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Abstract—A new and efficient multicomponent reaction involving a double-allylation sequence is reported. In situ generated bime-
tallic reagents are prepared from disilane 1 and added onto a range of aliphatic aldehydes to afford a direct access to trisubstituted
tetrahydrofurans in good to excellent diastereoselectivity (up to 70%).
! 2007 Elsevier Ltd. All rights reserved.

Multicomponent reactions (MCRs) are transformations
of great interest in organic synthesis.1 The ability to
form stereoselectively two or more carbon–carbon
and/or carbon–heteroatom bonds in a single operation
is an exciting challenge in chemistry. To gain high atom
economy, selectivity, and low levels of by-products,
MCRs have been already an active area of research. In
this regard, the development of multifunctional reagents
that display chemodivergent reactivity is of interest for
the rapid preparation of novel organic compounds. In
this field, polyallylsilanes have proven to be very efficient

building blocks, for example in a one-pot double Saku-
rai addition reaction.2 Allylsilanes are useful and safe
reagents to transfer an allyl unit to an electrophilic
center.3 But, except for a few commercially available
compounds, preparation of substituted allylsilanes is not
generally easy. A very simple procedure is the reductive
disilylation of 1,3-dienes using lithium/chlorotrimeth-
ylsilane giving rise to 1,4-bis(trimethylsilyl)-2-butenes
as 1a–c.4,5 Unfortunately, addition of 1a or 1b to var-
ious electrophilic reagents in the presence of Lewis acids
led to compounds bearing a 4-trimethylsilyl-1-butene

moiety in which the second silyl group occupies a non
allylic position and is therefore not activated to further
reaction (Scheme 1).6

To explore more extensively the reactivity of 1 and to
keep intact the intrinsic information of the two allyl
metal bonds, we thought that one way to circumvent
the non reactivity of the second carbon silicon bond,
would be to transmetallate 1 via an allylic process.
The intermediate species would then react with an elec-
trophile affording a new allyl silane moiety.

As part of our research program directed to the applica-
tion of allyldisilanes in organic synthesis,7 we planned
the use of 1 as C4 dianions. In this communication,
we describe a one-pot procedure to obtain tri- and tetra-
substituted tetrahydrofurans using a sequence involving
trans-metallation of 1 and two SE2 0 reactions of
aldehydes.

A way to activate the two trimethylsilyl groups can be
the use of tin tetrachloride as Lewis acid because, in this
case, a metathesis reaction (ligand exchange) occurred
with allylic transposition.8 Investigation of the literature
revealed little precedent for the transmetallation of allyl-
silanes. In 1999, Diaz et al. reported the transmetallation
of allyltrimethylsilane with tin tetrachloride evidenced
by 1H NMR studies8a while similar studies realized by
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Denmark with titanium tetrachloride indicated the
absence of the metathesis reaction. Moreover, we recently
found that allenyltrimethylsilane was transmetallated
with tin tetrachloride affording 2-trichlorostannyl-1,3-
butadiene in quantitative yield.9 In first experiments,
when SnCl4 was added to a solution of 1 in deuterated
chloroform and stirred at room temperature for 2 min,
the proton NMR spectra evidenced the formation of
chlorotrimethylsilane and the reduction of the signal
intensity corresponding to the methylene hydrogens to
a silicon atom. Nevertheless, the reaction conducted in
CDCl3 and followed by 1H NMR spectroscopy revealed
low conversion even after 5 h. Similarly, with titanium
tetrachloride, only a small amount of trimethylsilyl chlo-
ride was detected. As a possible explanation, we thought
that an equilibrium could take place between the couple
tin tetrachloride/1a and allyltrichlorostannane 6/tri-
methylsilyl chloride.10

Accordingly to these first experiments, we carried out
the reaction of disilane 1a,b and various aldehydes in
the presence of tin tetrachloride. We have observed that
the SnCl4-mediated addition of 1a,b led to tri- or tetra-
substituted tetrahydrofurans 2–5 resulting from the suc-
cessive reaction of two moles of aldehyde.11 Reactions

with 1a led to major all-cis-diastereoisomers with two
minors products 3, 4 when normal aldehydes were used
(Scheme 2 and Table 1).12 In the case of branched alde-
hydes, the reaction with 1a or 1b proceeds with a total
diastereoselectivity leading to 2 as a single isomer.

We did not obtain tetrahydrofuran when aromatic alde-
hydes such as benzaldehyde and 4-fluorobenzaldehyde
were employed.

The stereoselectivity increased with prenyldisilane 1b in
which case, only two diastereoisomeric tetrahydrofurans
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+ Me3SiCl  Li
THF

R1

a R1 = R2 = H; b, R1 = Me, R2 = H; c, R1 = Me, R2 = Me 1a (Z:E = 60:40); 1b (Z:E = 77:23); 1c (Z:E = 60:40)
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Scheme 1. Synthesis of 1,4-bis(trimethylsilyl)-2-butenes 1a–c from 1,3-dienes and addition of 1a to various electrophilic reagents.
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Scheme 2. Addition reaction of 1a or 1b to various aldehydes.

Table 1. Obtention of 2,5-dialkyl- and 2,3,5-trialkyl-3-vinyl-tetrahydrofurans 2

Entry R1 Aldehyde Tetrahydrofuran Ratio 2:3:4 Ratio 2:5 2, Isolated yield (%)

1 H Propanal R2 = Et 84:8:8 66
2 H Pentanal R2 = n-Bu 88:6:6 56
3 H isoButanal R2 = i-Pr 100:0:0 48
4 H Nonanal R2 = n-Octyl 86:7:7 51
5 H Hydrocinnamaldehyde R2 = 2-Phenylethyl 88:6:6 56
6 Me Propanal R2 = Et 87:13 68
7 Me Pentanal R2 = n-Bu 88:12 71
8 Me isoButanal R2 = i-Pr >98:<2 54
9 Me Nonanal R2 = n-Octyl 89:11 56
10 Me Hydrocinnamaldehyde R2 = 2-Phenylethyl 90:10 52
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Figure 1. Selected NOE interactions for the determination of the
relative configuration of 2 (R1 = H, R2 = Et) and 2 (R1 = Me,
R2 = Et).
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2 and 5 were obtained (Scheme 2 and Table 1, entries 6–
10). Previously, Mohr has observed that 1-trimethylsilyl-
pent-2-en-5-ols react with acetals under protic catalysis
via a transacetalization-ring closure reaction to afford
all cis-trisubstituted tetrahydrofurans.13 A similar result
has been observed by Meyer and Cossy from cyclic allyl-
silyloxanes and aldehydes or ketones in the presence of
trimethylsilyl triflate.14 The stereochemistry of the ob-
tained tetrahydrofurans 2 and 3–5 has been determined
by NOESY NMR experiments as indicated for 215

(Fig. 1).

The reaction mechanism leading to tetrahydrofurans
begins with a metathesis step which gives regioselectively
the secondary allyltin intermediate 6, followed by the
addition of the more reactive allylstannane moiety to
aldehydes. In the case of disilane 1b, the total regioselec-
tivity for the SE2 0 reaction (absence of product resulting
from the formation of the tertiary allyltin derivative 7) is
governed by the stability of the generated cation. Then,
the stannyl alcoholate would quickly add a second
equivalent of aldehyde and then an intramolecular sub-
stitution by the allylsilane moiety gives rise to tetra-
hydrofurans through a cyclic transition state with a
chair-like structure (Scheme 3).

In contrast to 1a and 1b, the substituted 1,4-disilane 1c
does not lead to a tetrahydrofuran derivatives from
aliphatic propanal, iso-butanal, pentanal and benz-
aldehyde. Only, powerful electrophilic m-trifluorometh-
ylbenzaldehyde reacts to give alcohol 9 (2 isomers,
70:30)16 coming from a direct addition of 1c without
preliminary metathesis. It seems that the metathesis
leading to a tertiary allylstannane such as 8 is more
difficult than the formation of secondary allylstannanes
6 (Scheme 4).17

In conclusion, we have disclosed a new multicomponent
reaction affording the synthesis of tri- or tetrasubstituted

furans from a disilane (obtained in one step from 1,3-
dienes) and aldehydes. Previous results in this area used
elaborate precursors.13,14 Moreover, a good control of
the stereochemistry is observed and these results may
be applied in the synthesis of more complex products.18
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