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Massive, massless and ghost modes of gravitational w aves from higher-order gravity

Charalampos Bogdanos1, S alvatore Capozz iello2,3, M ariafelicia D e L aurentis2,3, S avvas N esseris4
1 LPT, Université d e Pa ris-S u d -1 1 , B ât. 2 1 0 , 9 1 4 0 5 O rsa y C E D E X , F ra nce

2D ipa rtim ento d i S cienze F isich e, Università d i Na po li “ F ed erico II” a nd 3INF N S ez. d i Na po li,
C o m p l. Univ. d i M o nte S . A ngelo , E d ifi c io G , Via C inth ia , I-8 0 1 2 6 , Na po li, Ita ly

4Th e Niels B o h r Interna tio na l A ca d em y , Th e Niels B o h r Institu te,
B legd a m svej 1 7 , D K -2 1 0 0 , C o penh a gen Ø , D enm a rk

(D a te d : 6 th A u g u st 2 0 1 0 )

W e lin e a riz e th e fi e ld e q u a tio n s fo r h ig h e r o rd e r th e o rie s th a t c o n ta in sc a la r in v a ria n ts o th e r th a n
th e R ic c i sc a la r. W e fi n d th a t b e sid e s a m a ssle ss sp in -2 fi e ld (th e sta n d a rd g ra v ito n ), th e th e o ry
c o n ta in s a lso sp in -0 a n d sp in -2 m a ssiv e m o d e s. T h e n , w e in v e stig a te th e p o ssib le d ete cta b ility o f
su ch a d d itio n a l p o la riz a tio n m o d e s o f a sto ch a stic g ra v ita tio n a l w a v e b y g ro u n d -b a se d a n d sp a c e in -
te rfe ro m e tric d e te cto rs. F in a lly , w e e x te n d th e fo rm a lism o f th e c ro ss-c o rre la tio n a n a ly sis, in c lu d in g
th e a d d itio n a l p o la riz a tio n m o d e s, a n d c a lc u la te th e d e te c ta b le e n e rg y d e n sity o f th e sp e c tru m fo r
a sto ch a stic b a ck g ro u n d o f th e re lic g ra v ity w a v e s th a t c o rre sp o n d s to o u r m o d e l. F o r th e situ a tio n
c o n sid e re d h e re , w e fi n d th a t th e se m a ssiv e m o d e s a re c e rta in ly o f in te re st fo r d ire c t d e te c tio n b y
th e LIS A e x p e rim e n t.
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I. INTRODUCTION

Recently, the data analysis of interferometric gravita-
tional w ave (GW ) detectors has been started (for the
current status of GW s interferometers see [1 – 5 ]) and the
scientific community aims at a first direct detection of
GW s in next years. T he design and the construction of a
number of sensitive detectors for GW s is underw ay today.
T here are some laser interferometers lik e the V IRGO
detector, built in Cascina, near P isa, Italy, by a joint
Italian-F rench collaboration, the GE O 6 0 0 detector built
in H annover, Germany, by a joint A nglo-German collabo-
ration, the tw o L IGO detectors built in the U nited S tates
(one in H anford, W ashington and the other in L ivingston,
L ouisiana) by a joint Caltech-M IT collaboration, and the
T A M A 3 0 0 detector, in T ok yo, J apan.

M any detectors are currently in operation too, and
several interferometers are in a phase of planning and
proposal stages (for the current status of gravitational
w aves experiments see [6 – 8 ]). T he results of these de-
tectors w ill have a fundamental impact on astrophysics
and gravitational physics and w ill be important for a bet-
ter k now ledge of the U niverse and either to confirm or
rule out the physical consistency of General Relativity or
any other theory of gravitation [9 ]. S everal issues com-
ing from Cosmology and Q uantum F ield T heory suggest
to extend the E instein General Relativity (GR), in order
to cure several shortcomings emerging from astrophysi-
cal observations and fundamental physics. F or example,
problems in early time cosmology led to the conclusion
that the S tandard Cosmological M odel could be inade-
q uate to describe the U niverse at extreme regimes. In
fact, GR does not w ork at the fundamental level, w hen
one w ants to achieve a full q uantum description of space-
time (and then of gravity).

Given these facts and the lack of a final self-consistent

Q uantum Gravity T heory, alternative theories of grav-
ity have been pursued as part of a semi-classical scheme
w here GR and its positive results should be recovered.
T he approach of E xtended T heories of Gravity (E T Gs)
based on corrections and enlargements of the E instein
scheme, have become a sort of paradigm in the study
of the gravitational interaction. Beside fundamental
physics motivations, these theories have received a lot of
interest in cosmology since they “ naturally” exhibit in-
fl ationary behavior w hich can overcome the shortcomings
of standard cosmology. T he related cosmological models
seem realistic and capable of coping w ith observations.
E T Gs are starting to play an interesting role to describe
today’s observed U niverse. In fact, the good q uality data
of last decade has made it possible to shed new light on
the eff ective picture of the U niverse.

F rom an astrophysical point of view , E T Gs do not re-
q uire finding candidates for dark energy and dark matter
at the fundamental level; the approach starts from tak ing
into account only the “ observed” ingredients (i.e. grav-
ity, radiation and baryonic matter); it is in full agree-
ment w ith the early spirit of a GR that could not act
in the same w ay at all scales. F or example, it is possi-
ble to show that several scalar-tensor and f(R)-models
(w here f is a generic function of the Ricci scalar R) agree
w ith observed cosmology, extragalactic and galactic ob-
servations and S olar S ystem tests, and give rise to new
eff ects capable of explaining the observed acceleration of
the cosmic fl uid and the missing matter eff ect of self-
gravitating structures w ithout considering dark energy
and dark matter. F or comprehensive review s on the ar-
gument, see [1 0 ].

A t a fundamental level, detecting new gravitational
modes could be a sort of experimentum crucis in order
to discriminate among theories since this fact w ould be
the “ signature” that GR should be enlarged or modified
[1 1 , 1 2 ].
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The outline of the paper is as follows. In Sect. II, the
general action of the class of theories under considera-
tion is introduced. Then we will linearize them around
a Minkowski background to find the modes of the met-
ric perturbations. In Sect. III, we take into account the
various polarizations of the massless and massive modes,
while in Sect. IV we investigate the response of a sin-
gle detector to a GW propagating in certain direction
with each polarization mode. In Sect. V, we discuss the
spectrum of the GW stochastic background where also
further modes are considered. Conclusions are drawn in
Sect. VI.

II. HIGHER ORDER GRAVITY

Let us generalize the action of GR by adding curvature
invariants other than the Ricci scalar. Specifically, we
will consider the action 1

S =

∫

d4x
√
−gf(R,P,Q) (2.1)

where

P ≡ RabR
ab

Q ≡ Rabc d R
abc d (2.2)

Varying with respect to the metric one gets the field
equations [13]:

FGµν =
1

2
gµν (f − R F ) − (gµν� −∇µ∇ν)F

−2
(

fP Ra
µRaν + fQ Rabc µRabc

ν

)

−gµν∇a∇b(fP Rab) − �(fP Rµν)

+2∇a∇b

(

fP Ra
(µδb

ν) + 2fQ Ra b
(µν)

)

(2.3)

where we have set

F ≡ ∂f

∂R
, fP ≡ ∂f

∂P
, fQ ≡ ∂f

∂Q
(2.4 )

and � = gab∇a∇b is the d’Alembert operator while the
notation T(ij ) = 1

2 (Tij +Tj i) denotes symmetrization with
respect to the indices (i, j ).

Taking the trace of eq. (2.3) we find:

�

(

F +
fP

3
R

)

=

1

3

(

2f − RF − 2∇a∇b((fP + 2fQ)Rab) − 2(fP P + fQQ)
)

(2.5)

1 Conventions: gab = (−1, 1, 1, 1), Ra
bcd

= Γa
bd ,c

− Γa
bc,d

+

... , Rab = Rc
acb

, G ab = 8 π G N Tab and all indices ru n from
0 to 3 .

Expanding the third term on the RHS of (2.5) and
using the purely geometrical identity Gab

;b = 0 we get:

�

(

F +
2

3
(fP + fQ)R

)

=
1

3
×

[2f − RF − 2Rab∇a∇b(fP + 2fQ) − R�(fP + 2fQ)

−2(fP P + fQQ)] (2.6)

If we define

Φ ≡ F +
2

3
(fP + fQ)R (2.7 )

and
dV

dΦ
≡ RHS of (2.6)

then we get a K lein-Gordon equation for the scalar field
Φ:

�Φ =
dV

dΦ
(2.8)

In order to find the various modes of the gravity waves
of this theory we need to linearize gravity around a
Minkowski background:

gµν = ηµν + hµν

Φ = Φ0 + δΦ (2.9)

Then from eq. (2.7 ) we get

δΦ = δF +
2

3
(δfP + δfQ)R0 +

2

3
(fP0 + fQ0)δR (2.10)

where R0 ≡ R(ηµν) = 0 and similarly fP0 = ∂ f
∂ P

|ηµν

(note that the 0 indicates evaluation with the Minkowski
metric) which is either constant or zero. By δR we denote
the first order perturbation on the Ricci scalar which,
along with the perturbed parts of the Riemann and Ricci
tensors, are given by (see for example Ref.[14 ]):

δRµνρσ =
1

2
(∂ρ∂νhµσ + ∂σ∂µhνρ − ∂σ∂νhµρ − ∂ρ∂µhνσ)

δRµν =
1

2

(

∂σ∂νhσ
µ + ∂σ∂µhσ

ν − ∂µ∂νh − �hµν

)

δR = ∂µ∂νhµν − �h

where h = ηµνhµν . The first term of eq. (2.10) is

δF =
∂F

∂R
|0 δR +

∂F

∂P
|0 δP +

∂F

∂Q
|0 δQ (2.11)

However, since δP and δQ are second order we get δF �
F,R 0 δR and

δΦ =

(

F,R 0 +
2

3
(fP0 + fQ0)

)

δR (2.12)

Finally, from eq. (2.6) we get the K lein-Gordon equation
for the scalar perturbation δΦ
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�δΦ =
1

3

F0

F,R0 + 2
3 (fP0 + fQ0)

δΦ −

2

3
δRab∂a∂b(fP0 + 2fQ0) −

1

3
δR�(fP0 + 2fQ0)

= m2
sδΦ

(2.13)

The last two terms in the first line are actually are zero
since the terms fP0, fQ0 are constants and we have de-

fined the scalar mass as m2
s ≡ 1

3
F0

F,R0+ 2

3
(fP0+fQ0)

.

Perturbing the field equations (2.3) we get:

F0(δRµν − 1

2
ηµνδR) =

−(ηµν� − ∂µ∂ν)(δΦ − 2

3
(fP0 + fQ0)δR)

−ηµν∂a∂b(fP0δR
ab) − �(fP0δRµν)

+2∂a∂b(fP0 δRa
(µδb

ν) + 2fQ0 δRa b
(µν) )

(2.14)

It is convenient to work in Fourier space so that for ex-
ample ∂γhµν → ikγhµν and �hµν → −k2hµν . Then the
above equation becomes

F0(δRµν − 1

2
ηµνδR) =

(ηµνk2 − kµkν)(δΦ − 2

3
(fP0 + fQ0)δR)

+ηµνkakb(fP0δR
ab) + k2(fP0δRµν)

−2kakb(fP0 δRa
(µδb

ν)) − 4kakb(fQ0 δRa b
(µν) )

(2.15)

We can rewrite the metric perturbation as

hµν = h̄µν − h̄

2
ηµν + ηµνhf (2.16)

and use our gauge freedom to define to demand that the
usual conditions hold ∂µh̄µν = 0 and h̄ = 0. The first of
these conditions implies that kµh̄µν = 0 while the second
that

hµν = h̄µν + ηµνhf

h = 4hf (2.17)

With these in mind we have:

δRµν =
1

2

(

2kµkνhf + k2ηµνhf + k2h̄µν

)

δR = 3k2hf

kαkβ δR
α β

(µν) = −1

2

(

(k4ηµν − k2kµkν)hf + k4h̄µν

)

kakb δRa
(µδb

ν) =
3

2
k2kµkνhf

(2.18)

Using equations (2.16)-(2.18) into (2.15) and after some
algebra we get:

1

2

(

k2 − k4 fP0 + 4fQ0

F0

)

h̄µν =

(ηµνk2 − kµkν)
δΦ

F0
+ (ηµνk2 − kµkν)hf

(2.19)

Defining hf ≡ − δΦ
F0

we find the equation for the pertur-
bations:

(

k2 +
k4

m2
sp in 2

)

h̄µν = 0 (2.20)

where we have defined m2
sp in 2 ≡ − F0

fP0+4fQ0

, while from

eq. (2.13) we get:

�hf = m2
shf (2.21)

From equation (2.20) it is easy to see that we have a mod-
ified dispersion relation which corresponds to a massless
spin-2 field (k2 = 0) and a massive spin-2 (wh ich c o u ld
be addressed as ”ghost modes”) k2 = F0

1

2
fP0+ 2fQ0

≡

−m2
sp in 2 with m a ss m2

sp in 2. T o see this, no te tha t the

p ro p a g a to r fo r h̄µ ν ca n b e rewritten a s

G(k) ∝
1

k2
−

1

k2 + m2
sp in 2

(2 .2 2 )

C lea rly the seco nd term ha s the o p p o site sig n, which in-
d ica tes the p resence o f a n egativ e en ergy mode (a
ghost), a nd this a g rees with the resu lts fo u nd in the
litera tu re fo r this cla ss o f theo ries [15 – 17 ].

A lso , a s a sa nity check , we ca n see tha t fo r the G a u ss-
B o nnet term LG B = Q− 4P +R2 we ha v e fP0 = −4 a nd
fQ0 = 1. T hen, eq u a tio n (2 .2 0 ) sim p lifi es to k2h̄µ ν = 0
a nd in this ca se we ha v e no n egativ e en ergy modes a s
ex p ected .

T he so lu tio n to eq s. (2 .2 0 ) a nd (2 .2 1) ca n b e written
in term s o f p la ne wa v es

h̄µ ν = Aµ ν (−→p ) · e xp(ikαxα) + c c (2 .2 3 )

hf = a(−→p ) · e xp(iqαxα) + c c (2 .2 4)

where

kα
≡ (ωmsp i n 2

,−→p ) ωmsp i n 2
=

√

m2
sp in 2

+ p2

qα
≡ (ωms

,−→p ) ωms
=

√

m2
s + p2.

(2 .2 5 )

a nd where msp in 2 is zero (no n-zero ) in the ca se o f m a ss-
less (m a ssiv e) sp in-2 m o d e a nd the p o la riz a tio n tenso rs
Aµ ν (−→p ) ca n b e fo u nd in R ef. [18 ] (see eq u a tio ns (2 1)-
(2 3 )). In eq s. (2 .2 0 ) a nd (2 .2 3 ) the eq u a tio n a nd the so -
lu tio n fo r the sta nd a rd wa v es o f G enera l R ela tiv ity [2 6 ]
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have been obtained, while eqs. (2.21) and (2.24) are re-
spectively the equation and the solution for the massive
mode (see also [27]).

The fact that the dispersion law for the modes of the
massive field hf is not linear has to be emphasized. The
velocity of every “ ordinary” (i.e. which arises from Gen-
eral Relativity) mode h̄µν is the light speed c, but the
dispersion law (the second of eq. (2.25)) for the modes of
hf is that of a massive field which can be discussed like
a wave-packet [27]. Also, the group-velocity of a wave-
packet of hf centered in −→p is

−→vG =
−→p
ω

, (2.26)

which is exactly the velocity of a massive particle with
mass m and momentum −→p .

F rom the second of eqs. (2.25) and eq. (2.26) it is
simple to obtain:

vG =

√
ω2 − m2

ω
. (2.27)

Then, wanting a constant speed of the wave-packet, it
has to be [27]

m =
√

(1 − v2
G)ω. (2.28)

N ow, before we proceed with the analysis, we should
discuss the phenomenological limitations to the mass of
the GW [28]. Taking into account the fact that the GW
needs a frequency which falls in the range for both of
space based and earth based gravitational antennas, that
is the interval 10−4H z ≤ f ≤ 10K H z [1–5, 29 –31], a
quite strong limitation will arise. F or a massive GW ,
from [32] it is:

2π f = ω =
√

m2 + p2, (2.29 )

were p is the momentum. Thus, it needs

0eV ≤ m ≤ 10−11eV . (2.30)

A stronger limitation is given by requirements of cos-
mology and S olar S ystem tests on extended theories of
gravity. In this case it is

0eV ≤ m ≤ 10−3 3 eV . (2.31)

F or these light scalars, their eff ect can be still discussed
as a coherent GW .

III. POLARIZATION STATES OF

G RAV ITATIONAL W AV ES

Considering the above equations, we can note that
there are two conditions for eq. (2.13) that depend on
the value of k2. In fact we can have a k2 = 0 mode that
corresponds to a massless spin-2 field with two indepen-
dent polarizations plus a scalar mode, while if we have
k2 �= 0 we have a massive spin-2 ghost mode and there
are five independent polarization tensors plus a scalar
mode. F irst, let us consider the case where the spin-2
field is massless.

Taking −→p in the z direction, a gauge in which only
A11, A22, and A12 = A21 are diff erent to zero can be
chosen. The condition h̄ = 0 gives A11 = −A22. In this
frame we may take the bases of polarizations defined in
this way2

e(+)
µν =

1√
2





1 0 0
0 −1 0
0 0 0



 , e(×)
µν =

1√
2





0 1 0
1 0 0
0 0 0





e(s)
µν =

1√
2





0 0 0
0 0 0
0 0 1



 (3.1)

N ow, putting these equations in eq. (2.16), it results

hµν(t, z) = A+(t − z)e(+)
µν + A×(t − z)e(×)

µν

+ hs(t − vGz)es
µν (3.2)

The terms A+(t − z)e
(+)
µν + A×(t − z)e

(×)
µν describe

the two standard polarizations of gravitational waves
which arise from General Relativity, while the term
hs(t−vGz)ηµν is the massive field arising from the generic
high order f(R) theory.

W hen the spin-2 field is massive, we have that the bases
of the six polarizations are defined by

e(+)
µν =

1√
2





1 0 0
0 −1 0
0 0 0



 , e(×)
µν =

1√
2





0 1 0
1 0 0
0 0 0





e(B)
µν =

1√
2





0 0 1
0 0 0
1 0 0



 , e(C)
µν =

1√
2





0 0 0
0 0 1
0 1 0





e(D)
µν =

√
2

3





1
2 0 0
0 1

2 0
0 0 −1



 , e(s)
µν =

1√
2





0 0 0
0 0 0
0 0 1





2 The polarizations are defined in our 3-space, not in a spacetime

w ith ex tra dimensions. E ach polarization mode is orthog onal to

one another and is normalized eµνeµν = 2 δ. N ote that other

modes are not traceless, in contrast to the ordinary plus and

cross polarization modes in G R .
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Figure 1: The six polarization modes of gravitational waves.
The picture shows the displacement that each mode induces
on a sphere of test partic les at the moments of diff erent phases
b y π. The wave propagates out of the plane in (a), (b ), (c ),
and it propagates in the plane in (d), (e) and (f). W here
in (a) and (b ) we have respectively the plus mode and cross
mode, in (c ) the scalar mode, in (d), (e) and (f) the D , B and
C mode.

and the amplitude can be written in terms of the 6
polarization states as

hµν(t, z) = A+(t − vGs2
z)e(+)

µν + A×(t − vGs2
z)e(×)

µν

+BB(t − vGs2
z)e(B)

µν + CC(t − vGs2
z)e(C)

µν

+DD(t − vGs2
z)e(D)

µν + hs(t − vGz)es
µν.

(3.3)

where vGs2
is the group velocity of the massive spin-2

field and is given by

vGs2
=

√

ω2 − m2
s2

ω
. (3.4)

The first two polarizations are the same as in the mass-
less case, inducing tidal deformations on the x-y plane.
In Fig.1, we illustrate how each GW polarization affects
test masses arranged on a circle.

The presence of the negative energy modes mode
may seem as a pathology of the theory from a purely
quantum-mechanical approach. There are several rea-
sons to consider such a mode as problematic if we wish
to pursuit the particle picture interpretation of the metric
perturbations. The ghost mode can be viewed as either
a particle state of positive energy and negative probabil-
ity density, or a positive probability density state with

a negative energy. In the first case, allowing the pres-
ence of such a particle will quickly induce violation of
unitarity. The negative energy scenario leads to a the-
ory where there is no minimum energy and the system
thus becomes unstable with grow ing amp litudes. T he
vacuum can decay into p airs of ordinary and ghost
gravitons leading to a catastrop hic instability. Of
course, the dynamical ghost modes could be can-
celled out by yet higher derivative terms, leading
to an infi nite order eff ective action.

O ne way out of such problems is to impose a very weak
coupling of the ghost with the rest of the particles in
the theory, such that the decay rate of the vacuum will
become comparable to the inverse of the H ubble scale.
The present vacuum state will then appear to be suffi -
ciently stable. This is not a viable option in our theory,
since the ghost state comes in the gravitational sector,
which is bound to couple to all kinds of matter present
and it seems physically and mathematically unlikely for
the ghost graviton to couple differently than the ordinary
massless graviton does. Another option is to assume that
this picture does not hold up to arbitrarily high energies
and that at some cutoff scale Mc u to ff the theory gets
modified appropriately as to ensure a ghost-free behav-
ior and a stable ground state. This can happen for ex-
ample if we assume that L orentz invariance is violated
at Mc u to ff , thereby restricting any potentially harmful
decay rates [33].

H owever, there is no guaranty that theories of modified
gravity such as the one investigated here are supposed to
hold up to arbitrary energies. Such models are plagued
at the quantum level by the same problems as ordinary
General Relativity, i.e. they are non-renormalizable. It is
therefore not necessary for them to be considered as gen-
uine candidates for a quantum gravity theory and the cor-
responding ghost particle interpretation (virtual mas-
sive modes) becomes rather ambiguous. At the purely
classical level, the perturbation hµν should be viewed as
nothing more than a tensor representing the “stretch-
ing” of spacetime away from fl atness. A ghost mode
then makes sense as just another way of propagating this
perturbation of the spacetime geometry, one which car-
ries the opposite sign in the propagator than an ordinary
massive graviton would.

V iewed in this way, the presence of the massive ghost
graviton will induce on an interferometer the same effects
as an ordinary massive graviton transmitting the pertur-
bation, but with the opposite sign in the displacement.
Tidal stretching from a polarized wave on the polariza-
tion plane will be turned into shrinking and vice-versa.
This signal will, at the end, be a superposition of the
displacements coming from the ordinary massless spin-
2 graviton and the massive ghost. Since these induce
two competing effects, this will lead to a less pronounced
signal than the one we would expect if the ghost mode
was absent, setting in this way less severe constraints on
the theory. On the other hand, treating ghost
modes just as small p erturbations could be not
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sensible. A s stated above, the dynamical ghost
modes could be cancelled by other higher deriva-
tive terms. In that case, nonetheless, it might still
mak e sense to analyse the impact on propagation
owing to virtual massive mode effects (Y uk awa
terms) on the massless modes [3 9 ]. However, the
presence of the new modes will also affect the total en-
ergy density carried by the gravitational waves and this
may also appear as a candidate signal in stochastic back-
grounds, as we will see in the following.

IV. GRAVITATIONAL WAVES PROPAGATING

IN A C ERTAIN D IREC TION AND TH E

POSSIB LE D ETEC TOR RESPONSE

Let us consider now now the possible response of a
detector revealing GWs coming from a certain direction.
It is important to stress that the detector output depends
on the GW amplitude that is determined by a specific
theoretical model. However, one can study the detector
response to each GW polarization without specifying, a
priori, the theoretical model. Following [19, 22–25, 39]
the angular pattern function of a detector to GWs is
given by

FA(Ω̂) = D : eA(Ω̂) , (4.1)

D =
1

2
[û⊗ û − v̂ ⊗ v̂] ,

here A = +,×, B, C, D, s . The symbol : is contraction
between tensors. D is the detector tensor representing
the response of a laser-interferometric detector. It maps
the metric perturbation in a signal on the detector. The
vectors û and v̂ are unitary and orthogonal to each other.
They are directed to each detector arm and form an or-
thonormal coordinate system with the unit vector ŵ (see

Fig. 2). Ω̂ is the vector directed along the GW prop-
agation. E q. (4.1) holds only when the arm length of
the detector is smaller and smaller than the GW wave-
length that we are taking into account. This is relevant
for dealing with ground-based laser interferometers but
this condition could not be valid when dealing with space
interferometers like LISA.

A standard orthonormal coordinate system for the de-
tector is







û = (1, 0, 0)
v̂ = (0, 1, 0)
ŵ = (0, 0, 1)

.

On the other hand, the coordinate system for the GW,
rotated by angles (θ, φ ), is given by







û′ = (cos θ cos φ , cos θ sin φ ,− sin θ)
v̂′ = (− sin φ , cos φ , 0)
ŵ′ = (sin θ cos φ , sin θ sin φ , cos θ)

.

The rotation with respect to the angle ψ, around the
GW-propagating axis, gives the most general choice for

Figure 2: The coordinate systems used to calculate the polar-
ization tensors and the pictorial view of the coordinate trans-
formation.

the coordinate system, that is







m̂ = û′ cosψ + v̂′ sin ψ
n̂ = −v̂′ sin ψ + û′ cosψ

Ω̂ = ŵ′

.

Coordinates (û, v̂, ŵ) are related to the coordinates

(m̂, n̂, Ω̂) by the rotation angles (φ , θ, ψ), as in Fig. 2.

By thevectors m̂, n̂, and Ω̂, the polarization tensors are

e+ =
1√
2

(m̂ ⊗ m̂ − n̂⊗ n̂) ,

e× =
1√
2

(m̂ ⊗ n̂ + n̂⊗ m̂) ,

eB =
1√
2

(

m̂ ⊗ Ω̂ + Ω̂ ⊗ m̂
)

,

eC =
1√
2

(

n̂⊗ Ω̂ + Ω̂⊗ n̂
)

.

eD =

√
3

2

(

m̂

2
⊗ m̂

2
+

n̂

2
⊗ n̂

2
+ Ω̂⊗ Ω̂

)

,

es =
1√
2

(

Ω̂⊗ Ω̂
)

,

Taking into account E qs. (4.1), the angular patterns
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for each polarization are

F+(θ, φ, ψ) =
1√
2
(1 + cos2 θ) cos 2φ cos 2ψ

− cos θ sin 2φ sin 2ψ ,

F×(θ, φ, ψ) = − 1√
2
(1 + cos2 θ) cos 2φ sin 2ψ

− cos θ sin 2φ cos 2ψ ,

FB(θ, φ, ψ) = sin θ (cos θ cos 2φ cosψ − sin 2φ sinψ) ,

FC(θ, φ, ψ) = sin θ (cos θ cos 2φ sinψ + sin 2φ cosψ) ,

FD(θ, φ) =

√
3

32
cos 2φ

(

6 sin2 θ + (cos 2θ + 3) cos 2ψ
)

,

Fs(θ, φ) =
1√
2

sin2 θ cos 2φ .

The angular pattern functions for each polarization are
plotted in Fig. 3. These results, also if we have considered
a different model, are consistent, for example, with those
in [19–21]. Another step is now to consider the stochas-
tic background of GWs in order to test the possible de-
tectability of such further contributions in gravitational
radiation.

V. THE STOCHASTIC BACKGROUND OF

GRAVITATIONAL WAVES

The contributions to the gravitational radiation com-
ing from higher order gravity could be efficiently selected
if it would be possible to investigate gravitational sources
in extremely strong field regimes. In such a case, the fur-
ther polarizations coming from the higher order contribu-
tions could be, in principle, investigated by the response
of a single GW detector described above. However, this
situation seems extremly futuristic at the moment so the
only realistic approach to investigate these further con-
tribution seems the cosmological background, in partic-
ular, the stochastic background of GWs. Such a GW
background can be roughly divided into two classes of
phenomena: the background generated by the incoherent
superposition of gravitational radiation emitted by large
populations of astrophysical sources (hard to be resolved
individually [34]), and the primordial GW background
generated by processes in the early cosmological eras [35].
P rimordial components of such background are interest-
ing, since they carry information on the primordial U ni-
verse and, on the other hand, can give information on
the gravitational interaction at that epochs [40, 41]. The
physical process of GW production has been analyzed,
for example, in [36–38] but only for the first two stan-
dard tensorial components of Eq. (3.2), that is the GR
components. Actually the process can be improved con-
sidering all the components that we have considered here.
Before starting with the analysis, it has to be emphasized
that, considering a stochastic background of GWs, it can
be described and characterized by a dimensionless spec-
trum (see the definition [36, 37, 39, 43])

Figure 3: Plots along the panel lines from left to right of
angular pattern functions of a detector for each polarization.
From left plus mode F+, cross mode F×, B mode FB , C mode

FC , D mode FD,a n d sc a la r mode Fs. T h e a n g u la r p a ttern

fu n c tion of th e FB a n d FC mode is th e same ex cep t for a

rota tion .

ΩA
g w (f) =

1

ρc

dρA
g w

d ln f
, (5 .1)

where

ρc ≡

3H2
0

8πG
(5 .2 )

is the (a c tua l) c ritic a l energ y density of the U niv erse, H0

the toda y observ ed H ubble ex pa nsion ra te, a nd dρs g w is
the energ y density of the pa rt of the g ra v ita tiona l ra dia -
tion conta ined in the freq uency ra ng e f to f + df .

ρg w =

∫

∞

0

df ρ̃g w (f) . (5 .3)

where ρ̃G W is the G W s energ y density per unit freq uency .
Ωg w (f) is rela ted to Sh(f) by [38, 39 ]

ΩA
g w (f) =

(

4π2

3H2
0

)

f3SA
h (f) . (5 .4)
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N ote that the above definition is diff erent from that in
the literature [38, 39], by a factor of 2, since it is defined
for each polarization. It is convenient to represent the
energy density with the form h2

0 Ωgw(f) by param etriz -
ing the Hubble constant as H0 = 10 0 h0 k m s−1 M pc−1.
T hen, the GW stochastic back ground energy density of
all m odes can be written as

ΩA
gw ≡ Ω+

gw + Ω×

gw + ΩB
gw + ΩC

gw + ΩD
gw + Ωs

gw

(5.5)

we can split ΩA
gw as a part arising from GR

ΩG R
gw = Ω+

gw + Ω×

gw , Ω+
gw = Ω×

gw (5.6 )

a part from higher-order-gravity

ΩH O G
gw = ΩB

gw+ΩC
gw+ΩD

gw , ΩB
gw = ΩC

gw = ΩD
gw (5.7 )

and a scalar part Ωs
gw.

We are considering now standard units and study only
the m odes which arise from higher order theory.

T he relic stochastic back ground of GWs can be de-
rived by considering only general assum ptions and basic
principles of Q uantum F ield T heory and GR . T he quan-
tum fluctuations of the zero-point energy can be am pli-
fied in the early Universe by the large variations of grav-
ity and this m echanism produces GWs. A very inter-
esting by-product of GWs is that they can be used to
probe the evolution of the Universe at early tim es, even
up to the P lanck epoch and the B ig B ang singularity
[36 , 37 , 39, 43]. T he m echanism of the GWs is con-
nected to inflationary scenario [44, 45], which fits well
the WM A P data and is in particularly good agreem ent
with alm ost exponential inflation and spectral index ≈ 1,
[46 , 47 ].

A rem ark able fact about the inflationary scenario is
that it contains a natural m echanism which gives rise
to perturbations for any field. It is im portant for our
aim s that such a m echanism provides also a distinctive
spectrum for relic scalar GWs. T hese perturbations in
inflationary cosm ology arise from the m ost basic quan-
tum m echanical eff ect: the uncertainty principle. In this
way, the spectrum of relic GWs that we could detect to-
day is nothing else but the adiabatically-am plified zero-
point fluctuations [36 , 37 ]. T he calculation for a sim ple
inflationary m odel can be perform ed for the scalar field
com ponent of eq. (3.2). L et us assum e that the early Uni-
verse is described an inflationary de S itter phase em erg-
ing in a radiation dom inated phase [36 , 37 , 43]. T he
conform al m etric elem ent is

ds2 = a2(η)[−dη2 + d−→x 2 + hµν(η,−→x )dxµdxν ], (5.8)

where, for a purely GW the m etric perturbation (3.2)
reduces to

hµν = hAe(A)
µν . (5.9)

where A = +,×, B , C , D , and s. L et us assum e a phase
transition between a de S itter and a radiation-dom inated

phase [36 , 37 ], we have: η1 is the inflation-radiation tran-
sition conform al tim e and η0 is the value of conform al
tim e today. If we express the scale factor in term s of
com oving tim e cdt = a(t)dη, we have

a(t) ∝ exp(Hd st), a(t) ∝
√

t (5.10 )

for the de S itter and radiation phases respectively. In
order to solve the horizon and flatness problem s, the con-

dition
a(η0)

a(η1)
> 10 27 has to be satisfied. T he relic scalar-

tensor GWs are the weak perturbations hµν(η,−→x ) of the
m etric (5.9) which can be written in the form

hµν = e(A)
µν (k̂)X(η) exp(i

−→
k · −→x ), (5.11)

in term s of the conform al tim e η where
−→
k is a constant

wavevector. F rom eq.(5.11), the com ponent is

Φ (η,
−→
k ,−→x ) = X(η) exp(i

−→
k · −→x ). (5.12)

A ssum ing Y (η) = a(η)X(η), from the K lein-Gordon
equation in the F R W m etric, one gets

Y ′′ +

(

|−→k |2 − a′′

a

)

Y = 0 (5.13)

where the prim e ′ denotes derivative with respect to the
conform al tim e. T he solutions of eq. (5.13) can be ex-
pressed in term s of Hank el functions in both the infla-
tionary and radiation dom inated eras, that is:
F or η < η1

X(η) =
a(η1)

a(η)
[1 + iHd sω

−1] exp (−ik(η − η1)) , (5.14)

for η > η1

X(η) =
a(η1)

a(η)
[α exp (−ik(η − η1)) + β exp (ik(η − η1))] ,

(5.15)
where ω = ck/ a is the angular frequency of the wave

(which is function of the tim e being k = |−→k | constant),
α and β are tim e-independent constants which we can
obtain dem anding that both X and dX/ dη are contin-
uous at the boundary η = η1 between the inflationary
and the radiation dom inated eras. B y this constraint, we
obtain

α = 1 + i

√
Hd sH0

ω
− Hd sH0

2ω2
, β =

Hd sH0

2ω2
(5.16 )

In eqs. (5.16 ), ω = ck/ a(η0) is the angular frequency
as observed today, H0 = c / η0 is the Hubble expansion
rate as observed today. S uch calculations are referred in
literature as the B ogoliubov coeffi cient m ethods [36 , 37 ].

In an inflationary scenario, every classical or m acro-
scopic perturbation is dam ped out by the inflation, i.e.
the m inim um allowed level of fluctuations is that required
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by the uncertainty principle. The solution (5.14) corre-
sponds to a de Sitter vacuum state. If the period of in-
flation is long enough, the today observable properties of
the Universe should be indistinguishable from the prop-
erties of a Universe started in the de Sitter vacuum state.
D uring the radiation dominated phase, the particles are
described by the eigenmodes that correspond to the co-
efficients of α, while the antiparticles correspond to the
coefficients of β. Therefore, the number of particles that
have been created at angular frequency ω in the radiation
phase is given by

Nω = |βω|2 =

(

HdsH0

2ω2

)2

. (5.17)

Now it is possible to write an expression for the en-
ergy density of the stochastic scalar-tensor relic gravitons
background in the frequency interval (ω, ω+dω) for each
mode as

dρA
gw = �ω

(

ω2dω

2π2c3

)

Nω =
�H2

dsH
2
0

8π2c3

dω

ω
=

�H2
dsH

2
0

8π2c3

df

f
,

(5.18)
where f , as above, is the frequency in standard comoving
time. eq. (5.18) can be rewritten in terms of the today
and de Sitter value of energy density being

H2
0 =

8πGρc

3c2
, H2

ds =
8πGρds

3c2
. (5.19)

Introducing the Planck density ρP lan ck =
c7

�G2
the spec-

trum is given by

ΩA
gw(f) =

1

ρc

dρgw

d ln f
=

f

ρc

dρgw

df
=

8

9

ρds

ρP lan ck
. (5.20)

At this point, some comments are in order. First of all,
such a calculation works for a simplified model that does
not include the matter dominated era. If we also include
such an era, we would also have to take into account the
redshift at the equivalence epoch and this results in [38]

ΩA
gw(f) =

8

9

ρds

ρP lan ck
(1 + ze q )

−1, (5.21)

for the waves which, at the epoch in which the Universe
becomes matter dominated, have a frequency higher than
He q , the Hubble parameter at equivalence. This situa-

tion corresponds to frequencies f > (1 + ze q )
1/2H0. The

redshift correction in eq.(5.21) is needed since the to-
day observed Hubble parameter H0 would result differ-
ent without a matter dominated contribution. At lower
frequencies, the spectrum is given by [36, 37]

Ωgw(f) ∝ f−2. (5.22)

As a further consideration, let us note that the results
(5.20) and (5.21), which are not frequency dependent,
do not work correctly in all the range of physical fre-
quencies. Waves that have frequencies less than H0, the

energy density is in a sense not well defined, as their
wavelength becomes larger than the Hubble scale of the
Universe. In a similar manner, at high frequencies, there
is a maximal frequency above which the spectrum rapidly
drops to zero. In the above calculation, the simple as-
sumption that the phase transition from the inflationary
to the radiation dominated epoch is instantaneous has
been made. In the physical Universe, this process occurs
over some time scale ∆τ , being

fm ax =
a(t1)

a(t0)

1

∆τ
, (5.23)

which is the redshifted rate of the transition. In any
case, ΩA

gw drops rapidly. The two cutoffs at low and high
frequencies for the spectrum guarantee that the total en-
ergy density of the relic gravitons is finite. These results
can be quantitatively constrained considering the recent
WMAP release. Nevertheless, since the spectrum falls
off ∝ f−2 at low frequencies, this means that today, at
LIGO -VIRGO and LISA frequencies, one gets for the GR
part [39, 42]

ΩGR
gw (f)h2

100 < 2 × 10−6. (5.24)

for the higher-order-gravity part

ΩHOG
gw (f)h2

100 < 6.7 × 10−9. (5.25)

and for the scalar part

Ωs
gw(f)h2

100 < 2.3 × 10−12. (5.26)

It is interesting to calculate the corresponding strain at
≈ 100Hz, where interferometers like VIRGO and LIGO
reach a maximum in sensitivity [6, 7]. With a minor
modification we can use the well known equation for the
characteristic amplitude [39] for one of the components
of the GWs 3:

hA(f) � 8.93 × 10−19

(

1Hz

f

)

√

h2
100Ωgw(f), (5.27)

and then we obtain for the GR modes

hGR(100Hz) < 1.3 × 10−23. (5.28)

while for the higher-order modes

hHOG(100Hz) < 7.3 × 10−25 . (5.29)

and for scalar modes

hs(100Hz) < 2 × 1.410−26. (5.30)

3 Th e d iff e re n c e b e tween o u r re su lt a n d e q . (1 9 ) in R e f. [3 9 ] is d u e
to th e fa c t th a t th e la tte r d id th e ir c a lc u la tio n a ssu m in g th e two
p o la riz a tio n m o d e s o f G R wh ile we h a n d le e a ch m o d e se p a ra te ly ,
h e n c e th e 1

√

2
d iff e re n c e .
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Then, since we expect a sensitivity of the order of 10−22

for the above interferometers at ≈ 100Hz, we need to
gain at least three orders of magnitude. At smaller fre-
quencies the sensitivity of the VIRGO interferometer is
of the order of 10−21 at ≈ 10Hz and in that case it is for
the GR modes

hGR(100Hz) < 1.3 × 10−22. (5.31)

while for the higher-order modes

hHOG(100Hz) < 7.3 × 10−24 . (5.32)

and for scalar modes

hs(100Hz) < 1.4 × 10−25. (5.33)

Still, these effects are below the sensitivity threshold to
be observed. The sensitivity of the LISA interferometer
will be of the order of 10−22 at ≈ 10−3Hz (see [8]) and
in that case it is

hGR(100Hz) < 1.3 × 10−18 . (5.34)

while for the higher-order modes

hHOG(100Hz) < 7.3 × 10−20. (5.35)

and for scalar modes

hs(100Hz) < 1.4 × 10−21. (5.36)

This means that a stochastic background of relic GWs
could be, in principle, detected by the LISA interferom-
eter, including the additional modes.

VI. CONCLUSIONS

Our analysis covers extended gravity models with a
generic class of Lagrangian density with higher order and
terms of the form f(R, P, Q), where P ≡ RabR

ab and
Q ≡ RabcdR

abcd. We have linearized the field equations
for this class of theories around a Minkowski background
and found that, besides a massless spin-2 field (the gravi-
ton), the theory contains also spin-0 and spin-2 massive
modes with the latter being, in general, ghosts. Then,
we have investigated the detectability of additional po-
larization modes of a stochastic GW with ground-based
laser-interferometric detectors and space-interferometers.
Such polarization modes, in general, appear in the ex-
tended theories of gravitation and can be utilized to con-
strain the theories beyond GR in a model-independent
way.

However, a point has to be discussed in detail. If the
interferometer is directionally sensitive and we also know
the orientation of the source (and of course if the source is
coherent) the situation is straightforward. In this case,

the massive mode coming from the simplest extension,
f(R)-gravity, would induce longitudinal displacements
along the direction of propagation which should be de-
tectable and only the amplitude due to the scalar mode
would be the true, detectable, ” new” signal [27]. But
even in this case, we could have a second scalar mode
inducing a similar effect, coming from the massive ghost,
although with a minus sign. So in this case, one has de-
viations from the prediction of f(R)-gravity, even if only
the massive modes are considered as new signal.

On the other hand, in the case of the stochastic back-
ground, there is no coherent source and no directional
detection of the gravitational radiation. What the inter-
ferometer picks is just an averaged signal coming from
the contributions of all possible modes from (uncorre-
lated) sources all over the celestial sphere. Since we ex-
pect the background to be isotropic, the signal will be the
same regardless of the orientation of the interferometer,
no matter how or on which plane it is rotated, it would
always record the characteristic amplitude hc. So there
is intrinsically no way to disentangle any of the mode in
the background, being hc related to the total energy den-
sity of the gravitational radiation, which depends on the
number of modes available. E very mode, essentially, con-
tributes in the same manner, at least in the limit where
the mass for the massive and ghost modes are very small
(as they should be). So, it should be the number of the
modes available that makes the difference, not their ori-
gin.

Again, even if this does not hold, one should still get
into consideration at least the massive ghost mode to
get a constraint. This is the why we have considered
only hGR, hHOG and hs in the above cross-correlation
analysis without giving further fine details coming from
polarization. For the situation considered here, we find
that the massive modes are certainly of interest for direct
attempts at detection with the LISA experiment. It is,
in principle, possible that massive GW modes could be
produced in more significant quantities in cosmological
or early astrophysical processes in alternative theories of
gravity, being this possibility still unexplored. This situ-
ation should be kept in mind when looking for a signature
distinguishing these theories from GR, and seems to de-
serve further investigation.
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