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NONPARAMETRIC ESTIMATION FOR SURVIVAL DATA WITH

CENSORING INDICATORS MISSING AT RANDOM

ELODIE BRUNEL(1), FABIENNE COMTE(2), AGATHE GUILLOUX(3,4,5)

Abstract. In this paper, we consider the problem of hazard rate estimation in presence of co-
variates, for survival data with censoring indicators missing at random. We propose in the con-
text usually denoted by MAR (missing at random, in opposition to MCAR, missing completely
at random, which requires an additional independence assumption), nonparametric adaptive
strategies based on model selection methods for estimators admitting finite dimensional devel-
opments in functional orthonormal bases. Theoretical risks bounds are provided, they prove
that the estimators behave well in term of Mean Square Integrated Error (MISE). Simulation
experiments illustrate the statistical procedure.

Keywords: Missing at random - conditional hazard rate - penalized contrast estimators - risk
bounds.

1. Introduction

We consider the problem of estimation from right-censored data in presence of covariates,
when the censoring indicator is missing. Let T be a random variable representing the time to
death from the cause of interest. Let C denote a right-censoring random time. Under usual
random censorship, the observation is Y = T ∧ C and δ = 1I(T ≤ C). Let X denote a real
covariate. In what follows, it is assumed that T , C and X admit densities respectively denoted
by fT , g and fX . In addition, C is assumed to be independent of T conditionally to X, see
e.g. Comte et al. (2011) for comments on this assumption.

When the cause of death is not recorded, the censoring indicator is missing: this is the missing
censoring indicator (MCI) model, see Subramanian (2006), which is defined as follows. Let ξ be
the missingness indicator, that is ξ = 1 if δ is observed and ξ = 0 otherwise. The observed data
are then given for individual i ∈ {1, . . . , n}:

(Yi,Xi, δi, ξi = 1) or (Yi,Xi, ξi = 0).

We shall say that the model is:

• MCAR under the assumption that the indicator are Missing Completely At Random,
i.e. ξ is independent of T , C and X.

• MAR under the assumption that the indicator is Missing At Random i.e. ξ and δ are
independent conditionally to Y , X.
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In this paper, we mainly concentrate on the MAR model. The MCAR model will be consider
in Section 2.2.

This model has been considered by several authors in the last decade. Most papers are
interested in survival function and cumulative hazard rate estimation. In particular, van der
Laan and McKeague (1998) build a sieved nonparametric maximum likelihood estimator of the
survival function in the MAR case and prove its efficiency. Their estimator is a generalization
of the Kaplan-Meier estimator to this context and is the first proposal reaching the efficiency
bound. Subramanian (2004) also proposes an efficient estimator of the survival function in the
MAR case; he proves his estimate to be efficient as well.

Kernel methods have also been used to build different estimators in the MAR context. Sub-
ramanian (2006) estimates the cumulative hazard rate with a ratio of kernel estimators. He
provides an almost sure representation, and a Central Limit Theorem (CLT). He deduces results
of the same type for the survival function. A study in a similar context is also provided by
Wang and Ng (2008). Recently, Wang et al. (2009) proposed density estimator based on kernels
and Kaplan Meier-type corrections of censoring. They prove a CLT and suggest a bandwidth
selection strategy. Extensions of these works to conditional functions (both cumulative hazard
and survival functions) in the presence of covariates is developed in Wang and Shen (2008).

Both our method and our aim are rather different. Indeed, we estimate the conditional
hazard rate given a covariate. Moreover, we provide a nonparametric mean square strategy by
considering approximations of the target function on finite dimensional linear spaces spanned by
convenient and simple orthonormal (functional) bases. A collection of estimators is thus defined,
indexed by the dimension of the multidimensional projection space, and a penalization device
allows us to select a “good” space among all the proposals.

Our estimator has the advantage of being defined as a contrast minimizer and not a ratio of
two estimators, as in standard kernel methodology. As a drawback, it depends on an unknown
function, in its definition, which has to be replaced by an estimator, and its mean square risk
has consequently the order of the anisotropic rate corresponding to the regularity of the function
under estimation, plus the rate of the intermediate plug-in estimator, for which we propose a
similar estimation strategy.

The plan of the paper is the following. We first explain in Section 2 how the contrast is
built, and how it allows us to compute a collection of estimators. We conclude the section by
giving the penalization device that completes the definition of the data driven estimator, up
to an estimator to be plugged in the procedure. In Section 3, we state the theoretical results
that ensure that the quadratic risk of our estimator behaves well provided that the intermediate
estimator has small risk. Then, we show how similar tools can be used to build, compute and
control the second estimator. The procedure is tested in a simulation section 4 for both hazard
and conditional hazard rates (i.e. with or without covariate) and under different missing scheme.
Technical proofs are gathered in Section 5.

2. Definition of the conditional hazard rate estimator

2.1. Choice of the contrast. We consider the general MAR case as described in the introduc-
tion, the global assumption is denoted (A0) and has several parts that we specify below.

(A0-1) The random vectors (Xi, Ti, Ci) are independent copies, for i = 1, . . . , n, of (X,Y,C).
(A0-2) For i = 1, . . . , n, we observe Xi, Yi = Ti ∧ Ci, ξi, and δi = 1I(Ti ≤ Ci) if ξi = 1,

otherwise ξi = 0.
(A0-3) C is independent of T given X.
(A0-4) ξ and δ are independent given X,Y .



NONPARAMETRIC ESTIMATION WITH CENSORING INDICATORS MISSING AT RANDOM 3

The unknown function λ to be estimated is the conditional hazard rate of the random variable
T given X = x defined, for all z > 0 by:

λ(x, t) = λT |X(x, t) =
fT |X(x, t)

1 − FT |X(x, t)
,

where fT |X and FT |X are respectively the conditional probability density function (p.d.f.) and
the conditional cumulative distribution function (c.d.f.) of T given X. We shall denote by GC|X

the conditional c.d.f. of C given X. We define the conditional expectations of ξ and δ by:

π(x, y) = E(ξ|X = x, Y = y) and

ζ(x, y) = E(δ|X = x, Y = y).

The crucial property for the construction of an estimation procedure is the following: for any
integrable function h, we have

E(ζ(X,Y )h(X,Y )) = E[E(δ|X,Y )h(X,Y )] = E(δh(X,Y ))

= E[E(1I(T ≤ C)h(X,T )|X)]

= E[(1 −GC|X)(X,T )h(X,T )] with (A0-3)

=

∫∫
h(x, t)(1 −GC|X)(x, t)fT |X(x, t)fX(x)dxdt.

This yields the equality

(1) E(ζ(X,Y )h(X,Y )) = E(δh(X,Y )) =

∫∫
h(x, y)λ(x, y)dµ(x, y)

with

dµ(x, y) = (1 − LY |X(y, x))fX(x)dxdy = f(x, y)dxdy,

where f(x, y) = (1 − LY |X(y, x))fX (x), and

1 − LY |X(y, x) := P(Y ≥ y|X = x) = (1 − FT |X(x, y))(1 −GC|X(x, y)).

If ζ was known, we would consider the contrast:

Γthn (h) =
1

n

n∑

i=1

∫ 1

0
h2(Xi, y)1I(Yi ≥ y)dy − 2

n

n∑

i=1

(ξiδi + (1 − ξi)ζ(Xi, Yi))h(Xi, Yi),

which is a natural extension to the MAR case of the contrast introduced in Comte et al. (2011).
We note that, with assumption (A0-4) and the definition of ζ, we have

E(δiξi + (1 − ξi)ζ(Xi, Yi)|Xi, Yi) = E(δi|Xi, Yi)E(ξi|Xi, Yi) + E[(1 − ξi)E(δi|Xi, Yi)|Xi, Yi]

= E(E(δi|Xi, Yi)(ξi + (1 − ξi))|Xi, Yi),

that is

(2) E(δiξi + (1 − ξi)ζ(Xi, Yi)|Xi, Yi) = E(δi|Xi, Yi).

Thus, if we compute the expectation of this theoretical contrast, we obtain, under the MAR
assumption and using (1) and (2),

E
(
Γthn (h)

)
= ‖h‖2

µ − 2

∫∫
h(x, y)λ(x, y)dµ(x, y) = ‖h− λ‖2

µ − ‖λ‖2
µ.

Clearly, the above quantity is small if h is near of λ, and the measure denoted by µ plays the
role of a reference weighting norm. This explains why minimizing Γthn over an appropriate set of
functions would be a relevant strategy to estimate λ.
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As ζ is unknown, we must replace it by an estimator ζ̃. Consequently, we consider

(3) Γn(h) =
1

n

n∑

i=1

∫ 1

0
h2(Xi, y)1I(Yi ≥ y)dy − 2

n

n∑

i=1

(
ξiδi + (1 − ξi)ζ̃(Xi, Yi)

)
h(Xi, Yi).

An estimator of ζ(x, y) is constructed in Section 3.3 below. This strategy of estimation of the
unknown hazard rate λ, via an estimation of ζ, is also considered in Wang et al. (2009).

The empirical reference norm associated with the contrast (3) is defined by

‖h‖2
n =

1

n

n∑

i=1

∫ 1

0
h2(Xi, y)1I(Yi ≥ y)dy

and the natural resulting scalar product is denoted by 〈h, h2〉n = (1/4)(‖h+ h2‖2
n −‖h− h2‖2

n),
where

E(〈h, h2〉n) = 〈h, h2〉µ.

Remark 1. We could consider another strategy for the construction of the contrast, namely

(4) Γn(h) =
1

n

n∑

i=1

∫ 1

0
h2(Xi, y)π̃(Xi, y)1I(Yi ≥ y)dy − 2

n

n∑

i=1

δiξih(Xi, Yi).

where π̃ is an estimator of π. The second part in Equation (4) is weighted by ξiδi which means
that fewer observations are used for the estimation. As a consequence, the contrast (3), that we
consider, is not only more convenient (from algebraic point of view) but is also expected to be
more relevant.

2.2. The MCAR case. In the MCAR case, the function π is constant, that is π(x, y) = p =
E(ξ). The conditional hazard function can thus be estimated via the following contrast function:

γ(0)
n (h) =

1

n

n∑

i=1

∫ 1

0
h2(Xi, y)1I(Yi ≥ y)dy − 2

n

n∑

i=1

δiξi
p̂n

h(Xi, Yi),

where

p̂n =
1

n

n∑

i=1

ξi.

Indeed, it is easy to see that, if p is known and p̂n can be replaced by p, the expectation of
the contrast is equal to

‖h‖2
µ − 2

∫∫
h(x, y)λ(x, y)E(1I(Y ≥ y)|X = x)fX(x)dxdy = ‖h− λ‖2

µ − ‖λ‖2
µ.

Also, the following contrast

(5) γ(1)
n (h) =

1

n

n∑

i=1

∫ 1

0
h2(Xi, y)ξi1I(Yi ≥ y)dy − 2

n

n∑

i=1

δiξih(Xi, Yi),

would be adequate for conditional hazard rate estimation with reference measure

dµ(x, y) = p(1 − LY |X(y, x))fX(x)dxdy.

It has the advantage of not involving any estimator and the drawback that there is a ξi-factor
in all terms, so that only observations with non missing indicator are taken into account.
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Remark 2. The contrast γ
(1)
n , defined in (5), can be seen as a rewriting of the contrast (4)

taking into account the MCAR assumption. Indeed, in that case, π̃(Xi, y) can be replaced by
ξi. Notice in addition that, in the simulation study, see Section 4, we used this contrast for the
MCAR case because we experimented that it was giving much stabler and better results than

the contrast γ
(0)
n .

Lastly, this contrast would be still valid for estimating λ for ξ independent of Y given X, with
reference measure:

dµ2(x, y) = π(x)(1 − LY |X(y, x))fX(x)dxdy,

and

π(x) = E(ξ|X = x) = E(ξ|X = x, Y = y).

2.3. Computing the estimator. We consider that we estimate the hazard rate on a compact
set

A = A1 × [0, τ ],

where A1 is an interval such that all observations lie in the domain. We take A1 = [0, 1] for
simplicity and without loss of generality. Recall that f(x, y) = (1−LY |X(y, x))fX(x) and denote
by f(X,Y )(x, y) the joint density of the random pair (X,Y ). We set standard assumptions of
boundednesses from above and below.

(A1) ∀(x, y) ∈ A, 0 < f0 ≤ f(x, y) ≤ f for fixed positive constants f0 and f .
(A2) ∀(x, y) ∈ A, λ(x, y) ≤ ‖λ‖A,∞ < +∞.
(A3) ∀(x, y) ∈ A, 0 < f∗0 < f(X,Y )(x, y) ≤ f∗ + ∞.

First, we define an estimator λ̂m on the space Sm by:

λ̂m = argminh∈Sm
Γn(h) where Sm = S(1)

m1
⊗ S(2)

m2
, with

S(1)
m1

= span{ϕj , j = 1, . . . ,D(1)
m1

} and S(2)
m2

= span{ψk, k = 1, . . . ,D(2)
m2

}

The ϕj ’s, as well as the ψk’s, constitute an L
2-orthonormal basis, and the function h is of the

form h =
∑

j,k aj,kϕj ⊗ ψk.
We consider in the following two specific and classical examples of bases:

(1) Trigonometric bases. They are defined by ϕ0(x) = 1I[0,1](x),

ϕ2j+1(x) =
√

2 sin(2πjx)1I[0,1](x), ϕ2j(x) =
√

2 cos(2πjx)1I[0,1](x)

and ψ0(x) = (1/
√
τ)1I[0,τ ](x),

ψ2k+1(x) =
√

2/τ sin(2πjx/τ)1I[0,τ ](x), ψ2k(x) =
√

2/τ cos(2πkx/τ)1I[0,τ ](x).

Considering (ϕj)0≤j≤m1−1 and (ψk)0≤k≤m2−1 yields spaces with odd dimensions m1 and
m2. We denote by Sn the nesting space of the collection, i.e. the product space corre-

sponding to maximal dimensions for S
(1)
m1 and S

(2)
m2 .

(2) Histogram bases. They are defined by ϕj(x) =
√

2m11I[(j−1)/2m1 ,j/2m1 [(x), for j =

1, . . . , 2m1 and ψk(x) =
√

2m2/τ1I[(k−1)τ/2m2 ,kτ/2m2 [(x), for k = 1, . . . , 2m2 , so thatD
(1)
m1 =

2m1 ,D
(2)
m2 = 2m2 . We shall take m ≤ [log2(n)/2] and m2 ≤ [log2(n)/2] where [z] denotes

the integer part of z and log2(x) = log(x)/ log(2). We denote by Sn the nesting space of

the collection, that is Sn = S
(1)
m1(n)

⊗ S
(2)
m2(n)

, where 2m1(n)2m2(n) ≤ n.
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In both cases, we denote by Dn := dim(Sn) = D(1)
n D(2)

n .
These bases are representative examples of localized bases for the second one (as piecewise
polynomials, wavelets) or bounded non localized bases for the first one.

Now, let us study the contrast minimization. Writing that ∂Γn(h)/∂aj0,k0 equals

2

n

n∑

i=1

(

∫ τ

0
ϕj0(Xi)ψk0(y)(

∑

j,k

aj,kϕj(Xi)ψk(y))1I(Yi ≥ y)dy

−
(
δiξi + (1 − ξi)ζ̃(Xi, Yi)

)
ϕj0(Xi)ψk0(Yi)),

we get that the coefficients âj,k of the estimate of λ̂m verify

1

n

n∑

i=1

∫ τ

0
ϕj0(Xi)ψk0(y)(

∑

j,k

âj,kϕj(Xi)ψk(y))1I(Yi ≥ y)dy

=
1

n

n∑

i=1

(
δiξi + (1 − ξi)ζ̃(Xi, Yi)

)
ϕj0(Xi)ψk0(Yi).

In the histogram case, as ϕjϕj′ ≡ 0 for j 6= j′ and ψkψk′ ≡ 0 for k 6= k′, we get

âj0,k0 =

∑n
i=1

(
δiξi + (1 − ξi)ζ̃(Xi, Yi)

)
ϕj0(Xi)ψk0(Yi)∑n

i=1

∫ τ
0 ϕ

2
j0

(Xi)ψ2
k0

(y)1I(Yi ≥ y)dy

if the denominator is non zero.
More generally, let us define the matrices

Gϕm1
(Xi) = (ϕj(Xi)ϕj′(Xi))1≤j,j′≤D(1)

m1

, and Hψ
m2

(y) = (ψk(y)ψk′(y))1≤k,k′≤D(2)
m2

,

so that their tensorial Kronecker productGϕm1(Xi)⊗Hψ
m2(y) is of size (D

(1)
m1+D

(2)
m2)×(D

(1)
m1+D

(2)
m2).

We set

Θm :=
1

n

n∑

i=1

∫
Gϕm1

(Xi) ⊗Hψ
m2

(y)1I{Yi≥y}dy.

Recall that the vec(.) operator stacks the columns of a matrix and let

−→̂
a m = vec

(
t(âj,k)1≤j≤D(1)

m1
,1≤k≤D

(2)
m2

)
,

∆m = vec

(
1

n

n∑

i=1

(
δiξi + (1 − ξi)ζ̃(Xi, Yi)

)
ϕj(Xi)ψk(Yi))1≤j≤D(1)

m1
,1≤k≤D

(2)
m2

)
,

then the coefficients of the estimator must fulfill the matrix constraint:

Θm
−→̂
a m = ∆m.

It follows that the estimator is well defined if Θm is invertible. We define ρ(M) as the spectral
radius of a matrix M , i.e. the largest eigenvalue in modulus of M . We set

(6)
−→̂
a m = Θ−1

m ∆m if ρ(Θm) ≥ max(f̂0/3, n
−1/2)

and
−→̂
a m = 0 otherwise.

The quantity f̂0 is an estimator of f0 = min(x,y)∈A f(x, y), where f(x, y) = (1−LY |X(y, x))fX(x).
It is defined in Comte et al. (2011), and proved to satisfy, for n large enough:
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(A4) For any integer k ≥ 1, there exists a constant C
(f0)
k > 0 such that

P(|f̂0 − f0| > f0/2) ≤ C
(f0)
k /nk

At this stage, we are in a position of defining an estimator of λ on Sm:

(7) λ̂m(x, y) =
∑

j,k

âj,kϕj(x)ψk(y),

where the âj,k’s are defined in Equation (6).

2.4. Model selection by penalization. The model selection device is now based on the fol-
lowing criterion

(8) m̂ = arg min
m∈Mn

(Γn(λ̂m) + pen(m))

where

Mn = {m = (m1,m2) ∈ N × N,dim(S(2)
m2

) ≥ log(n),dim(S(1)
m1

⊗ S(2)
m2

) ≤ Dn},
and the penalty is defined by

(9) pen(m) = κ‖λ̂‖∞,A
dim(Sm)

n
,

where λ̂ = λ̂m0 is an estimator in the collection, on a space Sm0 which is specified below. Note
that the properties required on (m1,m2) ∈ Mn mean that all spaces of the collection are included

in a nesting space with dimension Dn. Moreover, the dimension D
(2)
m2 of the space S

(2)
m2 has to be

larger than log(n), see the proof of Proposition 1. Lastly, we define the theoretical counterpart
of the penalty:

penth(m) = κ‖λ‖∞,A
dim(Sm)

n
.

3. Results

3.1. Main Theorem. In order to state our Theorem 1, we have to define the integral norm
with respect to d%(x, y) = f(X,Y )(x, y)dxdy where f(X,Y ) is the density of the bivariate vector
(X,Y ), that is

(10) ‖ψ‖2
% =

∫∫
ψ2(x, y)d%(x, y) =

∫∫
ψ2(x, y)f(X,Y )(x, y)dxdy

and the associated empirical norm:

(11) ‖ψ‖2
%,n =

1

n

n∑

i=1

ψ2(Xi, Yi)

Theorem 1. Let λ̂m̂ be the estimator defined by (6)-(7)-(8)-(9). Under Assumptions (A1)-
(A4), and if D2

n ≤ n/ log2(n) for basis (1) and Dn ≤ n/ log2(n) for basis (2), there exists a
constant κ such that, for n large enough

(12) E(‖λ1IA − λ̂m̂‖2
n) ≤ C inf

m∈Mn

(‖λ1IA − λm‖2
µ + penth(m)) + C ′

E(‖ζ̃ − ζ‖2
%) +

C ′′

n
,

where C is a numerical constant and C ′, C ′′ are constants depending on f0, f , f
∗
0 , f∗ and ‖λ‖∞,A.
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The result stated in (12) involves a first term: infm∈Mn(‖λ1IA−λm‖2+penth(m)) which is the
usual squared-bias (‖λ1IA−λm‖2)/variance (penth(m)) compromise, and will lead to an optimal

anisotropic rate for a given regularity α = (α,α2) of λ. The second term in (12) is E(‖ζ̃ − ζ‖2
%),

that is the mean-square risk of the estimator of ζ on A. The last term C ′′/n is negligible.

3.2. Consequence on the rate. The next corollary shows that λ̂m̂ adapts to the unknown
anisotropic smoothness of λ, up to the performance of ζ̃. Toward that end, assume that λ
restricted to A belongs to the anisotropic Besov space Bα

2,∞(A) on A with regularity α = (α,α2).
We mention that anisotropy is almost mandatory in this context, because the regularity in the
covariate direction has no reason to be the same as the regularity in the y-direction.

Let us recall the definition of Bα
2,∞(A). Let {e, e2} the canonical basis of R

2 and take Arh,i :=

{x ∈ R
2;x, x+ hei, . . . , x+ rhei ∈ A}, for i = 1, 2. For x ∈ Arh,i, let

∆r
h,ig(x) =

r∑

k=0

(−1)r−k
(
r

k

)
g(x+ khei)

be the rth difference operator with step h. For t > 0, the directional moduli of smoothness are
given by

ωri,i(g, t) = sup
|h|≤t

( ∫

A
ri
h,i

|∆ri
h,ig(x)|2dx

)1/2
.

We say that g is in the Besov space Bα
2,∞(A) if supt>0(t

−αωr,1(g, t) + t−α2ωr2,2(g, t) <∞ for r, r
integers larger than α,α2 respectively. More details concerning Besov spaces can be found in
Triebel (2006).

Corollary 1. Assume that λ restricted to A belongs to the anisotropic Besov space Bα
2,∞(A)

with regularity α = (α,α2) such that α > 1/2 and α2 > 1/2. Consider the estimator in the
histogram basis. Then, under the assumptions of Theorem 1, we have

(13) E

(
‖λ− λ̂m̂‖2

A

)
= O(n−

2ᾱ
2ᾱ+2 ) + E(‖ζ̃ − ζ1IA‖2

%).

where ᾱ is the harmonic mean of α and α2 (i.e. 2/ᾱ = 1/α+ 1/α2).

The proof follows the lines of Corollary 1 (p.1178) in Comte et al. (2011). At this point, to
state our final result for the estimation of λ (stated in Corollary 2), we have to construct and
study an estimator of ζ.

3.3. Estimation of ζ(x, y). Here we want to exhibit an estimator of ζ on A for which we can

prove a bound for E(‖ζ̃ − ζ‖2
%). We consider the mean-square regression estimator of ζ defined

as the minimizer of

γ̃n(T ) =
1

n

n∑

i=1

[ξiT
2(Xi, Yi) − 2ξiδiT (Xi, Yi)],

for T in Sm = S
(1)
m1 ⊗ S

(2)
m2 , with penalization

p̃en(m) = κ̃
dim(Sm)

n
.

Here the reference norm must be ‖.‖% defined by (10) but the empirical norm associated with
the problem is

N2
ξ,n(ψ) =

1

n

n∑

i=1

ξiψ
2(Xi, Yi), E(N2

ξ,n(ψ)) =

∫∫
ψ2(x, y)π(x, y)f(X,Y )(x, y)dxdy := ‖ψ‖2

ξ .
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We assume that there exists a constant π0, such that:

(B1) ∀(x, y) ∈ A, 0 < π0 ≤ π(x, y) ≤ 1.

If one is interested in a control of E(N2
ξ,n(ζ̂m̂ − ζ)), one may consider that only the vector

(ζ̂m(Xi, Yi)) has to be correctly defined, and in this case, classical projection arguments can be
used to prove that the definition is consistent without any additional tools.

But considering that our aim here is related to the estimation of conditional hazard rate of
the previous section, we wish to provide a L

2 control.
Let us consider the same bases as in Section 2.3, and the matrices

Gψm2
(Yi) = (ψk(Yi)ψk′(Yi))1≤k,k′≤D(2)

m2

.

Let us define

Υm =
1

n

n∑

i=1

ξiG
ϕ
m1

(Xi) ⊗Gψm2
(Yi).

If the estimate of ζ is denoted by ζ̂m(x, y) =
∑

j,k ζ̂j,kϕj(x)ψk(y) and Ẑm = (vec( t(ζ̂j,k)j,k)) and

Ξm = vec

(
(
1

n

n∑

i=1

ξiδiϕj(Xi)ψk(Yi))1≤j≤D(1)
m1

,1≤k≤D
(2)
m2

)
.

Then we get in the same way as previously that, if Υm is invertible, Ẑm = Υ−1
m Ξm and we set

more restrictively

Ẑm = Υ−1
m Ξm if ρ(Υm) ≥ max(ρ̂0/2, n

−1/2),

and Ẑm = 0 otherwise. Here ρ̂0 is an estimate of ρ0, which can be defined as the minimum of a
well-chosen estimator of πf(X,Y ): for instance ρ̂0 =

√
dim(Sm∗)minj,k |âj,k| where

âj,k =
1

n

n∑

i=1

ξiϕj(Xi)ψk(Yi)

and Sm∗ is associated to a large enough subdivision for histogram bases (ϕj) and (ψk). We
consider the assumption

(B2) For any integer k ≥ 1, there exists a constant C
(ρ0)
k > 0 such that P(|ρ̂0 − ρ0| > ρ0/2) :=

P(Ωc
ρ0) ≤ C

(ρ0)
k /nk.

Then we have the following result bounding the L
2
%-risk of the estimator.

Theorem 2. Under assumptions (A1), (B1)-(B2), and if D2
n ≤ n/ log2(n) for basis (1) and

Dn ≤ n/ log2(n) for basis (2), there exists a choice of κ̃ such that,

E(‖ζ̂m̂ − ζ1IA‖2
%) ≤ C inf

m∈Mn

(
‖ζm − ζ1IA‖2

% + p̃en(m)
)

+
C ′

n
.

The next corollary is an immediate consequence of Corollary 1 and Theorem 2.

Corollary 2. Under the assumptions of Corollary 1 and assuming that ζ restricted to A belongs

to the anisotropic Besov space Bβ
2,∞(A) with regularity β = (β, β2) such that β > 1/2 and

β2 > 1/2. We take the estimator in the histogram basis. Then, under the assumptions of

Corollary 1, the estimator λ̂m̂ of λ verifies:

(14) E

(
‖λ− λ̂m̂‖2

A

)
= O(n−

2ᾱ
2ᾱ+2 ) +O(n

− 2β̄

2β̄+2 ).

where ᾱ (resp. β̄) is the harmonic mean of α and α2 (resp. β and β2).
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4. Simulations

To evaluate the finite sample performances of our different proposals for hazard rate estima-
tion, we made Monte Carlo studies in different settings. We study the (possibly conditional)
hazard rate estimators with or without covariate, and under both settings of dependence for the
missing of censoring indicators.

4.1. Hazard estimation. In this paragraph, we illustrate both settings of missing indicators
in the absence of covariate. Two distributions are taken for the survival time T : a Weibull
distribution (with parameters a and b) and a Pareto distribution (with parameters k and t0)
associated respectively to the hazard rates :

• Weibull λ(t) = ba−btb−1 with a = 3 and b = 4
• Pareto λ(t) = k/t if t ≥ t0 with k = 3 and t0 = 1.

The censoring time C is generated as an exponential random variable with parameter µ
calibrated to give a censoring level around 40 % (µ = 3 for the Pareto distribution and µ = 5 for
the Weibull distribution). Then, we set Y = T ∧ C and δ = 1I(T≤C). We follow the Missing at
Random mechanism proposed by Wang et al. (2009) where the missing indicator ξ is generated
as a binomial random variable with parameter P (ξ = 1) = (1 + exp(−θ − θ2Y ))−1 in the MAR
case, and P (ξ = 1) = p a constant probability in the MCAR setting. The parameters θ = 0.3
and θ2 = 0.7 were calibrated to give a non missing rate of indicators around 70 % in the MAR
case, as well as the probability of missing p is taken equal to 0.7 in the MCAR one.

The estimators are obtained by minimization of the contrasts (5) and (3) given in Section 2.
For the histogram basis, we can give their explicit expression in both MAR and MCAR settings :

λ̂[H]

m̂2
(y) =

∑D
(2)
m̂2

j=1 âkψk(y) with the coefficient âk having the form:

âMAR
k =

∑n
i=1[δiξi + (1 − ξi)ζ̃(Yi)]ψk(Yi)∑n

i=1

∫ 1
0 ψ

2
k(y)1I(Yi≥y)dy

and âMCAR
k =

∑n
i=1 δiξiψk(Yi)∑n

i=1 ξi
∫ 1
0 ψ

2
k(y)1I(Yi≥y)dy

Histogram MAR estimator MCAR estimator MAR estimator
basis under MAR setting under MCAR setting under MCAR setting

Missing rate 0% 30 % 0% 30 % 30 %
Pareto
n = 250 0.40 0.41 0.53 0.56 0.42

(0.37) (0.37) (0.46) (0.48) (0.39)

n = 1000 0.19 0.19 0.23 0.24 0.19
(0.19) (0.19) (0.22) (0.24) (0.18)

Weibull
n = 250 0.14 0.14 0.19 0.19 0.14

(0.12) (0.12) (0.15) (0.15) (0.12)

n = 1000 0.05 0.05 0.07 0.07 0.05
(0.05) (0.04) (0.05) (0.05) (0.05)

Table 1. Average and median (in parenthesis) of the MISE over 500 replicated
samples for hazard rate estimators in MAR and MCAR settings with histogram
basis. Censoring rate ' 40%
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We can improve the results by using a polynomial basis of degree one. Thus, the penal-

ized estimators are given by λ̂
[P]

m̂2
(y) =

∑D
(2)
m̂2

j=1 âk,1ψk,1(y) + âk,2ψk,2(y) with pairs of coefficients

(âk,1, âk,2) for k = 1, · · · ,D(2)
m̂2

solving the Cramer system:

Θk,m̂2



âk,1

âk,2


 = ∆k,m̂2

where, for instance in the MCAR case, we can evaluate explicitly

Θk,m̂2 =




1
n

n∑

i=1

ξi

∫
ψ2
k,1(y)1I(Yi≥y)dy

1
n

n∑

i=1

ξi

∫
ψk,1(y)ψk,2(y)1I(Yi≥y)dy

1
n

n∑

i=1

ξi

∫
ψk,1(y)ψk,2(y)1I(Yi≥y)dy

1
n

n∑

i=1

ξi

∫
ψ2
k,2(y)1I(Yi≥y)dy




and

∆k,m̂2 =




1
n

n∑

i=1

δiξiψk,1(Yi)

1
n

n∑

i=1

δiξiψk,2(Yi)



.

Very similar expressions can be shown in the MAR setting. We also apply a curve fitting
(with a mean square polynomial of degree 2) to the points (ti, λ̃(ti)) for smoothing the break
points we have with the local basis. This obviously improves the MISE (see Tab. 2).

For K = 500 replications over different paths, we compute the (empirical) average MISE of

the penalized estimators λ̃ over a grid of size 100:

MISE =
1

K

K∑

k=1

(
τk
100

100∑

i=1

(
λ(ti) − λ̃(k)(ti)

)2
)
,

where τk is the inter-quantile interval length associated with the 10% and 90% empirical quan-
tiles of the Yi’s . The value of the constant κ appearing in the penalty has been calibrated and
fixed to 1 for both models. We also give in parenthesis the median value of the MISE evaluated
over the 500 samples. The results are summarized in Tab. 1 and 2. The three columns of Tables
1 and 2 give the MISEs of the estimator obtained with the contrast Γn in the MAR setting (first

column) and in the MCAR setting (last column), the estimator obtained with the contrast γ
(1)
n

in the MCAR case is shown in the second column. As MAR and MCAR are the same when
there is no missing (ξ = 1), the column is not repeated.

Remark that in the MCAR setting, the MAR estimator always behaves slightly better than
the MCAR one, see Tables 1 and 2. At first sight, this may seem surprising but this is related
to Remark 2. Indeed, the MAR estimator is obtained via the contrast (3) which is based on
imputation and, as a consequence, uses all the data. On the contrary, the MCAR estimator is
obtained via the contrast (5) which uses only the non missing data.
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Polynomial MAR estimator MCAR estimator MAR estimator
basis under MAR setting under MCAR setting under MCAR setting

Missing rate 0% 30 % 0% 30 % 30 %
Weibull
n = 250 0.15 0.12 0.17 0.19 0.13

(0.08) (0.08) (0.09) (0.09) (0.08)

fitting 0.05 0.05 0.05 0.06 0.05
n = 1000 0.04 0.04 0.04 0.05 0.04

(0.03) (0.03) (0.03) (0.04) (0.03)

fitting 0.03 0.02 0.02 0.02 0.02
Table 2. Average and median in parenthesis of the MISE over 500 replicated
samples for hazard rate estimators in MAR and MCAR settings with local poly-
nomial basis and average MISE of the a posteriori quadratic fitting. Censoring
rate ' 40%

0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8
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1.4

1.6

1.8

Figure 1. Hazard rate estimators in the MAR setting for a sample of size
n = 1000 with 40% of censoring and 30% of missing indicators for the Weibull
distribution : true hazard curve (black plain), polynomial estimator (magenta
dotted line), histogram estimator (blue dotted line) and a posteriori quadratic
fitting (red plain).

4.2. Conditional hazard estimation. Now, we illustrate the conditional hazard rate estima-
tion which is the core of the theoretical part of the paper. We choose again several conditional
distributions of T given X = x, most of them have already been studied in the literature in
others contexts:

• Exponential distribution with hazard rate λ(t, x) = 1 + 2x2,
• Pareto distribution λ(t, x) = k(x)/t if t ≥ t0 with k(x) = 3/(1 + x) and t0 = 1.
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Histogram MAR estimator MCAR estimator MAR estimator
basis under MAR setting under MCAR setting under MCAR setting

Missing rate 0% 30 % 0% 30 % 30 %
Exponential
n = 250 2.14 0.27 0.25 0.72 0.33

(0.20) (0.22) (0.21) (0.23) (0.22)

n = 1000 0.16 0.16 0.16 0.17 0.16
(0.15) (0.15) (0.15) (0.16) (0.15)

Pareto
n = 250 0.58 0.59 0.60 0.66 0.59

(0.59) (0.61) (0.61) (0.66) (0.59)

n = 1000 0.35 0.35 0.42 0.53 0.35
(0.34) (0.34) (0.41) (0.55) (0.34)

Non linear
n = 250 0.60 0.36 0.44 0.37 0.19

(0.17) (0.18) (0.17) (0.18) (0.17)

n = 1000 0.14 0.14 0.14 0.16 0.14
(0.15) (0.15) (0.15) (0.17) (0.16)

Table 3. Average and median of the MISE over 500 replicated samples for
conditional hazard rate estimators in MAR and MCAR settings with histogram
basis. Censoring rate ' 40%

• Non-linear regression T = 2X+5+σε where the error process ε has a χ2(4) distribution,
σ = 0.25. The resulting hazard rate is λ(t, x) = 1

σλε
(
t−2x−5

σ

)
and λε is the hazard rate

of the error ε.

Note that these models are drawn from Wang and Shen (2008) or Zhou and Sun (2003) for the
Exponential model, and Comte et al. (2011) for the non-linear regression, the Pareto distribution
can be viewed as a generalization of the unconditional setting of the previous paragraph.

The censoring time C has an exponential distribution given X with mean µ(X) depending on
the model to be censored: µ(x) = 2/(1+3x) for the exponential model, µ(x) = 3.8/(1+0.1x) for
the Pareto model and µ(x) = 2x+15 for the non-linear regression model, each one corresponding
to a censoring level around 40%. The covariate X has uniform distribution on the interval [0, 1].

The MAR mechanism proceeds from the conditional probability function π of the logistic
model:

π(x, y) = P (ξ = 1|X = x, Y = y) =
1

1 + exp(cx+ c2y)
.

The parameters c and c2 were adjusted to produce a missing rate around 30% with c = −0.5 for
all the models, c2 = −2;−0.5;−0.1 for the Exponential, Pareto and non-linear regression model
respectively.

The constant κ has been roughly calibrated over the three models, we compute the average
MISE and medians for several values of κ from 1 to 10 and the value κ = 5 seems to give a good
compromise. For K = 500 replications over different paths, we compute the (empirical) average
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Figure 2. Conditional Hazard rate estimators in the MAR setting for a sample
of size n = 1000 with 40% of censoring and 30% of missing indicators for the
Exponential distribution : true hazard curve (right-top), histogram estimator

(left-top), λ(t, x) (solid black) and λ̃(t, x) (dashed blue) with x = 0.58 (left-
bottom) and t = 0.61 (right-bottom).

MISE of the penalized estimators λ̃ over a grid of size 100 × 100:

MISE =
1

K

K∑

k=1


`(A1,k)τk

(100)2

100∑

i,j=1

(
λ(ti, xj) − λ̃(k)(ti, xj)

)2




where τk is defined as in the unconditional setting (see paragraph 4.1) and `(A1,k) is the length
of the range interval of the Xi’s. We compute also the median of the empirical error over the
K = 500 replicated samples. The results are summarized in Tab. 3. For the non linear model,
both estimators are unstable for small samples: the mean errors are not of the same order as
the median error. Moreover, we can see that the MAR estimator gives systematically better
results than the MCAR one, as in the unconditional setting. In conclusion, we recommend the
systematic use of the MAR estimator when censoring indicators are missing.

5. Proofs

5.1. Proof of Theorem 1. Note that the two bases we use satisfy the following property. For

all h in S
(1)
m1 ⊗ S

(2)
m2 ,

‖h‖∞ := sup
(x,y)∈A×[0,τ ]

|h(x, y)| ≤
√
D

(1)
m1D

(2)
m2‖h‖,

where ‖h‖ =
∫
A h

2. Moreover, we recall that all Sm’s are subsets of a nesting space belonging
to the collection denoted by Sn with dimension Dn.

Let λA denote the restriction of the unknown function λ to A. For any h, h2 ∈ (L2 ∩L∞)(A),
we have

(15) Γn(h) − Γn(h2) = ‖h− λA‖2
n − ‖h2 − λA‖2

n − 2νn(h− h2) − 2Rn(h− h2)
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Figure 3. Conditional Hazard rate estimators in the MAR setting for a sample
of size n = 1000 with 40% of censoring and 30% of missing indicators for the
Pareto distribution : true hazard curve (right-top), histogram estimator (left-

top), λ(t, x) (solid black) and λ̃(t, x) (dashed blue) with x = 0.58 (left-bottom)
and t = 1.55 (right-bottom).
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Figure 4. Conditional Hazard rate estimators in the MAR setting for a sample
of size n = 1000 with 40% of censoring and 30% of missing indicators for the Non
linear regression model : true hazard curve (right-top), histogram estimator (left-

top), λ(t, x) (solid black) and λ̃(t, x) (dashed blue) with x = 0.58 (left-bottom)
and t = 7.9 (right-bottom).
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where νn is the centered empirical process defined by:

νn(h) =
1

n

n∑

i=1

(
(δiξi + (1 − ξi)ζ(Xi, Yi))h(Xi, Yi) −

∫
h(Xi, y)λ(Xi, y)1I(Yi ≥ y)dy

)
.

and the term Rn is defined as:

Rn(h) =
1

n

n∑

i=1

(1 − ξi)
(
ζ̃(Xi, Yi) − ζ(Xi, Yi)

)
h(Xi, Yi)

Many steps of the proof below will refer to the one given in Comte et al. (2011), the main
difference lies in the additional term Rn.

We shall use the following sets:

Ĝm = {min Sp(Θm) ≥ max(f̂0/3, n
−1/2)}, Ĝ :=

⋂

m∈Mn

Ĝm,

∆µ :=
{
∀h ∈ Sn :

∣∣∣‖h‖
2
n

‖h‖2
µ

− 1
∣∣∣ ≤ 1

2

}
, ∆% :=

{
∀h ∈ Sn :

∣∣∣
‖h‖2

%,n

‖h‖2
%

− 1
∣∣∣ ≤ 1

2

}
, and

Ωf0 :=
{∣∣∣ f̂0

f0
− 1
∣∣∣ ≤ 1

2

}
.(16)

We now define Ω = ∆µ ∩ ∆% ∩ Ωf0 and simply write

E(‖λ̂m̂ − λA‖2
n) = E(‖λ̂m̂ − λA‖2

n1IΩ) + E(‖λ̂m̂ − λA‖2
n1IΩ{ ).

The second term is bounded by:

E(‖λ̂m̂ − λA‖2
n1IΩ{ ) ≤ 2

(
E(‖λ̂m̂‖2

n1IΩ{ ) + E(‖λA‖2
n1IΩ{ )

)

Now, the following lemma, proved in Section 5.2, holds.

Lemma 1. Under the assumptions of Theorem 1, we have ‖λ̂m̂‖2
n ≤ n3.

As moreover, ‖λA‖2
n ≤ ‖λ‖2

∞,A a.s., this yields that there exists a constant C such that

E(‖λ̂m̂ − λA‖2
n1IΩ{ ) ≤ C(n3 + ‖λ‖A,∞)

(
P(∆{

µ) + P(Ω{
f0) + P(∆{

%)
)
.

Next, Assumption (A4) ensures that P(Ω{
f0

) ≤ C
(f0)
k /nk and Proposition 4 in Comte et al.

(2011) can be used here to get P(∆{
µ) ≤ C

(∆)
k /nk, under the condition that D2

n ≤ n/ log2(n)

for basis (1) and Dn ≤ n/ log2(n) for basis (2). And for the third term, we prove below the
following bound.

Lemma 2. Under the assumptions of Theorem 1, we have P(∆{
%) ≤ C

(∆)
k /nk for any k ≥ 1,

where C
(∆)
k is a constant depending on k, on the basis, and on f∗0 , f∗.

Gathering these elements yields E(‖λ̂m̂ − λA‖2
n1IΩ{ ) ≤ C/n by choosing k = 4.

Now, we study E(‖λ̂m̂ − λA‖2
n1IΩ). From Lemma 1 in Comte et al. (2011), we know that

∆µ ∩ Ωf0 ⊂ Ĝ ∩ Ωf0. Hence on Ω, we can use the definition of λ̂m̂ given via (6) . We introduce
for m ∈ Mn the orthogonal projection on Sm of λ restricted to A, denoted by λm. We write
that, on Ω, ∀m ∈ Mn,

Γn(λ̂m̂) + pen(m̂) ≤ Γn(λm) + pen(m),
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and we use the decomposition (15). We get on Ω and ∀m ∈ Mn:

(17) ‖λ̂m̂ − λA‖2
n ≤ ‖λm − λA‖2

n + pen(m) + 2νn(λ̂m̂ − λm) − pen(m̂) + 2Rn(λ̂m̂ − λm).

We write

2|νn(λ̂m̂ − λm)| ≤ 1

8
‖λ̂m̂ − λm‖2

µ + 8 sup
h∈Bm,m̂(0,1)

ν2
n(h),

where Bm,m′(0, 1) = {h ∈ Sm + Sm′ , ‖h‖µ ≤ 1}. It follows that on Ω

2|νn(λ̂m̂ − λm)| ≤ 1

4
‖λ̂m̂ − λm‖2

n + 8

(
sup

h∈Bm,m̂(0,1)
ν2
n(h) − p(m, m̂)

)

+

+ 8p(m, m̂),

≤ 1

2
‖λ̂m̂ − λA‖2

n +
1

2
‖λm − λA‖2

n + 8

(
sup

h∈Bm,m̂(0,1)
ν2
n(h) − p(m, m̂)

)

+

+8p(m, m̂),(18)

where p(m,m′) will be define later. Let us define ζA = ζ1I(A). Using the inequality 2xy ≤
x2/a+ ay2, we get on Ω

2
∣∣∣Rn(λ̂m̂ − λm)

∣∣∣ =
2

n

∣∣∣∣∣

n∑

i=1

(1 − ξi)
(
ζ̃(Xi, Yi) − ζA(Xi, Yi)

)
(λ̂m̂ − λm)(Xi, Yi)

∣∣∣∣∣

≤ 1

an

n∑

i=1

(1 − ξi)
2(λ̂m̂ − λm)2(Xi, Yi) +

a

n

n∑

i=1

(
ζ̃(Xi, Yi) − ζA(Xi, Yi)

)2

≤ 1

a
‖λ̂m̂ − λm‖2

%,n + a‖ζ̃ − ζA‖2
%,n ≤ 3

2a
‖λ̂m̂ − λm‖2

% +
3a

2
‖ζ̃ − ζA‖2

% (on ∆%)

≤ 3f∗

2f0a
‖λ̂m̂ − λm‖2

µ +
3a

2
‖ζ̃ − ζA‖2

% ≤
3f∗

f0a
‖λ̂m̂ − λm‖2

n +
3a

2
‖ζ̃ − ζA‖2

% (with A1 and A3)

≤ 6f∗

f0a
‖λ̂m̂ − λA‖2

n +
6f∗

f0a
‖λA − λm‖2

n +
3a

2
‖ζ̃ − ζA‖2

%

(19)

Now, choosing a = 24f∗/f0 and gathering (17)–(19), we get, as 1 − 1/2 − 1/4 = 1/4 and
1 + 1/2 + 1/4 = 7/4,

1

4
E(‖λ̂m̂ − λA‖2

n1IΩ) ≤ 7

4
‖λm − λA‖2

µ + pen(m) +
36f∗

f0
E(‖ζ̃ − ζA‖2

%)

+8E

((
sup

h∈Bm,m̂(0,1)
ν2
n(h) − p(m, m̂)

)

+

)
+ 8E(p(m, m̂)) − Epen(m̂).(20)

We can use Talagrand Inequality to prove:

Proposition 1. Under the Assumptions of Theorem 1, there exists a numerical constant κ such
that, for

p(m,m′) = (κ/8)‖λA‖∞,A
Dm +Dm′

n
,

we have

E

(
sup

h∈Bm,m̂(0,1)
(ν2
n(h) − p(m, m̂))+

)
≤ C

n
.
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This inequality, together with (20) yields, as 8p(m,m′) ≤ pen(m) + pen(m′), that

1

4
E(‖λ̂m̂ − λA‖2

n1IΩ) ≤ 7

4
‖λm − λA‖2

µ + 2pen(m) +
C

n
+

36f∗

f0
E(‖ζ̃ − ζA‖2

%).2

5.2. Proof of Lemma 1. Let us note that λ̂m̂ is either 0 or arg minh∈Sm̂
Γn(h). In the second

case, min Sp(Θm̂) ≥ max(f̂0, n
−1/2) and thus

‖λ̂m̂‖2 =
∑

j,k

(âm̂j,k)
2 = ‖−→̂a m̂‖2 = ‖Θ−1

m̂ ∆m̂‖2 ≤ (1/min Sp(Θm̂))2‖∆m̂‖2

≤ min(1/(f̂0)
2, n)

∑

j,k

(
1

n

n∑

i=1

(δiξi + (1 − ξi)ζA(Xi, Yi))ϕ
m̂
j (Xi)ψ

m̂
k (Yi)

)2

≤ n
1

n

n∑

i=1

∑

j

(ϕm̂j (Xi))
2
∑

k

(ψm̂k (Yi))
2 ≤ nD(1)

n D(2)
n ≤ n2.

Moreover,

‖λ̂m̂‖2
n ≤ 1

n

n∑

i=1

∫
λ̂2
m̂(Xi, y)dy =

1

n

n∑

i=1

∫ 
∑

j,k

âm̂j,kϕ
m̂
j (Xi)ψ

m̂
k (y)dy




2

dy

=
1

n

n∑

i=1

∑

j,k,j′,k′

âm̂j,kâ
m̂
j′,k′ϕ

m̂
j (Xi)ϕ

m̂
j′ (Xi)

∫
ψm̂k (y)ψm̂k′ (y)dy

=
1

n

n∑

i=1

∑

j,k,j′

âm̂j,kâ
m̂
j′,kϕ

m̂
j (Xi)ϕ

m̂
j′ (Xi)

≤ 1

n

n∑

i=1

∑

j

[ϕm̂j (Xi)]
2
∑

j,k

(âm̂j,k)
2 ≤ D(1)

n ‖λ̂m̂‖2.

Gathering both bounds yields the result as D(1)
n ≤ n. 2

5.3. Proof of Proposition 1. First, we write

E

(
sup

h∈Bm,m̂(0,1)
(ν2
n(h) − p(m, m̂))+

)
≤

∑

m′∈Mn

E

(
sup

h∈Bm,m′ (0,1)
(ν2
n(h) − p(m,m′))+

)

and we bound

E

(
sup

h∈Bm,m′ (0,1)
(ν2
n(h) − p(m,m′))+

)
.

Next, we split νn(h) = ν
(1)
n (h) + ν

(2)
n (h) with

ν(1)
n (h) = (1/n)

n∑

i=1

(fh(Xi, Yi, δi, ξi) − 〈h, λ〉µ), fh(x, y, δ, ξ) = (δξ + (1 − ξ)ζ(x, y))h(x, y)

and

ν(2)
n (h) = (1/n)

n∑

i=1

(gh(Xi, Yi) − 〈h, λ〉µ) , gh(x, y) =

∫
h(x, u)λ(x, u)1I{y≥u}du.



NONPARAMETRIC ESTIMATION WITH CENSORING INDICATORS MISSING AT RANDOM 19

We have

E

(
sup

h∈Bm,m′ (0,1)
(ν2
n(h) − p(m,m′))+

)
≤ 2E

(
sup

h∈Bm,m′ (0,1)
([ν(1)

n (h)]2 − p(m,m′)/2)+

)

+2E

(
sup

h∈Bm,m′ (0,1)
([ν(2)

n (h)]2 − p(m,m′)/2)+

)
.

In both cases, we apply Talagrand Inequality.
As Sm+Sm′ is a finite dimension space with dimension less than dim(Sm)+dim(Sm′), we can

find by Gram-Schmidt orthonormalisation a basis φj,k(x, y) which is orthonormal with respect
to the L

2(µ)-norm, with cardinal equal to the dimension and thus less than dim(Sm)+dim(Sm′).
The functions are such that

∫∫
φ2
j,k(x, y)dµ(x, y) = 1. It follows that

E

(
sup

h∈Bm,m′ (0,1)
([ν(1)

n ]2(h)

)

≤
∑

j,k

Var

(
1

n

n∑

i=1

fφj,k
(Xi, Yi, δi, ξi)

)
=

1

n

∑

j,k

Var
(
fφj,k

(X,Y, δ, ξ)
)

≤ 2

n

∑

j,k

E
[(
ζA(X,Y )πA(X,Y ) + (1I(A) − πA(X,Y ))ζA(X,Y )

)
φ2
j,k(X,Y )

]
=

2

n

∑

j,k

〈φ2
j,k, λA〉µ

≤ 2

n

∑

j,k

‖λ‖A,∞
∫∫

φ2
j,k(x, y)dµ(x, y) = 2‖λ‖A,∞

dim(Sm + Sm′)

n

≤ 2‖λ‖A,∞
dim(Sm) + dim(Sm′)

n
:= H2.

For the other empirical process, we first write that

E

(
sup

h∈Bm,m′ (0,1)
([ν(2)

n ]2(h)

)
≤ 1

f0
E

(
sup

‖h‖=1,h∈Sm+Sm′

([ν(2)
n ]2(h)

)

and we consider a basis of (Sm1 + Sm′
1
) ⊗ (Sm2 + Sm′

2
) = Sm1∨m′

1
⊗ Sm2∨m′

2
as both collections

are nested. Then we can take basis (ϕj ⊗ ψk)j,k and we write

E

(
sup

‖h‖=1,h∈Sm+Sm′

([ν(2)
n ]2(h)

)

≤
∑

j,k

Var

(
1

n

n∑

i=1

gϕj⊗ψk
(Xi, Yi)

)
≤ 1

n

∑

j,k

E

((∫
ϕj(X)ψk(u)λA(X,u)1I{Y≥u}du

)2
)
.

Now we note that

∑

k

(∫
ψk(u)λA(X,u)1I{Y≥u}du

)2

=
∑

k

〈ψk, λA(X, .)1I{Y≤.}〉2

which is equal to the L
2−norm of the projection on Sm2∨m′

2
of y 7→ λ(X, y)1I{Y≤y} and thus less

than the L
2−norm of the function. In other words,

∑

k

(∫
ψk(u)λA(X,u)1I{Y≥u}du

)2

≤
∫
λ2
A(X,u)1I{Y≥u}du
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and

E

(
sup

h∈Bm,m′ (0,1)
([ν(2)

n ]2(h)

)

≤ 1

nf0

∑

j

E

(
ϕ2
j (X)

∫
λ2
A(X,u)1I{Y≥u}du

)

≤ Dm ∨Dm′

nf0
E

(∫
λ2
A(X,u)1I{Y≥u}du

)
=

(Dm ∨Dm′)‖λA‖2
µ

nf0
≤ H2

since

(Dm ∨Dm′)‖λA‖2
µ/f0 ≤ ‖λ‖A,∞(Dm +Dm′) log(n) ≤ ‖λ‖A,∞(Dm1Dm2 +Dm′

1
Dm′

2
),

for n ≥ n0 := exp(‖λA‖2
µ/(f0‖λ‖A,∞)) and log(n) ≤ Dm2 , log(n) ≤ Dm′

2
.

Next we consider that there is a nesting space Sn for all the Sm’s, that is ∀m ∈ Mn,
Sm ⊂ Sn. Thus for h ∈ Bm,m′(0, 1), from property (M1), we have ‖h‖∞ ≤

√
dim(Sn)‖h‖ ≤√

dim(Sn)‖h‖µ/f0 = φ0

√
dim(Sn)/f0 ≤ √

n/f0. Therefore

sup
(x,y)∈A

|fh(x, y, δ, ξ)| ≤ ‖h‖∞ ≤
√
n/f0 := M

and
sup

(x,y)∈A
|gh(x, y)| ≤ ‖h‖∞ ≤ τ‖λ‖∞/f0 := M ′.

Lastly

sup
h∈Bm,m′ (0,1)

Var(fh(X,Y, δ, ξ)) ≤ 2‖λ‖A,∞ := v, sup
h∈Bm,m′ (0,1)

Var(gh(X,Y )) ≤ τ‖λ‖A,∞ := v2.

By applying Talagrand Inequality, we get for i = 1, 2,

E

(
sup

h∈Bm,m′ (0,1)
([ν(i)

n (h)]2 − p(m,m′))+

)
≤ C(i)

n

(
e−C

(i)
2 (Dm+Dm′) + e−C

(i)
3

√
Dm+Dm′

)

and this yields the result. 2

5.3.1. Proof of Lemma 2. First we observe that:

P(∆{
%) ≤ P

(
sup

h∈B%
Sn

(0,1)

|ϑn(h2)| > 1/2
)

where ϑn(·) is defined by

ϑn(h) =
1

n

n∑

i=1

[h(Xi, Yi) − E(h(Xi, Yi))],

and Bµ
Sn

(0, 1) = {t ∈ Sn, ‖h‖% ≤ 1}. We denote by (χ
λ
) = (ϕj ⊗ ψk) the L2-orthonormal basis

of Sn. If h(x, y) =
∑

j,k aj,kϕj(x)ψk(y) =
∑

λ aλχλ
, then

(21) ϑn(h
2) =

∑

j,k,j′,k′

aj,kaj′,k′ϑn((ϕj ⊗ ψk)(ϕj′ ⊗ ψk′)) =
∑

λ,λ′

aλaλ′ϑn(χλ
χ

λ′ ).

We obtain

(22) sup
h∈B%

Sn
(0,1)

|ϑn(h2)| ≤ (f∗0 )−1 sup∑
a2

λ
≤1

∣∣∣
∑

λ,λ′

aλaλ′ϑn((χλ
)(χ

λ′
))
∣∣∣.
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Lemma 3. Baraud et al. (2001) Let Bλ,λ′ = ‖χ
λ
χ

λ′
‖∞ and Vλ,λ′ = ‖χ

λ
χ

λ′
‖2. Let, for any

symmetric matrix (Aλ,λ′)

ρ̄(A) := sup∑
b2
λ
≤1

∑

λ,λ′

|bλbλ′ |Aλ,λ′

and L(χ) := max{ρ̄2(V ), ρ̄(B)}. Then, if ϕj and ψk are trigonometric bases, we have L(χ) ≤
4(Dn)

2, and if ϕj and ψk are histogram bases L(χ) ≤ Dn (and more generally if the bases are
localized).

Let us define

x :=
(f∗0 )2

16f∗L(χ)
and

Θ :=
{
∀λ∀λ′ |ϑn(χλ

χ
λ′ )| ≤ 4

(
Bλ,λ′x+ Vλ,λ′

√
2f∗x

)}
.

Starting from (22), we have, on Θ:

sup
h∈B%

Sn
(0,1)

|ϑn(h2)| ≤ 4(f∗0 )−1 sup∑
a2

λ
≤1

∑

λλ′

|aλaλ′ |)
(
Bλ,λ′x+ Vλ,λ′

√
2f∗x

)
.

Thus, we have on Θ,

sup
h∈B%

Sn
(0,1)

|ϑn(h2)| ≤ (f∗0 )−1 sup∑
b2
λ
=1

∑

λ,λ′

|bλbλ′ |
(
Bλ,λ′x+ Vλ,λ′

√
2f∗x

)

≤ (f∗0 )−1
(
ρ̄(B)x+ ρ̄(V )

√
2f∗x

)

≤ 1

2

( f∗0
8f∗

ρ̄(B)

L(χ)
+

1√
2

( ρ̄2(V )

L(χ)

)1/2)

≤ 1

2

(1

8
+

1√
2

)
≤ 1

2
.

Therefore,

P

(
sup

t∈B%
Sn

(0,1)

|ϑn(t2)| >
1

2

)
≤ P(Θ{).

To bound P(ϑn(χλ
χ

λ′
) ≥ Bλ,λ′x + Vλ,λ′

√
2fx), we apply the Bernstein inequality given in ?

to the i.i.d. r.v.

Uλ,λ
′

i = U
(j,k),(j′,k′)
i = ϕj(Xi)ϕj′(Xi)ψk(Yi)ψk′(Yi).(23)

Thus, the r.v. are bounded

|Uλ,λ′i | ≤ ‖χλχλ′‖∞ = Bλ,λ′ .

Moreover,

E[(Uλ,λ
′

i )2] ≤ E[(χ
λ
(Xi, Yi)χλ′

(Xi, Yi))
2] ≤ f∗V 2

λ,λ′ .

We get

P(|ϑn(χλ
χ

λ′
)| ≥ Bλ,λ′x+ Vλ,λ′

√
2fx) ≤ 2e−nx.
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Given that P(∆{
ρ) ≤ P(Θ{) =

∑
λ,λ′ P

(
|ϑn(χλ

χ
λ′ )| > Bλ,λ′x+ Vλ,λ′

√
2f∗x

)
, we can write:

P(∆{
ρ) ≤ 2(D(1)

n D(2)
n )2 exp

{
− n(f∗0 )2

16f∗L(χ)

}

≤ 2n2 exp
{
− (f∗0 )2

16f∗
n

L(χ)

}
.

Following the Lemma of Baraud et al. (2001) above, and using

L(χ) ≤ 4(D(2)
n D(1)

n )2 ≤ φn/ log2(n),

we get that, for any k, there exists a constant C
(∆%)
k depending on k, f∗0 , f∗, such that

(24) P(∆{
%) ≤ 2n2 exp

{
− c

(f∗0 )2

160f∗
log2(n)

}
≤ C

(∆%)
k

nk
.

Now, if the basis is the histogram basis (or localized), the result is better. In this case,

L(χ) ≤ D(1)
n D(2)

n = Dn ≤ n/ log2(n) is enough to get (24) again. This concludes the proof of
Lemma 2. �

5.4. Sketch of proof of Theorem 2. Here the contrast decomposition is:

γ̃n(T ) − γ̃n(S) = N2
ξ,n(T − ζ) −N2

ξ,n(S − ζ) − 2

n

n∑

i=1

ξi(δi − ζ(Xi, Yi))(T − S)(Xi, Yi)

and the centered empirical process under study is

ν̃n(T ) =
1

n

n∑

i=1

ξi(δi − ζ(Xi, Yi))T (Xi, Yi).

Let us define Ωξ = ∆ξ ∩ Ωρ0 where Ωρ0 is defined in (B2),

H =
⋂

m∈Mn

Hm, Hm = {min sp(Υm) ≥ max(ρ̂0/2, n
−1/2)},

and

∆ξ =

{
T ∈ Sn,

∣∣∣∣∣
N2
ξ,n(T )

‖T‖2
ξ

− 1

∣∣∣∣∣ ≤
1

2

}
,

where we denote by ‖T‖2
ξ = ‖T√π‖2

%.
Similarly to the previous study, for n large enough, ∆ρ ∩ Ωρ0 ⊂ H ∩ Ωρ0 and thus, on Ωρ, we

get

‖ζ̂m̂ − ζm‖2
ξ ≤ 2N2

ξ,n(ζ̂m̂ − ζm) ≤ 4N2
ξ,n(ζ̂m̂ − ζ) + 4N2

ξ,n(ζm − ζ)

≤ 8N2
ξ,n(ζm − ζ) + 4p̃en(m) + 4ν̃n(ζ̂m̂ − ζm) − p̃en(m̂)

≤ 8N2
ξ,n(ζm − ζ) + 4p̃en(m) +

1

4
‖ζ̂m̂ − ζm‖2

ξ

+16

(
sup

T∈Sm̂+Sm,‖T‖ξ≤1
ν̃2
n(T ) − p̃(m̂,m)

)

+

+ 16p̃(m̂,m) − p̃en(m̂).

Talagrand’s Inequality fixes the value of p̃(m,m′) = 2(dim(Sm) + dim(Sm′))/n to have

E

(
sup

T∈Sm̂+Sm,‖T‖ξ≤1
ν̃2
n(T ) − p̃(m̂,m)

)

+

≤ C

n
,



NONPARAMETRIC ESTIMATION WITH CENSORING INDICATORS MISSING AT RANDOM 23

and we take κ̃ large enough so that p̃(m,m′) ≤ p̃en(m) + p̃en(m′). We get,

1

2
E(‖ζ̂m̂ − ζm‖2

ξ1IΩξ
) ≤ (8 +

1

2
)‖ζm − ζ‖2

ξ + 5p̃en(m) +
C ′

n
.

This implies that

E(‖ζ̂m̂ − ζ‖2
ξ1IΩξ

) ≤ C(‖ζm − ζ‖2
ξ + p̃en(m)) +

C ′

n
.
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