ V (a) ⇒ a ′ = a ′′ ). Theorem 2.9. let S be a semigroup and a ∈ S be a regular element. The following statements are equivalent:

1. a ′ , a ′′ ∈ V (a) ⇒ a ′ = a ′′ ; 2. a ′ , a ′′ ∈ V (a)[H] ⇒ a ′ Ha ′′ . Proof. (1) ⇒ (2) Let a ∈ S, a ′ , a ′′ ∈ V (a)[H].
Then by theorem 2.3, a a ′ and a a ′′ are well defined, and by theorem 2.5, they are inverses of a. Since S is inverse, they are equal. But by definition a a ′ Ha ′ and a a ′′ Ha ′′ , and finally a ′ Ha ′′ .

(2) ⇒ (1) This is a result of Clifford ( [START_REF] Miller | Regular D-Classes in Semigroups[END_REF]), any H-class contains at most one inverse. We prove it here for completeness. Let a ′ , a ′′ ∈ V (a). Then they are H-inverses, and a ′ Ha ′′ . By cancellation properties, a ′ La ′′ and a

′ = a ′ aa ′ ⇒ a ′′ = a ′′ aa ′ , a ′′ Ra ′ and a ′′ = a ′′ aa ′′ ⇒ a ′ = a ′′ aa ′ . Finally a ′ = a ′′ aa ′ = a ′′ .
As a direct corollary, we get that a semigroup S is inverse if it satisfies

∀a ∈ S, V (a)[H] = ∅ and a ′ , a ′′ ∈ V (a)[H] ⇒ a ′ Ha ′′ .
One may wonder is this type of results is also true for other characterizations of inverse semigroups, or for orthodox semigroups. This is not the case as next section will show.

Completely inverse semigroups and H-orthodox semigroups

It is well known that inverse semigroups can be alternatively defined as regular semigroups whose idempotents commute (this was actually both Vagner and Preston first definition, and the equivalence between the two notions was proved by Vagner [START_REF] Wagner | Generalized Groups[END_REF] and Liber [START_REF] Liber | On the theory of generalized groups[END_REF]). Non-regular semigroups whose idempotents commute (resp. form a subsemigroup) have been studied for instance in [START_REF] Margolis | Inverse semigroups and extensions of groups by semilattices[END_REF], [START_REF] Fountain | E-unitary dense covers of E-dense monoids[END_REF], [1], under various names, the latest being "E-commutative semigroups" (resp. "Esemigroups"). Some of the results of the paper also apply to non-regular semigroups, and we try to avoid regularity assumption when it is not necessary. Since we can consider group invertible elements as idempotents modulo H, we consider here semigroups whose group invertible elements H-commute (commutation modulo H was introduced by Tully [START_REF] Tully | H-commutative semigroups in which each homomorphism is uniquely determined by its kernel[END_REF]). Proof. Let S be such a semigroup. Then group invertible elements hence idempotents H-commute. Cancellation properties shows that the products are actual. Indeed, ef Lf e and ef f = ef ⇒ f ef = f e. But also ef Rf e and f f e = f e ⇒ f ef = ef and idempotents commute. Now, we show that the set of group invertible elements in an inverse semigroup is not necessarily H-commutative. Consider the inverse semigroup of partial injective transformations on X = {1, 2} S = I X . It is an inverse semigroup. However, H(S) is not H-commutative. Indeed, define α by α(1) = 1 and β by β(1) = 2, β(2) = 1. Then α and β are group invertible (α # = α, β # = β), but βα and αβ have not the same domain, hence are not L-related.

These results show that H(S) being a H-commutative set is a stronger notion that E(S) being a commutative set. Since regular semigroups satsfying this property are necessarily inverse, and are characterized in terms of group invertible elements, we call them completely inverse semigroups (by analogy with completely regular semigroups). We keep the name of the non-regular analog for later on. Definition 3.2. A semigroup S is completely inverse if it is regular and H(S) is a H-commutative set (a, b ∈ H(S) ⇒ abHba). Lemma 3.1 hence claims that a completely inverse semigroup is inverse.

In order to study precisely these semigroups, we need more properties on the set H(S). This will be done through the study of semigroups whose group invertible elements form a subsemigroup and H-orthodox semigroups. Recall that an orthodox semigroup may be defined as a regular semigroup whose set of idempotents forms a subsemigroup. Lemma 1.3 in [START_REF] Reilly | Congruences on regular semigroups[END_REF] gives equivalent characterizations of orthodox semigroups. Lemma 3.3 (Lemma 1.3 in [START_REF] Reilly | Congruences on regular semigroups[END_REF]). For a regular semigroup S the following are equivalent:

1. E(S)E(S) ⊆ E(S);

2. e ∈ E(S), (e, x) a regular pair implies x ∈ E(S);

3. (a, a ′ ) and (b, b ′ ) regular pairs implies that (ab, b ′ a ′ ) is a regular pair. Definition 3.4. A semigroup S is H-orthodox if it is regular and a ′ ∈ V (a)[H], b ′ ∈ V (b)[H] ⇒ b ′ a ′ ∈ V (ab)[H].
We investigate now if the other characterizations are valid. Theorem 3.5. Let S be a semigroup. The following two conditions are equivalent.

1. a ′ ∈ V (a)[H], b ′ ∈ V (b)[H] ⇒ b ′ a ′ ∈ V (ab)[H]. 2. H(S) is a semigroup. Proof. 1) ⇒ 2) Let a, b ∈ H(S). Then aa # ∈ V (a)[H] and b # b ∈ V (b)[H]. It follows that (b # baa # ) ∈ V (ab)[H],
and in particular (ab) 2 = ab(b # baa # )abHab, hence ab is group invertible by Clifford's theorem.
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) ⇒ 1) Let a, b ∈ S, a ′ ∈ V (a)[H], b ′ ∈ V (b)[H]. We want to show that b ′ a ′ ∈ V (ab)[H], that is (ab).(b ′ a ′ )
′ Lb ′ ⇒ bb ′ a ′ Lb ′ a ′ . Pose x = bb ′ a ′ a. By theorem 2.3, bb ′ , a ′ a ∈ H(S) hence x ∈ H(S)
. From a ′ aRa ′ we get bb ′ a ′ aRbb ′ a ′ , and by cancellation

x = xx # x ⇒ bb ′ a ′ = xx # bb ′ a ′ . Then bb ′ a ′ = x # xbb ′ a ′ = x # bb ′ a ′ abb ′ a ′ . Finally, b ′ a ′ Lbb ′ a ′ Labb ′ a ′ .
The class of regular semigroups whose set of group invertible elements is a subsemigroup has indeed already been studied in a paper of Warne [START_REF] Warne | Standard regular semigroups[END_REF] under the name "natural regular semigroups", and appear also in some works of Yamada and Shoji [START_REF] Yamada | On H-compatible quasi-orthodox semigroups[END_REF], [START_REF] Yamada | On the structure of regular semigroups in which the maximal subgroups form a band of groups[END_REF]. The theorem claims that the class of H-orthodox semigroups, defined upon inverses modulo H, coincide with the class of natural regular semigroups. Non-regular semigroups whose set of group invertible elements is a subsemigroup appear in a paper of Birget, Margolis and Rhodes [START_REF] Birget | Semigroups whose idempotents form a subsemigroup[END_REF] under the name "solid semigroups". Remark that for such semigroups, H(S) being a semigroup and a union of groups is completely regular, hence a semillatice of completely simple semigroups. Surprisingly, these two conditions are not equivalent with the other possible, namely that (h, x) is a regular pair modulo H and h ∈ H(S) implies x ∈ H(S). For simplicity we will call a semigroup with this property a H-inverse-closed semigroup.

Definition 3.6. A semigroup S is H-inverse-closed if (h, x) is a regular pair modulo H, h ∈ H(S) implies x ∈ H(S).
Such a semigroup has interesting properties. For instance: Lemma 3.7. Let S be a H-inverse-closed semigroup.

1. e, f ∈ E(S) and ef regular ⇒ ef ∈ H(S);

2. a ′ ∈ A(a), b ′ ∈ A(b) ⇒ b ′ a ′ ∈ A(ab)[H]; 3. a ′ ∈ V (a), b ′ ∈ V (b) ⇒ b ′ a ′ ∈ V (ab)[H].
Proof.

1. By a result of Howie and Lallement (lemma 1.1 in [START_REF] Howie | Certain fundamental congruences on a regular semigroup[END_REF]), any regular product of idempotents ef admits an inverse p that is idempotent. Then (p, ef ) is a regular pair (a fortiori modulo H) and ef ∈ H(S).

2. Let a ′ ∈ A(a) and b ′ ∈ A(b). Then ab = aa ′ abb ′ b, with a ′ a, bb ′ ∈ E(S). By the first point, h = a ′ abb ′ ∈ H(S). It follows that

ab = ahb = ah 2 (h # ) 3 h 2 b = aa ′ abb ′ a ′ abb ′ (h # ) 3 a ′ abb ′ a ′ abb ′ b = (abb ′ a ′ ab)(b ′ (h # ) 3 a ′ )(abb ′ a ′ ab). It follows that ab ≤ Habb ′ a ′ ab, that is b ′ a ′ ∈ A(ab)[H].
3. Since being a regular pair is symmetric and a and b play symmetric roles, the result follows from 2).

Theorem 3.8. Let S be a semigroup. Then:

1. H(S) is a semigroup implies S is H-inverse-closed; 2. S is inverse implies S is H-inverse-closed.
Proof. One may wonder why we do not call H-orthodox semigroups completely orthodox semigroups. The answer is that H-orthodox semigroups may not be orthodox. For instance, completely regular semigroups are obviously H-orthodox, but they are not all orthogroups (completely regular and orthodox). On the other hand, note that orthodox or H-inverse-closed semigroups may not be H-orthodox. Consider the previous example of partial injective transformations on X = {1, 2} S = I X . It is inverse hence orthodox and H-inverse-closed. However, the domain and image of βα do not coincide, hence βα is not group invertible. This shows that S = I X is not H-orthodox.

The remaining of this section is devoted to the study of the link between H-commutation and closedeness of the set of group invertible elements. Proof. We start by commutation:

(ab)b # a # = bb # abb # a # = b # (ba)bb # a # = b # (aa # ba)bb # a # = b # aa # (babb # )a # = b # aa # baa # = b # a # (abaa # ) = b # a # ab
Note that by symmetry baa # b # = a # b # ba. Second, we focus on inner invertibility.

(ab)b # a # ab = b # a # abab = b # bab = ab
We finally adress outer invertibility.

(ab)(b # a # ) = (b # bab)(b # a # ) = b # (babb # )a # = bb # aa # Symetrically, aa # bb # = baa # b # = a # b # ba. Finally, b # a # abb # a # = b # baa # b # a # = b # bb # a # aa # = b # a # Theorem 3.10. Let a, b ∈ H(S). If baHab, then ab ∈ H(S) and (ab) # = b # a # .
Proof. Assume baHab, aHa 2 and bHb 2 . Then by cancellation properties (bb # ba = ba,...) bb # ab = ab = abaa # and aa # ba = ba = babb # . We then apply the previous lemma.

Corollary 3.11. Let S be a semigroup.

1. H(S) is a H-commutative set implies H(S) is a semigroup. 2. S is completely inverse implies S is H-orthodox.
Note that in any inverse semigroup, the equality (ab) -1 = b -1 a -1 gives that b # a # is an inverse of ab directly.

In order to study the converse implication, we need the following lemma. Lemma 3.12. Let a, b, ab, ba ∈ H(S) such that (ab) # = b # a # and (ba) # = a # b # . Then abHba.

Proof. Assume (ab)

# = b # a # and (ba) # = a # b # . By cancellation properties, bb # b # a # = b # a # = b # a # aa # ⇒ bb # ab = ab = abaa # But then ab = bb # a # aab = b(ab) # abb # ab = bab(ab) # b # ab and ab ≤ R ba. Conversely, ab = abbb # a # a = aba # ab(ab) # a = aba # (ab) # aba
Finally ab ≤ H ba. Since a and b play symmetric roles, also ba ≤ H ab and finally, abHba.

Theorem 3.13. Let S be a semigroup. Now, we investigate the converse inclusion. For convenience, we restate the following result. Proof. From lemma 4.1, Z(E(S)) ⊂ H(S) and from lemma 4.2 H(S) ⊂ Z(E(S)) and the implication is proved.

For the converse, assume that S is regular and H(S) = Z(E(S)). Then S is inverse since ⊂ H(S). But Z(E(S)) is always a semigroup, hence S is H-orthodox. By theorem 3.13, S is completely inverse.

We now state a non-regular version of this result.

Theorem 4.4. S is a H-Cliffordian if and only if H(S) ⊂ Z(E(S)).

Proof. The implication is lemma 4.2. For the converse, assume that H(S) ⊂ Z(E(S)). We first prove that H(S) is a semigroup. Let a, b ∈ H(S). Then (ab)(aa # ) = (aa # )ab = ab and symetrically babb # = ba. Also ab = abb # b = b # bab and ba = a # aba. By lemma 3.9, b # a # is the group inverse of ab and H(S) is a semigroup. Finally E(S) ⊂ H(S) ⊂ Z(E(S)), and H(S) is then a Clifford semigroup. We conclude by theorem 3.13.

As a second corollary, we get that subsemigroups of completely inverse semigroup are completely inverse.

Corollary 4.5. Let S be a completely inverse semigroup, and T an inverse subsemigroup of S. Then T is completely inverse.

Proof. First, T is inverse (inverse semigroups form a variety) hence regular. Consider Z T (E(T )). Since T is regular Z T (E(T )) ⊂ H T (T ). Conversely, E(T ) ⊂ E(S) and Z(E(S)) = H(S) implies that any element of H(S) commutes with any idempotent in E(T ). Let h ∈ H T (T ). Then h ∈ H(S) and h ∈ Z T (E(T )). Finally T is regular and Z T (E(T )) = H T (T ) and by corollary 4.3, T is completely inverse.

To continue the study, we need the following definitions and theorems about H-commutative semigroups ( [13]). At first sight, this definition of H-commutativity seems quite different from the one from Tully ([20] used in this paper: ∀a, b ∈ S, abHba. Next theorem ( [13]) claims that they are equivalent for sets that are semigroups. Theorem 4.7.

1. A semigroup is H-commutative if and only if it is R and L-commutative.

A semigroup

S is R-commutative (L-commutative, H-commutative) if and only if R (L,
H) is a commutative congruence (i.e. it is a congruence and the quotient semigroup is commutative).

The interest of these definitions and theorem lies in the fact that the set H(S) is a Hcommutative semigroup when S is completely inverse. Since the last theorem involves congruences, we start from some general facts.

Congruences on semigroups have been studied intensively, for general semigroups and for classes of semigroups (regular, inverse, orthodox, completely regular, completely simple,...) as well. We recall the following results (see for instance and [START_REF] Scheiblich | Kernels of Inverse Semigroups Homomorphisms[END_REF]). An idempotent separating congruence is a congruence ρ such that (e, f ) ∈ ρ and e, f ∈ E(S) implies e = f . They can be characterized as those congruences such that ρ ⊂ H. From lemma 1.2 in [START_REF] Scheiblich | Kernels of Inverse Semigroups Homomorphisms[END_REF], idempotent separating congruences on inverse semigroups are in 1 : 1 correspondence with Kernels, inverse subsemigroups K that are self-conjugate and satisfy E(S) ⊂ K ⊂ Z(E(S)). The correspondance is given by (a, b) ∈ ρ K ⇔ {a -1 a = b -1 b and ab -1 ∈ K}. Note that E(S) and Z(E(S)) are Kernels when S is inverse. Semigroups such that H is a congruence are sometimes called H-compatible semigroups [START_REF] Yamada | On H-compatible quasi-orthodox semigroups[END_REF], or following Reilly and Petrich cryptic semigroups.The previous theorem shows that among cryptic semigroups, the inverse ones admit a rich structure (for instance, the set of group invertible elements is a Clifford semigroup).

Actually, we can improve a little bit the only if condition using a result of Lallement [START_REF] Lallement | Demi-groupes rguliers[END_REF] for regular semigroups: "if H is a congruence on the semigroup H(S), then it is a congruence on S". Corollary 4.9. A semigroup S is complelely inverse if and only if S is inverse and ∀a, b, c ∈ H(S), aHb ⇒ caHcb and acHbc.

Actually, this statement holds for non-regular semigroups.

Theorem 4.10. Let S be a semigroup.

Using x then y we get

a ′ ha = a ′ xh(aa ′ ) # haa ′ a = a ′ xh(aa ′ ) # yhaa ′ ha.
But also haa ′ Hhaa ′ haa ′ since H(S) is a semigroup, and exists z ∈ S 1 , haa ′ = zhaa ′ haa ′ . Finally a ′ ha = (a ′ xh(aa ′ ) # y)zhaa ′ haa ′ ha and a ′ ha ≤ L (a ′ ha)(a ′ ha). Symmetrically, a ′ ha ≤ R (a ′ ha)(a ′ ha) and finally a ′ ha ∈ H(S). Proof. First, µ ⊂ H since it separates idempotents. But H is a idempotent separating congruence on S completely inverse hence H ⊂ µ, and we get H = µ. By corollary 4.3 H(S) = Z(E(S)) hence by the previous description of µ, ρ H(S) = µ. Also, E(S) ⊂ H(S) ⇒ ν ⊂ µ. Let (a, b) ∈ µ and h ∈ H(S). Then hh # is idempotent and hHhh # . But relation H is a congruence on the completely inverse semigroup S, hence a -1 haHa -1 hh # aHb -1 hh # bHb -1 hb and (a, b) ∈ ν.

Conclusion

It is worth summarizing all the previous characterizations of completely inverse semigroups. A semigroup S is completely inverse if it verifies one of the following equivalent conditions:

1. S is regular and H(S) is H-commutative.

2. S is regular and H(S) is a Clifford semigroup.

S is regular and H(S) = Z(E(S)).

4. S is inverse and H-orthodox.

5.

S is inverse and H is a congruence (S is cryptic inverse).

6. H is a congruence and S/H is inverse. Also, we have the following implications between the different types of semigroups studied in this paper.

We finally give a few example of completely inverse semigroups, H-Cliffordian semigroups and H-orthodox semigroups.

1. Clifford semigroups (in particular regular commutative semigroups) are completely inverse.

2. Completely regular semigroups are H-orthodox.

3. by theorem 4.10, any cryptic orthodox semigroup is H-orthodox.

Hcommutative and regular o w h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h h
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Completely Inverse
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 11 Cancellation). a ≤ L b ⇒ {∀x, y ∈ S 1 , bx = by ⇒ ax = ay}; a ≤ R b ⇒ {∀x, y ∈ S 1 , xb = yb ⇒ xa = ya}. Lemma 1.2.

Lemma 1. 3 . 1 .Definition 1 . 4 .

 3114 Let b be a regular element. Then a ≤ L b ⇔ a = ab ′ b for one (any) inverse b ′ ∈ V (b); 2. Assume S is inverse. Then aLb ⇔ a -1 a = b -1 b.The purpose of this article is to study inverses modulo Green's relations H. We call a particular solution to axaHa an associate of a modulo H. If also xaxHa, then x is called an inverse of a modulo H. Finally, we denote the set of all associates of a modulo H by A(a)[H] , and the set of inverses of a modulo H by V (a)[H].

Definition 2 . 1 .

 21 Given a, a ′ in S, we say a ′ is invertible along a if there exists b ∈ S such that ba ′ a = a = aa ′ b and b ≤ H a. If such an element exists then it is unique and is denoted by a ′ a .An other characterization is the following: Lemma 2.2. a ′ is invertible along a if and only if there exists b ∈ S such that ba ′ b = b and bHa, and in this case a ′ a = b. Theorem 2.3. Let a, a ′ ∈ S. Then the following are equivalent:

Lemma 3 . 1 .

 31 Let S be a semigroup such that a, b ∈ H(S) ⇒ abHba. Then E(S) is commutative.

  and (b ′ a ′ ).(ab) are trace product. Since a, b and a ′ , b ′ play symmetric roles, it is sufficient to prove that (ab).(b ′ a ′ ) ∈ R ab ∩ L b ′ a ′ and using the opposite (dual) semigroup, it is sufficient to prove only the L relation. First, bb

Lemma 3 . 9 .

 39 Let a, b ∈ H(S) such that ab = bb # ab = abaa # and ba = babb # = aa # ba. Then ab is group invertible and (ab) # = b # a # .

Lemma 4 . 2 .

 42 Let S be a semigroup such that H(S) is a H-commutative set. Then H(S) ⊂ Z(E(S)). Proof. Let h ∈ H(S) and e ∈ E(S). Then ehHhe and exists x, y ∈ S 1 , eh = xhe, he = ehy. Computations give eh = xhe = xhee = ehe = eehyehy = he. Corollary 4.3. S is a completely inverse semigroup if and only if S is regular and H(S) = Z(E(S)).

Definition 4 . 6 .

 46 A semigroup S is R-commutative (L-commutative, H-commutative) if for all a, b ∈ S, exists x ∈ S 1 , ab = bax (ab = xba, ab = bxa).

Finally, recall that

  in any regular inverse semigroup, the maximal congruence included in H is of the form (a, b) ∈ µ ⇔ {∀e ∈ E(S), a -1 eaHb -1 eb} or equivalently (a, b) ∈ µ ⇔ {a -1 a = b -1 b and ab -1 ∈ Z(E(S))} [6]. Define a new equivalence relation by (a, b) ∈ ν ⇔ {∀h ∈ H(S), a -1 haHb -1 hb}. Corollary 4.14. On a completely inverse semigroup S, ρ H(S) = ν = µ = H.

  and aa ′ are group invertible. But E(S)[H] = H(S) by Clifford's theorem. Second, let a ′ , a ′′ ∈ A(a)[H], that is aa ′ aHa and aa ′′ aHa. Then by corollary 2.4, H a a ′ H a = H a . Applying this result to a ∈ H a and aa ′′ a ∈ H a we get aa ′ (aa ′′ a) ∈ H a , and

  1. Assume H(S) is a semigroup and let h ∈ H(S), x ∈ V (h)[H]. Then xhxHx. But xhx = (xh)h # (hx) is the product if three group invertible elements by theorem 2.3, hence in the subsemigroup H(S), and x being in the H-class of a group invertible element is group invertible. 2. Assume now that S is inverse and let h ∈ H(S), x ∈ V (h)[H]. Then (h, h # ) and (h, x) are regular pairs and by theorem 2.9, h # and x are in the same H-class. By lemma 1.5, x is group invertible.

  Theorem 4.8. A semigroup S is complelely inverse if and only if S is inverse and H is a congruence.

	Proof.

⇒ Assume S is completely inverse. Then H(S) = Z(E(S)) by corollary 4.3, hence it is the Kernel of the congruence ρ H(S) with (a, b) ∈ ρ H(S) ⇔ {a -1 a = b -1

b and ab -1 ∈ H(S)}. We now prove that ρ H(S) = H. First, ρ H(S) ⊂ H since ρ H(S) is idempotent separating (lemma 1.2 in [19]). Let aHb. First, aLb is equivalent to a -1 a = b -1 b in any inverse semigroup (lemma ??). Also, from H b H b -1 = H bb -1 (proposition 2.6) we get ab -1 Hbb -1 hence ab -1 ∈ H(S). Finally aHb ⇔ (a, b) ∈ ρ H(S) and H is a congruence on S. ⇐ Conversely, assume S is inverse and H is a congruence. The homomorphic image of an inverse semigroup is always inverse ([16]), hence S/H is inverse. But idempotents in S/H are the H-classes of elements of H(S). It follows that idempotents in S/H commute if and only if H(S) is H-commutative, and the result follows.
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It is not completely inverse since a is not a regular element.

As a final comment, note that the class of completely inverse semigroups is not a variety of (2, 1)-algebras (algebras with the two operations of multiplication and inversion). Indeed, we have proved that a subsemigroup of a completely inverse semigroup is completely inverse. However, this is not true for the homomorphic image. As a counterexample, take X an inverse not completely inverse semigroup, and consider (S = F X , f ) the free inverse semigroup on X. Then by the universal property of the free inverse semigroup, for i : X → X the identity map there exists a (unique) homomorphism h : F X → X such that hf = i, and X is the homomorphic image of F X . But F X is combinatorial hence completely inverse (Reilly, Lemma 1.3 in [START_REF] Reilly | Free generators in free inverse semigroups[END_REF]), whereas X is not.