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NONPARAMETRIC ESTIMATION FOR SURVIVAL DATA WITH
CENSORING INDICATORS MISSING AT RANDOM

ELODIE BRUNEL®Y, FABIENNE COMTE®, AGATHE GUILLOUX®4%)

ABSTRACT. In this paper, we consider the problem of hazard rate estimation in presence of co-
variates, for survival data with censoring indicators missing at random. We propose in the con-
text usually denoted by MAR (missing at random, in opposition to MCAR, missing completely
at random, which requires an additional independence assumption), nonparametric adaptive
strategies based on model selection methods for estimators admitting finite dimensional devel-
opments in functional orthonormal bases. Theoretical risks bounds are provided, they prove
that the estimators behave well in term of Mean Square Integrated Error (MISE). Simulation
experiments illustrate the statistical procedure.

Keywords: Missing at random - conditional hazard rate - penalized contrast estimators - risk
bounds.

1. INTRODUCTION

We consider the problem of estimation from right-censored data in presence of covariates,
when the censoring indicator is missing. Let T be a random variable representing the time to
death from the cause of interest. Let C' denote a right-censoring random time. Under usual
random censorship, the observation is Y = T A C and 6 = I(T < C). Let X denote a real
covariate. In what follows, it is assumed that 7', C' and X admit densities respectively denoted
by fr, g and fx. In addition, C is assumed to be independent of 7' conditionally to X, see
e.g. Comte et al. (2011) for comments on this assumption.

When the cause of death is not recorded, the censoring indicator is missing: this is the missing
censoring indicator (MCI) model, see Subramanian (2006), which is defined as follows. Let £ be
the missingness indicator, that is £ = 1 if § is observed and £ = 0 otherwise. The observed data
are then given for individual i € {1,...,n}:

(Yi’Xi’éiagi = 1) or (YZ’Xlafz = O)
We shall say that the model is:

e MCAR under the assumption that the indicator are Missing Completely At Random,
i.e. £ is independent of T', C' and X.

e MAR under the assumption that the indicator is Missing At Random i.e. £ and § are
independent conditionally to Y, X.
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2 E. BRUNEL, F. COMTE & A. GUILLOUX

In this paper, we mainly concentrate on the MAR model. The MCAR model will be consider
in Section 2.2.

This model has been considered by several authors in the last decade. Most papers are
interested in survival function and cumulative hazard rate estimation. In particular, van der
Laan and McKeague (1998) build a sieved nonparametric maximum likelihood estimator of the
survival function in the MAR case and prove its efficiency. Their estimator is a generalization
of the Kaplan-Meier estimator to this context and is the first proposal reaching the efficiency
bound. Subramanian (2004) also proposes an efficient estimator of the survival function in the
MAR case; he proves his estimate to be efficient as well.

Kernel methods have also been used to build different estimators in the MAR context. Sub-
ramanian (2006) estimates the cumulative hazard rate with a ratio of kernel estimators. He
provides an almost sure representation, and a Central Limit Theorem (CLT). He deduces results
of the same type for the survival function. A study in a similar context is also provided by
Wang and Ng (2008). Recently, Wang et al. (2009) proposed density estimator based on kernels
and Kaplan Meier-type corrections of censoring. They prove a CLT and suggest a bandwidth
selection strategy. Extensions of these works to conditional functions (both cumulative hazard
and survival functions) in the presence of covariates is developed in Wang and Shen (2008).

Both our method and our aim are rather different. Indeed, we estimate the conditional
hazard rate given a covariate. Moreover, we provide a nonparametric mean square strategy by
considering approximations of the target function on finite dimensional linear spaces spanned by
convenient and simple orthonormal (functional) bases. A collection of estimators is thus defined,
indexed by the dimension of the multidimensional projection space, and a penalization device
allows us to select a “good” space among all the proposals.

Our estimator has the advantage of being defined as a contrast minimizer and not a ratio of
two estimators, as in standard kernel methodology. As a drawback, it depends on an unknown
function, in its definition, which has to be replaced by an estimator, and its mean square risk
has consequently the order of the anisotropic rate corresponding to the regularity of the function
under estimation, plus the rate of the intermediate plug-in estimator, for which we propose a
similar estimation strategy.

The plan of the paper is the following. We first explain in Section 2 how the contrast is
built, and how it allows us to compute a collection of estimators. We conclude the section by
giving the penalization device that completes the definition of the data driven estimator, up
to an estimator to be plugged in the procedure. In Section 3, we state the theoretical results
that ensure that the quadratic risk of our estimator behaves well provided that the intermediate
estimator has small risk. Then, we show how similar tools can be used to build, compute and
control the second estimator. The procedure is tested in a simulation section 4 for both hazard
and conditional hazard rates (i.e. with or without covariate) and under different missing scheme.
Technical proofs are gathered in Section 5.

2. DEFINITION OF THE CONDITIONAL HAZARD RATE ESTIMATOR

2.1. Choice of the contrast. We consider the general MAR case as described in the introduc-
tion, the global assumption is denoted (A0) and has several parts that we specify below.
(A0-1) The random vectors (X;, T;, C;) are independent copies, for i = 1,...,n, of (X,Y,C).
(AO0-2) For i = 1,...,n, we observe X;, Y; = T; ANC;, &, and §; = I(T; < Cy) if & = 1,
otherwise &; = 0.
(A0-3) C is independent of T" given X.
(A0-4) ¢ and § are independent given X, Y.
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The unknown function A to be estimated is the conditional hazard rate of the random variable
T given X = x defined, for all z > 0 by:

Az, t) = Aqyx (2, 1) = %

where fr|x and Fpjx are respectively the conditional probability density function (p.d.f.) and
the conditional cumulative distribution function (c.d.f.) of T' given X. We shall denote by G¢|x
the conditional c.d.f. of C' given X. We define the conditional expectations of £ and ¢ by:

m(z,y) =E(¢|X ==2,Y =y) and

The crucial property for the construction of an estimation procedure is the following: for any
integrable function h, we have

E(C(X,Y)h(X,Y)) = E[E(S|X,Y)h(X,Y)] = E(6h(X,Y))
ER(I(T < C)h ( ,T)| X))
[(1 = Gex) (X, T)WX,T)] with (A0-3)

h(z,t)(1 — Goyx)(@, 1) frix (2, 1) fx (z)dzdt.

Il
&=

I
=

This yields the equality

(1) B(CCXY)MX,Y)) = EGh(X. V) = [ [ ha.p)r(e,n)duta,y)
with
du(z,y) = (1 — Ly|x (y,2)) fx (x)dzdy = f(z,y)dzdy,
where f(z,y) = (1 — Ly|x(y, %)) fx(z), and
1= Lyx(y,2) =P(Y > y|X =2) = (1 - Frix(z,y))(1 — Gex (2, 9)).

If ¢ was known, we would consider the contrast:

() = —Z/ RA(Xi,y y>y)dy__Z(giai+<1—&><<Xz~,m>)h(xi,m

=1

which is a natural extension to the MAR case of the contrast introduced in Comte et al. (2011).
We note that, with assumption (A0-4) and the definition of ¢, we have

E(0:;& + (1 - &)C(X3,Y)) X3, Y:) = E(6:] X5, Y)E(&| X5, Y:) + E[(1 — &)E(6:] X5, Y5)| X, i)
= E(E(6]X5, Yi) (& + (1 - &))|1X:, V),
that is
(2) E(6i& + (1 — &)C(X3, Vi) | X3, Yi) = E(6:| X, Vi)

Thus, if we compute the expectation of this theoretical contrast, we obtain, under the MAR
assumption and using (1) and (2),

B (1) = b1 -2 [ [ o)A pdute,) = h= A% = N

Clearly, the above quantity is small if A is near of A, and the measure denoted by u plays the
role of a reference weighting norm. This explains why minimizing T%* over an appropriate set of
functions would be a relevant strategy to estimate A.
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As ( is unknown, we must replace it by an estimator 5 . Consequently, we consider

1 n 1 2 n ~
(3)  Tu(h) = 2 /O W2 (Xi ) 1(Y; 2 y)dy — = ; (&0 + (1 = €)C(X3, YD) ) A(X, ).
An estimator of {(x,y) is constructed in Section 3.3 below. This strategy of estimation of the
unknown hazard rate A, via an estimation of (, is also considered in Wang et al. (2009).

The empirical reference norm associated with the contrast (3) is defined by

1 [t
B2 =32 [ R = )y
=1

and the natural resulting scalar product is denoted by (h, ha), = (1/4)(||h + ha|? — ||k — hal|?),
where

E((h, ho)n) = (h, ho)pu-

Remark 1. We could consider another strategy for the construction of the contrast, namely
1 n 1 9 n
(4) Ly(h) = - ;/0 W (X, )7 (X, y) 1(Y; > y)dy — - ;&'&h(XuY%)-

where 7 is an estimator of . The second part in Equation (4) is weighted by £;6; which means
that fewer observations are used for the estimation. As a consequence, the contrast (3), that we
consider, is not only more convenient (from algebraic point of view) but is also expected to be
more relevant.

2.2. The MCAR case. In the MCAR case, the function 7 is constant, that is m(z,y) = p =
E(¢). The conditional hazard function can thus be estimated via the following contrast function:

1 /! 2 = ;&
O (n)y = —E:/thZ-, 1(Y; > y)dy — =y 22h(X,,Y5),
Vn” (h) Py (Xi, »)1(Y; > y)dy > —=h( )

s P
where
1 n
1=

Indeed, it is easy to see that, if p is known and p,, can be replaced by p, the expectation of
the contrast is equal to

A2 — 2 / / W PN ) EA(Y > 4)|X = o) fx (@)dady = [|h - N2 — |A[2.

Also, the following contrast
1 n 1 9 n
(5) w) == /0 PA(Xi)&G1(Y; > y)dy — =3 6i&ih(Xi, Vi),
i=1 i=1

would be adequate for conditional hazard rate estimation with reference measure

du(z,y) = p(1 = Ly|x (y, 2)) fx (x)dzdy.

It has the advantage of not involving any estimator and the drawback that there is a &;-factor
in all terms, so that only observations with non missing indicator are taken into account.
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Remark 2. The contrast 77(11), defined in (5), can be seen as a rewriting of the contrast (4)
taking into account the MCAR assumption. Indeed, in that case, 7(X;,y) can be replaced by
&;. Notice in addition that, in the simulation study, see Section 4, we used this contrast for the
MCAR case because we experimented that it was giving much stabler and better results than
the contrast 'yT(LO).

Lastly, this contrast would be still valid for estimating A for £ independent of Y given X, with
reference measure:

dpa(z,y) = m(2)(1 — Ly|x (v, 2)) fx (z)dzdy,
and
r(a) = B(E|X =) = E(E[X =,V =y).

2.3. Computing the estimator. We consider that we estimate the hazard rate on a compact
set

A= A1 X [O, T],

where A; is an interval such that all observations lie in the domain. We take A; = [0, 1] for
simplicity and without loss of generality. Recall that f(z,y) = (1—Ly|x(y, 7)) fx (z) and denote
by fix,v)(z,y) the joint density of the random pair (X,Y). We set standard assumptions of
boundednesses from above and below.

(A1) Y(z,y) € A, 0< fo < f(z,y) < f for fixed positive constants fy and f.

(A2) V(z,y) € A, Az,y) < [|A]la,00 < +o0.

(A3) V(z,y) € A, 0<f§ < fixy)(z,y) < f*+ o0

First, we define an estimator Am on the space S, by:

~

Am = argmingcg T'n(h)  where S, = S @ 52

i Ty with
57(72 = span{p;,j =1,... ,Dgz} and 57(33 = span{yy, k=1,... ,ngg}

The ¢;’s, as well as the 1;’s, constitute an L2-orthonormal basis, and the function h is of the

form h = Zj,k aj kp; @ Y.
We consider in the following two specific and classical examples of bases:

(1) Trigonometric bases. They are defined by @o(x) = T 1(2),
paj1 () = V2sin(2mjz) I 1)(2), pa;(z) = V2 cos(2mjz) Lo 1 (2)
and ¢o(z) = (1/v/7)Ij (@),
Yori1 (@) = V/2/7 sin(2mjx/T) 1 7 (), Yok () = /2/7 cos(2mka/T) T 7 ().

Considering (¢;)o<j<m,—1 and (¢¥r)o<k<m,—1 yields spaces with odd dimensions m; and
ms. We denote by S,, the nesting space of the collection, i.e. the product space corre-
sponding to maximal dimensions for 57(72 and 57(33 .

(2) Histogram bases. They are defined by ¢;(z) = V2™ I;_1)/om1 jjom((z), for j =
L...,2™ and ¥ (x) = /22 /TX|(4—1)7j2m2 krj2ma((T), for k = 1,...,2™2 so that Dﬁ,{} =
Zml,D%; = 2™2_ We shall take m < [logy(n)/2] and mgy < [logy(n)/2] where [z] denotes
the integer part of z and logy(z) = log(z)/log(2). We denote by S,, the nesting space of

the collection, that is S, = ‘97(72 ® s@ where 2m1()gma(n) <

(n) ma(n)’
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In both cases, we denote by D,, := dim(S,,) = Dﬁll)Dq(f).
These bases are representative examples of localized bases for the second one (as piecewise

polynomials, wavelets) or bounded non localized bases for the first one.
Now, let us study the contrast minimization. Writing that oI',,(h)/0aj, k, equals

. Z / Pio (Xi)Vro (y Z a; ki (Xi) k() 1(Y; > y)dy
- (52@- (1= §)C(X Y2) ) (X (),

we get that the coefficients a;j, of the estimate of Am verify

2 [ en (X (s (X )10 = )
i=1 gk

1 — .
= 37 (8 + (1 - €030X, D) (X2, ()
i=1
In the histogram case, as p;jp; = 0 for j # j' and Y = 0 for k # k', we get

Yy <5i€i + (1 - fi)f(Xz',Yz')) ©jo (Xi)Pro (Vi)
Sy Jo 2 (Xowd (»I(Yi > y)dy

Ajo ko =

if the denominator is non zero.
More generally, let us define the matrices

Gy (X) = (0(Xo)ey (X)) v ey » and H (y) = WrW)Ye W), < <@

so that their tensorial Kronecker product G, (X;)®Hy, () is of size (D( ) +D(2)) (D( ) +D(2))

We set
= —Z/G ®H¢ (W Ly, >y dy.

Recall that the vec(.) operator stacks the columns of a matrix and let
- tr A
@m = Vee ( (aj7k)1<j<D(l) 1<k<D£3;) ’

A,, = vec (Tll Z (6 &+ (1— fl)E(Xz,Yz)) i (Xa) (Vs ))1<]<D( ) 1§k§D5§;> ’

=1

then the coefficients of the estimator must fulfill the matrix constraint:
N
Om O m = Ay

It follows that the estimator is well defined if ©,, is invertible. We define p(M) as the spectral
radius of a matrix M, i.e. the largest eigenvalue in modulus of M. We set

N .
(6) am = @r_nlAm if p(Om) = max(f0/3,n_1/2)

—
and a,, = 0 otherwise.

The quantity fo is an estimator of fy = ming, yea f(@,y), where f(z,y) = (1-Ly|x(y, 7)) fx (2).
It is defined in Comte et al. (2011), and proved to satisfy, for n large enough:
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(A4) For any integer k > 1, there exists a constant C,gf 9 > 0 such that

P(|fo — fol > fo/2) < CY /n*

At this stage, we are in a position of defining an estimator of A on Sy,:

(7) Am(@,y) =Y s (@)U (y),
7.k

where the a;;’s are defined in Equation (6).

2.4. Model selection by penalization. The model selection device is now based on the fol-
lowing criterion
(8) m = arg min (T',(Ay) + pen(m))

mEMn

where
M, = {m = (my,m2) € Nx N, dim(Sﬁfg) > log(n),dim(S%i ® Sﬁgg) < D,},
and the penalty is defined by

. dim(.S,,
9) pen(m) = KZH)\HOO,A#,

where A = Xmo is an estimator in the collection, on a space S,,, which is specified below. Note
that the properties required on (mq,my) € M,, mean that all spaces of the collection are included

in a nesting space with dimension D,,. Moreover, the dimension Dgg of the space 57(33 has to be
larger than log(n), see the proof of Proposition 1. Lastly, we define the theoretical counterpart
of the penalty:

dim(S,)

pen'”(m) = K| Al|so,
3. RESuULTS

3.1. Main Theorem. In order to state our Theorem 1, we have to define the integral norm
with respect to do(v,y) = f(x,v)(®,y)drdy where f(xy is the density of the bivariate vector
(X,Y), that is

(10) lll3 = //¢2(w,y)d@(w,y) = //W(w,y)f(x,n(w,y)dwdy
and the associated empirical norm:

1 n
(11) [9l50 =~ > _¥*(Xi,Y3)
i=1

Theorem 1. Let A, be the estimator defined by (6)-(7)-(8)-(9). Under Assumptions (A1)-
(A4), and if D2 < n/log%(n) for basis (1) and D, < n/log®(n) for basis (2), there exists a
constant k such that, for n large enough

I

. . . C
(12)  E(ALs = Aqll2) < ¢ inf (M- Amllj + pen®™ (m) + C'E(|IC = C[I3) + —,

where C'is a numerical constant and C', C" are constants depending on fo, f, fi, [* and ||A]|so,A-
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The result stated in (12) involves a first term: inf,,e g, (|| A4 — An||? +pent” (m)) which is the
usual squared-bias (| AI4 — \,||?)/variance (pen”(m)) compromise, and will lead to an optimal
anisotropic rate for a given regularity a = (v, az) of A. The second term in (12) is E(||C — ¢l12),
that is the mean-square risk of the estimator of ( on A. The last term C”/n is negligible.

3.2. Consequence on the rate. The next corollary shows that iy adapts to the unknown
anisotropic smoothness of A, up to the performance of f . Toward that end, assume that A
restricted to A belongs to the anisotropic Besov space Bf', (A) on A with regularity a = (o, as).
We mention that anisotropy is almost mandatory in this context, because the regularity in the
covariate direction has no reason to be the same as the regularity in the y-direction.

Let us recall the definition of B§*, (A). Let {e, ey} the canonical basis of R* and take A=

{z € R2%:z,z + he;, ..., x + rhe; € A}, fori =1,2. For x € Aj ,, let

) = S (ate + ke

k=0
be the rth difference operator with step h. For ¢ > 0, the directional moduli of smoothness are

given by
wm,i(g’t) = sup(/
[h|<t /A

We say that g is in the Besov space Bf', (A) if sup,-o(t™“wr1(g,t) +1~ 2wy, 2(g,t) < oo for r,r
integers larger than «, as respectively. More details concerning Besov spaces can be found in
Triebel (2006).

. 1/2
A7 () 2dz)

i
h,i

Corollary 1. Assume that A restricted to A belongs to the anisotropic Besov space BQ"‘OO(A)
with reqularity o = (o, ) such that o > 1/2 and ay > 1/2. Consider the estimator in the
histogram basis. Then, under the assumptions of Theorem 1, we have

(13) E (1A= Aal) = Ot~ 752) + E(IC — CLa]2).

where & is the harmonic mean of a and ag (i.e. 2/a = 1/a+ 1/az).

The proof follows the lines of Corollary 1 (p.1178) in Comte et al. (2011). At this point, to
state our final result for the estimation of A (stated in Corollary 2), we have to construct and
study an estimator of (.

3.3. Estimation of ( (Nx, y). Here we want to exhibit an estimator of ¢ on A for which we can
prove a bound for E(||¢ — ¢||2). We consider the mean-square regression estimator of ¢ defined
as the minimizer of
- 1\
n(T) =~ Z}[&T%Xi, Y) = 26:6:7 (X, ),
1=
for T'in S, = Sﬁ,ﬁ ® Sﬁfg, with penalization
. dim(S,,)

pen(m) =k p

Here the reference norm must be ||.||, defined by (10) but the empirical norm associated with
the problem is

NE() = 1 SR Y, B0 = [ [ o) foc (@ y)dady = 0]
=1
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We assume that there exists a constant g, such that:
(B1) V(z,y) € A, 0 <mp <m(x,y) <L
If one is interested in a control of IE(Ng2 n(ém —()), one may consider that only the vector

(fm(Xi, Y;)) has to be correctly defined, and in this case, classical projection arguments can be
used to prove that the definition is consistent without any additional tools.

But considering that our aim here is related to the estimation of conditional hazard rate of
the previous section, we wish to provide a L% control.

Let us consider the same bases as in Section 2.3, and the matrices

Gy (V) = (U (YU (Y0), i
Let us define
1 n
T =~ 2; GG, (X)) ® Gy, (V).

If the estimate of ¢ is denoted by p(z,y) = Dok fj,kgoj ()¢ (y) and Z, = (vec( {¢jk)jk)) and

1 n
i=1

Then we get in the same way as previously that, if T, is invertible, /A Y 1=, and we set
more restrictively

[1]

L = T;nlEm if p(Tm) > maX(ﬁO/Q’nil/Q),
and Zm = 0 otherwise. Here gy is an estimate of py, which can be defined as the minimum of a
well-chosen estimator of 7 f(x yy: for instance pg = \/dim(Sp,») min;  [@; x| where

ik =+ O Eips (X (YD)
=1

and Sy,~ is associated to a large enough subdivision for histogram bases (¢;) and (¢5). We
consider the assumption

(B2) For any integer k > 1, there exists a constant Clipo) > 0 such that P(|pg — po| > po/2) :=
P(Qs,) < C) /nk.
Then we have the following result bounding the LZ—I‘iSk of the estimator.
Theorem 2. Under assumptions (A1), (B1)-(B2), and if D2 < n/log?(n) for basis (1) and
D,, < n/log?(n) for basis (2), there exists a choice of k such that,
~ '’
2 . 2 —
B(IGa ~ (LI < € inf. (IGn — CLall3 + pon(m)) + -
The next corollary is an immediate consequence of Corollary 1 and Theorem 2.

Corollary 2. Under the assumptions of Corollary 1 and assuming that ¢ restricted to A belongs
to the anisotropic Besov space Bgoo(A) with reqularity B = (B, P2) such that B > 1/2 and
B2 > 1/2. We take the estimator in the histogram basis. Then, under the assumptions of
Corollary 1, the estimator 5\m of \ verifies:

(14) E (A - Anl) = O(n~%2) + O(n~513),

where & (resp. ) is the harmonic mean of o and o (resp. 3 and [32).
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4. SIMULATIONS

To evaluate the finite sample performances of our different proposals for hazard rate estima-
tion, we made Monte Carlo studies in different settings. We study the (possibly conditional)
hazard rate estimators with or without covariate, and under both settings of dependence for the
missing of censoring indicators.

4.1. Hazard estimation. In this paragraph, we illustrate both settings of missing indicators
in the absence of covariate. Two distributions are taken for the survival time 7" : a Weibull
distribution (with parameters a and b) and a Pareto distribution (with parameters k and tg)
associated respectively to the hazard rates :

e Weibull () = ba*t*~! with a = 3 and b = 4

e Pareto A\(t) = k/t if t > tp with k = 3 and ¢y = 1.

The censoring time C' is generated as an exponential random variable with parameter p
calibrated to give a censoring level around 40 % (u = 3 for the Pareto distribution and p = 5 for
the Weibull distribution). Then, we set Y = T'A C and § = I(7<¢). We follow the Missing at
Random mechanism proposed by Wang et al. (2009) where the missing indicator £ is generated
as a binomial random variable with parameter P(¢ = 1) = (1 + exp(—60 — 62Y))~! in the MAR
case, and P(§ = 1) = p a constant probability in the MCAR setting. The parameters § = 0.3
and 0y = 0.7 were calibrated to give a non missing rate of indicators around 70 % in the MAR
case, as well as the probability of missing p is taken equal to 0.7 in the MCAR one.

The estimators are obtained by minimization of the contrasts (5) and (3) given in Section 2.

For the histogram basis, we can give their explicit expression in both MAR and MCAR settings :
. D@
)\gl (y) = 22,27 axtp(y) with the coefficient a; having the form:

GMAR _ Y1066 4 (1 = &) (Vo) w (Y5) and  GMCAR _ Yorq 0:&i (Y5)

* S Jy ) Tz dy S NG S R0 iz dy
Histogram MAR estimator MCAR estimator MAR estimator
basis under MAR setting under MCAR setting under MCAR setting
Missing rate 0% 30 % 0% 30 % 30 %
Pareto
n = 250 0.40 0.41 0.53 0.56 0.42

(0.37) (0.37) (0.46) (0.48) (0.39)
n = 1000 0.19 0.19 0.23 0.24 0.19
(0.19) (0.19) (0.22) (0.24) (0.18)
Weibull
n = 250 0.14 0.14 0.19 0.19 0.14
(0.12) (0.12) (0.15) (0.15) (0.12)
n = 1000 0.05 0.05 0.07 0.07 0.05
(0.05) (0.04) (0.05) (0.05) (0.05)

TABLE 1. Average and median (in parenthesis) of the MISE over 500 replicated
samples for hazard rate estimators in MAR and MCAR settings with histogram
basis. Censoring rate ~ 40%
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We can improve the results by using a polynomial basis of degree one. Thus, the penal-
(2)

. DE
ized estimators are given by )\LZ]Q (y) = Zj:mf i 1Vk1(y) + ax 2tk 2(y) with pairs of coefficients

S 2 .
(g1, ap2) for k=1,--- ,Dﬁn; solving the Cramer system:
Qg1
Ok, = D iy
a2

where, for instance in the MCAR case, we can evaluate explicitly

%Z&/wi,l(y)lmzwdy %Z&/@Z)k,l(y)%,z(y)lmzwdy
=1 i=1
Ok iy =
1N"¢ / Vi1 (V) Vk2 (1) Ly, > Ay N4 / Vi 2 (1) Ly dy
i=1 =1

and )

5D ik (Y)
Ak g = Zzl

LN "6t a(V7)
i=1

Very similar expressions can be shown in the MAR setting. We also apply a curve fitting
(with a mean square polynomial of degree 2) to the points (¢;, A(t;)) for smoothing the break
points we have with the local basis. This obviously improves the MISE (see Tab. 2).

For K = 500 replications over different paths, we compute the (empirical) average MISE of
the penalized estimators A over a grid of size 100:

T - 100 W 9
MISE =23 163" (A(ti) ~ A (ti)> ,
k=1 =1
where 7, is the inter-quantile interval length associated with the 10% and 90% empirical quan-
tiles of the Y;’s . The value of the constant x appearing in the penalty has been calibrated and
fixed to 1 for both models. We also give in parenthesis the median value of the MISE evaluated
over the 500 samples. The results are summarized in Tab. 1 and 2. The three columns of Tables
1 and 2 give the MISEs of the estimator obtained with the contrast I, in the MAR setting (first
column) and in the MCAR setting (last column), the estimator obtained with the contrast 'yy(Ll)
in the MCAR case is shown in the second column. As MAR and MCAR are the same when
there is no missing ({ = 1), the column is not repeated.

Remark that in the MCAR setting, the MAR estimator always behaves slightly better than
the MCAR one, see Tables 1 and 2. At first sight, this may seem surprising but this is related
to Remark 2. Indeed, the MAR estimator is obtained via the contrast (3) which is based on
imputation and, as a consequence, uses all the data. On the contrary, the MCAR estimator is
obtained via the contrast (5) which uses only the non missing data.
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Polynomial = MAR estimator MCAR estimator MAR estimator
basis under MAR setting under MCAR setting under MCAR setting
Missing rate 0% 30 % 0% 30 % 30 %
Weibull
n = 250 0.15 0.12 0.17 0.19 0.13

(0.08) (0.08) (0.09) (0.09) (0.08)
fitting 0.05 0.05 0.05 0.06 0.05
n = 1000 0.04 0.04 0.04 0.05 0.04

(0.03) (0.03) (0.03) (0.04) (0.03)
fitting 0.03 0.02 0.02 0.02 0.02

TABLE 2. Average and median in parenthesis of the MISE over 500 replicated
samples for hazard rate estimators in MAR and MCAR settings with local poly-
nomial basis and average MISE of the a posteriori quadratic fitting. Censoring
rate ~ 40%

1.8
1.6
14}

1.2f

0.8
0.6 e d
0.4 A

0.2

0.5 1 15 2 25 3

FIGURE 1. Hazard rate estimators in the MAR setting for a sample of size
n = 1000 with 40% of censoring and 30% of missing indicators for the Weibull
distribution : true hazard curve (black plain), polynomial estimator (magenta
dotted line), histogram estimator (blue dotted line) and a posteriori quadratic
fitting (red plain).

4.2. Conditional hazard estimation. Now, we illustrate the conditional hazard rate estima-
tion which is the core of the theoretical part of the paper. We choose again several conditional
distributions of T' given X = z, most of them have already been studied in the literature in
others contexts:

e Exponential distribution with hazard rate \(¢,z) = 1 + 222,
e Pareto distribution A(¢,z) = k(x)/t if t > to with k(x) =3/(1 + z) and to = 1.
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Histogram MAR estimator MCAR estimator MAR estimator
basis under MAR setting under MCAR setting under MCAR setting
Missing rate 0% 30 % 0% 30 % 30 %
Exponential
n = 250 2.14 0.27 0.25 0.72 0.33

(0.20) (0.22) (0.21) (0.23) (0.22)
n = 1000 0.16 0.16 0.16 0.17 0.16

(0.15) (0.15) (0.15) (0.16) (0.15)
Pareto
n = 250 0.58 0.59 0.60 0.66 0.59

(0.59) (0.61) (0.61) (0.66) (0.59)
n = 1000 0.35 0.35 0.42 0.53 0.35

(0.34) (0.34) (0.41) (0.55) (0.34)
Non linear
n = 250 0.60 0.36 0.44 0.37 0.19

(0.17) (0.18) (0.17) (0.18) (0.17)
n = 1000 0.14 0.14 0.14 0.16 0.14

(0.15) (0.15) (0.15) (0.17) (0.16)

TABLE 3. Average and median of the MISE over 500 replicated samples for
conditional hazard rate estimators in MAR and MCAR settings with histogram
basis. Censoring rate ~ 40%

e Non-linear regression T = 2X + 5+ o¢ where the error process ¢ has a x2(4) distribution,
o = 0.25. The resulting hazard rate is A\(¢t,z) = %)\5 (%) and ). is the hazard rate
of the error e.

Note that these models are drawn from Wang and Shen (2008) or Zhou and Sun (2003) for the
Exponential model, and Comte et al. (2011) for the non-linear regression, the Pareto distribution
can be viewed as a generalization of the unconditional setting of the previous paragraph.

The censoring time C' has an exponential distribution given X with mean p(X) depending on
the model to be censored: p(x) = 2/(1+3x) for the exponential model, p(z) = 3.8/(1+0.1z) for
the Pareto model and p(z) = 22+ 15 for the non-linear regression model, each one corresponding
to a censoring level around 40%. The covariate X has uniform distribution on the interval [0, 1].

The MAR mechanism proceeds from the conditional probability function 7 of the logistic
model:

1

m(z,y) (€ =1 T, Y) 1+ exp(cx + coy)

The parameters ¢ and ¢y were adjusted to produce a missing rate around 30 % with ¢ = —0.5 for
all the models, co = —2; —0.5; —0.1 for the Exponential, Pareto and non-linear regression model
respectively.

The constant x has been roughly calibrated over the three models, we compute the average
MISE and medians for several values of x from 1 to 10 and the value x = 5 seems to give a good
compromise. For K = 500 replications over different paths, we compute the (empirical) average
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!
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Fi1GURE 2. Conditional Hazard rate estimators in the MAR setting for a sample
of size n = 1000 with 40% of censoring and 30% of missing indicators for the
Exponential distribution : true hazard curve (right-top), histogram estimator
(left-top), A(t,z) (solid black) and A(t,z) (dashed blue) with z = 0.58 (left-
bottom) and ¢ = 0.61 (right-bottom).

MISE of the penalized estimators A over a grid of size 100 x 100:

MISE = 2 o~ [ AL A 3(5) ?
K Z ~(100)2 Z ( (tisxj) — (t,,x]))
k=1 i,j=1

where 7y, is defined as in the unconditional setting (see paragraph 4.1) and £(A; ) is the length
of the range interval of the X;’s. We compute also the median of the empirical error over the
K = 500 replicated samples. The results are summarized in Tab. 3. For the non linear model,
both estimators are unstable for small samples: the mean errors are not of the same order as
the median error. Moreover, we can see that the MAR estimator gives systematically better
results than the MCAR one, as in the unconditional setting. In conclusion, we recommend the
systematic use of the MAR estimator when censoring indicators are missing.

5. PROOFS

5.1. Proof of Theorem 1. Note that the two bases we use satisfy the following property. For
oD (2)
all b in Sy @ Sps,

1) ~(2)
Itllo = sup  |h(zy)l < VD DA
(z,y)€AX[0,7]
where ||h|| = [, h®. Moreover, we recall that all S,,’s are subsets of a nesting space belonging

to the collection denoted by &,, with dimension D,,.
Let A4 denote the restriction of the unknown function A to A. For any h, hy € (L2 N L%°)(A),
we have

(15) Ty (h) — Dp(ha) = [|h — Aall2 = |[ha — Aal|2 = 20 (h — hg) — 2R, (h — hy)
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FiGURE 3. Conditional Hazard rate estimators in the MAR setting for a sample
of size n = 1000 with 40% of censoring and 30% of missing indicators for the
Pareto distribution : true hazard curve (right-top), histogram estimator (left-
top), A(t,z) (solid black) and A(t,z) (dashed blue) with z = 0.58 (left-bottom)
and t = 1.55 (right-bottom).

F1GURE 4. Conditional Hazard rate estimators in the MAR setting for a sample
of size n = 1000 with 40% of censoring and 30% of missing indicators for the Non
linear regression model : true hazard curve (right-top), histogram estimator (left-
top), A(t,z) (solid black) and A(t,z) (dashed blue) with z = 0.58 (left-bottom)
and t = 7.9 (right-bottom).
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where v, is the centered empirical process defined by:
1 n
) = 3 (56 (1= QXY RO ) = [ KOG AT > )y ).
i=1
and the term R,, is defined as:
1« .
Ra(h) = — (1= &) ({(X0, ) = ¢(X0, YD) ) h(X, V)
i=1
Many steps of the proof below will refer to the one given in Comte et al. (2011), the main
difference lies in the additional term R,,.
We shall use the following sets:

Gm = {mll’l Sp(@m) > max(fo/g’nil/Q)}’ é = ﬂ Gm’

meMy
& 1 12113 1
A, = 0 n—1‘<—,A:: o ’—1‘<—,
wi={vnes R 2} yi={vnes i < 2} and

16)  Qp ::{%—1‘§%}.

We now define Q = A, N A, Ny, and simply write
E(|[An = Aall) = E(IAa = Aall31a) + E( s — A7 Tge).
The second term is bounded by:
E(|An = Ml2100) < 2 (E(1An 2 oe) + E(Aal2 1o )
Now, the following lemma, proved in Section 5.2, holds.
Lemma 1. Under the assumptions of Theorem 1, we have | Ag |2 < n.

As moreover, [|A4]]2 < ||)\||C2>o 4 a.s., this yields that there exists a constant C' such that
B — A2 To0) < OO + ML) (BAL) + P05 + P(AD)).

Next, Assumption (A4) ensures that P(QEO) < C,gf ) /n* and Proposition 4 in Comte et al.

(2011) can be used here to get IF’(AE) < CIEA)/nk, under the condition that D2 < n/log?(n)

for basis (1) and D,, < n/log?(n) for basis (2). And for the third term, we prove below the
following bound.

Lemma 2. Under the assumptions of Theorem 1, we have ]P’(Ag) < CIEA)/nk for any k > 1,

where CIEU.A) is a constant depending on k, on the basis, and on f§, f*.

Gathering these elements yields E(||As, — AMll215c) < C/n by choosing k = 4.

Now, we study E(||As — Aa|21q). From Lemma 1 in Comte et al. (2011), we know that
A, N Qg € GNQy . Hence on €2, we can use the definition of A;, given via (6) . We introduce

for m € M,, the orthogonal projection on S;, of A restricted to A, denoted by A,,. We write
that, on Q, Vm € M,

T(hs) + pen(ii) < Ty (Am) + pen(m),
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and we use the decomposition (15). We get on Q and Vm € M,,:

~

(A7) A = Aall2 < Am = Aall2 + pen(m) + 20 (A — Am) — pen(i) + 2Rn(Aiy — Am).-
We write

~ 1 »
2|vn (A — M) < <[ A — )\mHi +8 sup I/?l(h),
8 h€ By i (0,1)

where By, n,/(0,1) = {h € Sy, + Sy, || 2|, < 1}. Tt follows that on €2

R 1 .
2n(Ai = Am)l < Z A = Al + 8 sup  vp(h) —p(m,m) |+ 8p(m,m),
4 h€Bi 15, (0,1) n

IN

1, 1 N
S 13 = Aal2 + Sl = Aall2 +8 ( s vA(h) - p(m,m>>
heBm,ﬁz(Ovl) +

(18) +8p(m, ),

where p(m,m’) will be define later. Let us define (4 = (I(A). Using the inequality 2zy <
22 /a + ay?, we get on

D1 - &) (S0 YD) = CalXi, ¥i)) (A = A) (X Vi)

=1

2 ‘Rn(j\m - )\m)‘ - %

< % > (1= &) (= M) (X2 YD) + = 3 (C0x,Y3) - CA(Xi,Y;))Q
=1

i=1

1 . ~ 3 - 3a, ~
< = Al + 0l = Gl < 3 = Al + SHIE = Call2 (on A,)

3f* % 9, 34, 9 _ 3/ % 2 3a, - 2 [
< S = A2 4 2218 = call? < 21150 = A2 + 221 - th A1 and A3
< 2Ll + 50 = call < 33— Al + 21 - CalE vith AT and A3)
(19)
6f* < 9 6f* 5  3a, x 9
< A — A A= Anplln + = 1I¢ =
< S i = 2l S = A2+ 50 - cal?

Now, choosing a = 24f*/fo and gathering (17)—(19), we get, as 1 —1/2 — 1/4 = 1/4 and
14+1/2+1/4 = 7/4,

1 o 7 36f* x

1B0A = AalTa) < J1m ~ Al + pen(m) + 2B - call)

(20) +8E sup  v2(h) — p(m,m) + 8E(p(m,m)) — Epen(n).
h€Bp,,»(0,1) +

We can use Talagrand Inequality to prove:

Proposition 1. Under the Assumptions of Theorem 1, there exists a numerical constant k such
that, for

D,, + D,
p(m,m’) = (5/8)[Aalloo,a————,
we have
9 . C
E sSup (Vn(h) _p(mam))Jr < .
h€ By, 7,(0,1) n
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This inequality, together with (20) yields, as 8p(m,m’) < pen(m) + pen(m’), that

36f E(I¢ - ¢al2).0

1 A
TE(Am = Aali1e) < —HA = Aallj, + 2pen(m )+ +

5.2. Proof of Lemma 1. Let us note that 5\m is either 0 or argminpeg, I';(h). In the second
case, min Sp(6y;,) > max(fo,n~/?) and thus

Al = D@ = 14wl = 105 Anl* < (1/ min Sp(6,,))]| A

g,k
n 2
< min(l/(fo)Q’n) Z (% Z (0:& + (1 — &)Ca(Xi, V7)) SOT(X@WZL(YZ)>
g,k i=1
= ”%ZZW(XZ- E(wk( 1) < nDIPDP <

i=1 j

Moreover,

2
. I~ [« 1< e "
Amll < EZ/)\?—%(Xi,y)dy = EZ/ (Z aj ey (Xi)vy (?/)dy) dy
i=1 i=1 gk
RS I n (N
- EZ Z ag a5 15 (Xi)y (Xz‘)/%; () vr (y)dy

1=1 j,k,5' k'
n
= DD e (X)ep (X))
=Liky
LS Sl 0 Y @)? < PPl
i=1 j g,k

Gathering both bounds yields the result as Dq(ll) <n. O

5.3. Proof of Proposition 1. First, we write

E( sup (Vﬁ(h)—p(mvm)h)S > E<h€Bsup (Vﬁ(h)—p(m,m/))+>

heBm,ﬁz(Ovl) m'eMn, m,m/’ (071)

( (h‘) _p(mvm/))-f-) :

Next, we split v, (h) = e (h +v (h) with

and we bound

n

vV (h) = (1/n) Y (fu(Xi, Y3, 8i,6) = (s M), ful@,y,6,6) = (06 + (1= €)¢(,y)) h(=,y)
i=1

and

v (h) = (1/n) Y (9n(Xi, Yi) = (s M)y s gn(@,y) = /h(%U)/\(%U)I{yzu}du-

i=1
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We have

E (heBsup (Vﬁ(h)—p(m,m')M) < 2E< sup ([Vﬁl)(h)]Q—p(m,m’)ﬂM)

m,m/(ovl) hEBm,m/(Ovl)

+2E ( sup ([P (h)]? —p(m7m')/2)+> :
h€B,, s (0,1)
In both cases, we apply Talagrand Inequality.

As S, + Sy is a finite dimension space with dimension less than dim(S,,)+ dim(S,, ), we can
find by Gram-Schmidt orthonormalisation a basis ¢; x(z,y) which is orthonormal with respect
to the IL?(p)-norm, with cardinal equal to the dimension and thus less than dim(S,,)+dim(S,,).
The functions are such that [[ ¢%,(z,y)du(z,y) = 1. Tt follows that

E( sup ([fo)]Z(h)>
heBm,m’ (031)

<2 (izfd)j’k(xi’yi’éi’fi)) = %ZVar (f4,,(X,Y,6,))
Jok i=1 e
< 23B[0 YImA (0 Y) + (T(4) — ma (X, V)G (6 V) 62,(X V)] = = S (62 A
Jk 3
2 dim(S, + S,
< o Pl J[ Sutainte.y) = 2 g EEE S0
< 2H)\HA,oodim(Sm) + dim(S,,) 2

n
For the other empirical process, we first write that

E sup ([VT(L2)]2(h) < iE sup ([Vr(LQ)]Q(h)
hEB i (0.1) fo \inl=1heSm 5,

and we consider a basis of (S, + Sp,) @ (Smy + Siy) = Spyvm, @ Smgvmy, as both collections
are nested. Then we can take basis (¢; ® vy);, and we write

E ( sup ([Vﬁ”]z(h)>

|hl|=1,hESm~+S,,/

< ZVar (% Zggoj'@dlk(XivS/i)) < %ZE ((/ i (X)Pr(w)Aa(X, U)I{qu}du> ) .
3k

i=1 Jsk
Now we note that
2
> (/ U () Aa (X, u)I{YZu}du> = (W Aa(X, )Ly y)?
k k

which is equal to the L2 —norm of the projection on Smavmy, of Yy — AX, y) Iy <yy and thus less
than the L2—norm of the function. In other words,

2
> ( / V() (X, u)I{YZU}du> < / N (X, u) Ly sy du
k
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and
E sup  (WP12(h
heB,, /(0 1)
<
S ah ZE <goj /)\A(X u)I{y>u}du>
DmVDm/ / 2 ) (D V D) Aallf o
< ——FK A X, u)y>ndu ) = <H
= nfO < A( ) {YZ } nfo
since

(D ¥ Dy )lIXallZ/ fo < I 4,00 (D + D) log (1) < Al 4,06 (D Dy + Dy Do),

for n > ng := exp(|[Aalli,/(foll Al 4,00)) and log(n) < Dy, ,log(n) < Dy .
Next we consider that there is a nesting space S, for all the S,,’s, that is Ym € M,,
Sm C Sp. Thus for h € By, »,y(0,1), from property (M1), we have ||hl|oc < /dim(S,)|| || <

Vv dim(Sp) || hll./ fo = ¢o/dim(Sy)/ fo < v/n/ fo. Therefore
sup | fn(z,y,0,6)| < [Ihlleo < Vn/fo:=

(z,y)€A
and
sup [gn(z,y)| < [|hlloe < 7Aoo/ fo := M.
(z,y)eA
Lastly
sup  Var(fp(X,Y,6,8)) <2|A[ac :=v, sup  Var(gi(X,Y)) < 7[[Al|4,00 := va.
heBm,m/ (0,1) heBm,m/ (0,1)

By applying Talagrand Inequality, we get for i = 1, 2,

. (@) i i
E( s (W2 - plmam)) | < S5 (0 Ot | =GP D)
heB,, . /(0,1)

n
and this yields the result. O
5.3.1. Proof of Lemma 2. First we observe that:

PAD) <P( sup  [a(h?)] > 1/2)
heBg, (0,1)
where 0,,(-) is defined by

n

9(h) = L3I Y) ~ B, )
i=1
and BS (0,1) = {t € Sy, [|h[l, < 1}. We denote by (x,) = (¢; ® ¢x) the L*-orthonormal basis

of Sp. If Mz, y) = D2 aj ks (@)Yr(y) = Xo5 arx,, then

(21) On(h?) = D ajrayw0n((9; ® ¥r) (0 @ Yrr)) = D axaxPn(X,X,)-
g,k.g’ k! AN

We obtain

(22) sup [ (h%)] < (fg)"" sup ‘Zawxﬁ ((XA)(XA/))‘

heBg (0,1) Y a3<1' v
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Lemma 3. Baraud et al. (2001) Let By x = [[x,X,/llco and Vax = [Ix,x, ll2- Let, for any
symmetric matriz (Ax x)

ﬁ(A) (= sup Z ’b)\bx‘A)\ bV
Zb <1, pY

and L(x) = max{p?(V), p(B)}. Then, if ¢; and 1y are trigonometric bases, we have L(x) <
4(Dy)?, and if @; and Py, are histogram bases L(x) < Dy (and more generally if the bases are
localized).

Let us define
*\2
= L and

16/*L(x)
0 = {VAX 10.(xx,) < 4(Bayva + Vany2ia) |

Starting from (22), we have, on O:

sup  [In(R*)| <4(f5)" sup Z laxax]) (BA,WC +Van v 2f*9€>-

hEBgn(O,l) ZQA<1 AN

Thus, we have on O,

sup  [0n(h3)] < ()7 sup Y babl (Baya + Vi V2 )
hEBgn (0,1) > b =1 AN
< ()M (pB)z + p(V)V2Fw)
fi p(B) 1 (V)12
= (8f* L(x) x/§<L(x)> )
< _(_ L) <1
< ) <3
Therefore,
1
P 9,2 > =) < P@b).
<te§§‘?o,1>' ()] > 5) <P

To bound P(3,(x,x,,) = Baxx + Vi xv2fz), we apply the Bernstein inequality given in ?
to the i.i.d. r.v.

(23) UM = U = 0 (X0) o0 () (Vi) hwe ().
Thus, the r.v. are bounded
U] < Ihoxalloo = Ba
Moreover,
E[(U)?] < (v, (Xi Yi)x,, (X0 Yi)?] < £V
We get
P(|9n(x, X, )| = Bayz + Vayy/2fz) < 2e7™
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Given that IF’(AE,) <PO% = DA P(Wn(X;XA/” > By yx + V) ,\/\/2f*:c>, we can write:
P(AC) < 9(pLp2))2 { n(fg)? }
( p) — ( n n ) eXp 16f* ( )
(f6)* }
16/* L(x)
Following the Lemma of Baraud et al. (2001) above, and using

L(x) < 4(DPDWY)? < ¢n/log*(n),

IN

on? exp { —

we get that, for any k, there exists a constant CIEJAQ) depending on k, f§, f*, such that
*\2 (A)
C e
(/o) log2(n)} < .
160f* nk
Now, if the basis is the histogram basis (or localized), the result is better. In this case,

L(x) < P& — D,, < n/log?(n) is enough to get (24) again. This concludes the proof of
Lemma 2. O

(24) P(Ag) < 2n%exp { —c

5.4. Sketch of proof of Theorem 2. Here the contrast decomposition is:
Fn(T) = 4n(S) = NEo(T = ) = NE,(S = ¢) = = Zfz i = C(X3, Y))(T = 9)(X3, Vi)
and the centered empirical process under study is
Zfz i = (X3, Yi)T(X3, V7).

Let us define Q¢ = A¢ N Q,, where on is defined in (B2),

H= ﬂ Hpny, Hpy = {minsp(Y,,) > max(pAO/an—l/Q)}’
meMy,

Ng,(T) 1
J— €7n

where we denote by HTH? = ||Tv/x|2.
Similarly to the previous study, for n large enough, A, N Q,, C H N2, and thus, on Q,, we
get

and

< 8N? n@m ) + 4pen<m) + 47 (G — Gm) — DER(17)
< SN2 (G — )+ 45800m) + 1 — Gl
+16 < sup 72(T) — plin, m)) + 16p(ri, m) — pen(rm).
TESp+Sm || T[e<1 n

Talagrand’s Inequality fixes the value of p(m,m’) = 2(dim(S,,) + dim(S,,/))/n to have

E sup 72(T) — p(im,m) | <

31Q
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and we take & large enough so that p(m,m’) < pen(m) + pen(m’). We get,
/

1 A 1 __ C
§Em6ﬁ—4mﬁ1%) < (8+§NKm-Q@+5pﬂﬁm)+;;
This implies that

!

. _ C
Em%rﬂﬂﬁm)SCWQn—Q@+pﬂWW)+;;
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