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I. INTRODUCTION

Recently, the data analysis of interferometric gravitational w ave (GW ) detectors has been started (for the current status of GW s interferometers see [1 -5 ]) and the scientific community aims at a first direct detection of GW s in next years. T he design and the construction of a number of sensitive detectors for GW s is underw ay today. T here are some laser interferometers lik e the V IRGO detector, built in Cascina, near P isa, Italy, by a joint Italian-F rench collaboration, the GE O 6 0 0 detector built in H annover, Germany, by a joint A nglo-German collaboration, the tw o L IGO detectors built in the U nited S tates (one in H anford, W ashington and the other in L ivingston, L ouisiana) by a joint Caltech-M IT collaboration, and the T A M A 3 0 0 detector, in T ok yo, J apan.

M any detectors are currently in operation too, and several interferometers are in a phase of planning and proposal stages (for the current status of gravitational w aves experiments see [6 -8 ]). T he results of these detectors w ill have a fundamental impact on astrophysics and gravitational physics and w ill be important for a better k now ledge of the U niverse and either to confirm or rule out the physical consistency of General Relativity or any other theory of gravitation [9 ]. S everal issues coming from Cosmology and Q uantum F ield T heory suggest to extend the E instein General Relativity (GR), in order to cure several shortcomings emerging from astrophysical observations and fundamental physics. F or example, problems in early time cosmology led to the conclusion that the S tandard Cosmological M odel could be inadeq uate to describe the U niverse at extreme regimes. In fact, GR does not w ork at the fundamental level, w hen one w ants to achieve a full q uantum description of spacetime (and then of gravity).

Given these facts and the lack of a final self-consistent Q uantum Gravity T heory, alternative theories of gravity have been pursued as part of a semi-classical scheme w here GR and its positive results should be recovered.

T he approach of E xtended T heories of Gravity (E T Gs) based on corrections and enlargements of the E instein scheme, have become a sort of paradigm in the study of the gravitational interaction. Beside fundamental physics motivations, these theories have received a lot of interest in cosmology since they " naturally" exhibit infl ationary behavior w hich can overcome the shortcomings of standard cosmology. T he related cosmological models seem realistic and capable of coping w ith observations. E T Gs are starting to play an interesting role to describe today's observed U niverse. In fact, the good q uality data of last decade has made it possible to shed new light on the eff ective picture of the U niverse.

F rom an astrophysical point of view , E T Gs do not req uire finding candidates for dark energy and dark matter at the fundamental level; the approach starts from tak ing into account only the " observed" ingredients (i.e. gravity, radiation and baryonic matter); it is in full agreement w ith the early spirit of a GR that could not act in the same w ay at all scales. F or example, it is possible to show that several scalar-tensor and f (R)-models (w here f is a generic function of the Ricci scalar R) agree w ith observed cosmology, extragalactic and galactic observations and S olar S ystem tests, and give rise to new eff ects capable of explaining the observed acceleration of the cosmic fl uid and the missing matter eff ect of selfgravitating structures w ithout considering dark energy and dark matter. F or comprehensive review s on the argument, see [1 0 ].

A t a fundamental level, detecting new gravitational modes could be a sort of experimentum crucis in order to discriminate among theories since this fact w ould be the " signature" that GR should be enlarged or modified

[1 1 , 1 2 ].
The outline of the paper is as follows. In Sect. II, the general action of the class of theories under consideration is introduced. Then we will linearize them around a Minkowski background to find the modes of the metric perturbations. In Sect. III, we take into account the various polarizations of the massless and massive modes, while in Sect. IV we investigate the response of a single detector to a GW propagating in certain direction with each polarization mode. In Sect. V, we discuss the spectrum of the GW stochastic background where also further modes are considered. Conclusions are drawn in Sect. VI.

II. HIGHER ORDER GRAVITY

Let us generalize the action of GR by adding curvature invariants other than the Ricci scalar. Specifically, we will consider the action 1

S = d 4 x √ -gf (R, P, Q) (2.1) 
where

P ≡ R ab R ab Q ≡ R abc d R abc d (2.2) 
Varying with respect to the metric one gets the field equations [13]:

F G µν = 1 2 g µν (f -R F ) -(g µν -∇ µ ∇ ν )F -2 f P R a µ R aν + f Q R abc µ R abc ν -g µν ∇ a ∇ b (f P R ab ) -(f P R µν ) +2∇ a ∇ b f P R a (µ δ b ν) + 2f Q R a b (µν) (2.3) 
where we have set

F ≡ ∂f ∂R , f P ≡ ∂f ∂P , f Q ≡ ∂f ∂Q (2.4 ) and = g ab ∇ a ∇ b is the d'Alembert operator while the notation T (ij ) = 1 2 (T ij +T j i
) denotes symmetrization with respect to the indices (i, j ).

Taking the trace of eq. ( 2.3) we find:

F + f P 3 R = 1 3 2f -RF -2∇ a ∇ b ((f P + 2f Q )R ab ) -2(f P P + f Q Q) (2.5) 1 Conventions: g ab = (-1, 1, 1, 1), R a bcd = Γ a bd ,c -Γ a bc,d + ... , R ab = R c
acb , G ab = 8 π G N T ab and all indices ru n from 0 to 3 .

Expanding the third term on the RHS of (2.5) and using the purely geometrical identity G ab ;b = 0 we get:

F + 2 3 (f P + f Q )R = 1 3 × [2f -RF -2R ab ∇ a ∇ b (f P + 2f Q ) -R (f P + 2f Q ) -2(f P P + f Q Q)] (2.6) 
If we define

Φ ≡ F + 2 3 (f P + f Q )R (2.7 )
and dV dΦ ≡ RHS of (2.6) then we get a K lein-Gordon equation for the scalar field Φ:

Φ = dV dΦ (2.8)
In order to find the various modes of the gravity waves of this theory we need to linearize gravity around a Minkowski background:

g µν = η µν + h µν Φ = Φ 0 + δΦ (2.9) 
Then from eq. (2.7 ) we get

δΦ = δF + 2 3 (δf P + δf Q )R 0 + 2 3 (f P 0 + f Q0 )δR (2.10)
where R 0 ≡ R(η µν ) = 0 and similarly f P 0 = ∂ f ∂ P | ηµν (note that the 0 indicates evaluation with the Minkowski metric) which is either constant or zero. By δR we denote the first order perturbation on the Ricci scalar which, along with the perturbed parts of the Riemann and Ricci tensors, are given by (see for example Ref. [START_REF] Carroll | arX iv :gr-q c/ 9 7 12[END_REF]):

δR µνρσ = 1 2 (∂ ρ ∂ ν h µσ + ∂ σ ∂ µ h νρ -∂ σ ∂ ν h µρ -∂ ρ ∂ µ h νσ ) δR µν = 1 2 ∂ σ ∂ ν h σ µ + ∂ σ ∂ µ h σ ν -∂ µ ∂ ν h -h µν δR = ∂ µ ∂ ν h µν -h where h = η µν h µν . The first term of eq. (2.10) is δF = ∂F ∂R | 0 δR + ∂F ∂P | 0 δP + ∂F ∂Q | 0 δQ (2.11)
However, since δP and δQ are second order we get δF F ,R 0 δR and

δΦ = F ,R 0 + 2 3 (f P 0 + f Q0 ) δR (2.12)
Finally, from eq. ( 2.6) we get the K lein-Gordon equation for the scalar perturbation δΦ δΦ = 1 3

F 0 F ,R0 + 2 3 (f P 0 + f Q0 ) δΦ - 2 3 δR ab ∂ a ∂ b (f P 0 + 2f Q0 ) - 1 3 δR (f P 0 + 2f Q0 ) = m 2 s δΦ (2.13)
The last two terms in the first line are actually are zero since the terms f P 0 , f Q0 are constants and we have defined the scalar mass as

m 2 s ≡ 1 3 F0 F,R0+ 2 F 0 (δR µν - 1 2 η µν δR) = -(η µν -∂ µ ∂ ν )(δΦ - 2 3 (f P 0 + f Q0 )δR) -η µν ∂ a ∂ b (f P 0 δR ab ) -(f P 0 δR µν ) +2∂ a ∂ b (f P 0 δR a (µ δ b ν) + 2f Q0 δR a b (µν) ) (2.14) 
It is convenient to work in Fourier space so that for example ∂ γ h µν → ik γ h µν and h µν → -k 2 h µν . Then the above equation becomes

F 0 (δR µν - 1 2 η µν δR) = (η µν k 2 -k µ k ν )(δΦ - 2 3 (f P 0 + f Q0 )δR) +η µν k a k b (f P 0 δR ab ) + k 2 (f P 0 δR µν ) -2k a k b (f P 0 δR a (µ δ b ν) ) -4k a k b (f Q0 δR a b (µν) ) (2.15) 
We can rewrite the metric perturbation as

h µν = hµν - h 2 η µν + η µν h f (2.16)
and use our gauge freedom to define to demand that the usual conditions hold ∂ µ hµν = 0 and h = 0. The first of these conditions implies that k µ hµν = 0 while the second that

h µν = hµν + η µν h f h = 4h f (2.17)
With these in mind we have:

δR µν = 1 2 2k µ k ν h f + k 2 η µν h f + k 2 hµν δR = 3k 2 h f k α k β δR α β (µν) = - 1 2 (k 4 η µν -k 2 k µ k ν )h f + k 4 hµν k a k b δR a (µ δ b ν) = 3 2 k 2 k µ k ν h f (2.18)
Using equations (2.16)-(2.18) into (2.15) and after some algebra we get:

1 2 k 2 -k 4 f P 0 + 4f Q0 F 0 hµν = (η µν k 2 -k µ k ν ) δΦ F 0 + (η µν k 2 -k µ k ν )h f (2.

19)

Defining h f ≡ -δΦ F0 we find the equation for the perturbations:

k 2 + k 4 m 2 sp in 2 hµν = 0 (2.20)
where we have defined m 2 sp in 2 ≡ -F0 fP 0+4fQ0 , while from eq. ( 2.13) we get:

h f = m 2 s h f (2.21)
From equation (2.20) it is easy to see that we have a modified dispersion relation which corresponds to a massless spin-2 field (k 2 = 0) and a massive spin-2 (wh ich c o u ld be addressed as "ghost modes")

k 2 = F0 1 2 fP 0 + 2fQ0 ≡ -m 2
sp in 2 with m a ss m 2 sp in 2 . T o see this, no te tha t the p ro p a g a to r fo r hµ ν ca n b e rewritten a s

G(k) ∝ 1 k 2 - 1 k 2 + m 2 sp in 2 (2 .2 2 )
C lea rly the seco nd term ha s the o p p o site sig n, which ind ica tes the p resence o f a n egativ e en ergy mode (a ghost), a nd this a g rees with the resu lts fo u nd in the litera tu re fo r this cla ss o f theo ries [15 -17 ].

A lso , a s a sa nity check , we ca n see tha t fo r the G a u ss-B o nnet term L G B = Q -4P + R 2 we ha v e f P 0 = -4 a nd f Q0 = 1. T hen, eq u a tio n (2 .2 0 ) sim p lifi es to k 2h µ ν = 0 a nd in this ca se we ha v e no n egativ e en ergy modes a s ex p ected .

T he so lu tio n to eq s. (2 .2 0 ) a nd (2 .2 1) ca n b e written in term s o f p la ne wa v es

hµ ν = A µ ν ( -→ p ) • e xp(ik α x α ) + c c (2 .2 3 ) h f = a( -→ p ) • e xp(iq α x α ) + c c (2 .2 4)
where

k α ≡ (ω msp i n 2 , -→ p ) ω msp i n 2 = m 2 sp in 2 + p 2 q α ≡ (ω ms , -→ p ) ω ms = m 2 s + p 2 .
(2 .2 5 ) a nd where m sp in 2 is z ero (no n-z ero ) in the ca se o f m a ssless (m a ssiv e) sp in-2 m o d e a nd the p o la riz a tio n tenso rs A µ ν ( -→ p ) ca n b e fo u nd in R ef. [18 ] (see eq u a tio ns (2 1)-( 23 )). In eq s. (2 .2 0 ) a nd (2 .2 3 ) the eq u a tio n a nd the solu tio n fo r the sta nd a rd wa v es o f G enera l R ela tiv ity [2 6 ] have been obtained, while eqs. (2.21) and (2.24) are respectively the equation and the solution for the massive mode (see also [27]).

The fact that the dispersion law for the modes of the massive field h f is not linear has to be emphasized. The velocity of every " ordinary" (i.e. which arises from General Relativity) mode hµν is the light speed c, but the dispersion law (the second of eq. (2.25)) for the modes of h f is that of a massive field which can be discussed like a wave-packet [27]. Also, the group-velocity of a wave-

packet of h f centered in -→ p is -→ v G = -→ p ω , (2.26) 
which is exactly the velocity of a massive particle with mass m and momentum -→ p .

F rom the second of eqs. (2.25) and eq. ( 2.26) it is simple to obtain:

v G = √ ω 2 -m 2 ω . (2.27) 
Then, wanting a constant speed of the wave-packet, it has to be [27] 

m = (1 -v 2 G )ω. ( 2.28) 
N ow, before we proceed with the analysis, we should discuss the phenomenological limitations to the mass of the GW [28]. Taking into account the fact that the GW needs a frequency which falls in the range for both of space based and earth based gravitational antennas, that is the interval 10 -4 H z ≤ f ≤ 10K H z [1-5, 29 -31], a quite strong limitation will arise. F or a massive GW , from [32] it is:

2π f = ω = m 2 + p 2 , (2.29 ) 
were p is the momentum. Thus, it needs 0eV ≤ m ≤ 10 -11 eV .

(2.30)

A stronger limitation is given by requirements of cosmology and S olar S ystem tests on extended theories of gravity. In this case it is 0eV ≤ m ≤ 10 -3 3 eV .

(2.31)

F or these light scalars, their eff ect can be still discussed as a coherent GW .

III. POLARIZATION STATES OF G RAV ITATIONAL W AV ES

Considering the above equations, we can note that there are two conditions for eq. ( 2.13) that depend on the value of k2 . In fact we can have a k 2 = 0 mode that corresponds to a massless spin-2 field with two independent polarizations plus a scalar mode, while if we have k 2 = 0 we have a massive spin-2 ghost mode and there are five independent polarization tensors plus a scalar mode. F irst, let us consider the case where the spin-2 field is massless.

Taking -→ p in the z direction, a gauge in which only A 11 , A 22 , and A 12 = A 21 are diff erent to zero can be chosen. The condition h = 0 gives A 11 = -A 22 . In this frame we may take the bases of polarizations defined in this way 2

e (+) µν = 1 √ 2   1 0 0 0 -1 0 0 0 0   , e (×) µν = 1 √ 2   0 1 0 1 0 0 0 0 0   e (s) µν = 1 √ 2   0 0 0 0 0 0 0 0 1   (3.1) 
N ow, putting these equations in eq. ( 2. 16), it results

h µν (t, z) = A + (t -z)e (+) µν + A × (t -z)e (×) µν + h s (t -v G z)e s µν ( 3.2) 
The terms A + (t -z)e

(+) µν + A × (t -z)e (×)
µν describe the two standard polarizations of gravitational waves which arise from General Relativity, while the term h s (t-v G z)η µν is the massive field arising from the generic high order f (R) theory.

W hen the spin-2 field is massive, we have that the bases of the six polarizations are defined by and the amplitude can be written in terms of the 6 polarization states as

e (+) µν = 1 √ 2   1 0 0 0 -1 0 0 0 0   , e (×) µν = 1 √ 2   0 1 0 1 0 0 0 0 0   e (B) µν = 1 √ 2   0 0 1 0 0 0 1 0 0   , e (C) µν = 1 √ 2   0 0 0 0 0 1 0 1 0   e (D) µν = √ 2 3   1 2 0 0 0 1 2 0 0 0 -1   , e ( 
h µν (t, z) = A + (t -v Gs2 z)e (+) µν + A × (t -v Gs2 z)e (×) µν +B B (t -v Gs2 z)e (B) µν + C C (t -v Gs2 z)e (C) µν +D D (t -v Gs2 z)e (D) µν + h s (t -v G z)e s µν . (3.3) 
where v Gs2 is the group velocity of the massive spin-2 field and is given by

v Gs2 = ω 2 -m 2 s2 ω . (3.4) 
The first two polarizations are the same as in the massless case, inducing tidal deformations on the x-y plane. In Fig. 1, we illustrate how each GW polarization affects test masses arranged on a circle.

The presence of the negative energy modes mode may seem as a pathology of the theory from a purely quantum-mechanical approach. There are several reasons to consider such a mode as problematic if we wish to pursuit the particle picture interpretation of the metric perturbations. The ghost mode can be viewed as either a particle state of positive energy and negative probability density, or a positive probability density state with a negative energy. In the first case, allowing the presence of such a particle will quickly induce violation of unitarity. The negative energy scenario leads to a theory where there is no minimum energy and the system thus becomes unstable with grow ing amp litudes. T he vac uum c an dec ay into p airs of ordinary and ghost gravitons leading to a c atastrop hic instability. Of c ourse, the dynamic al ghost modes c ould be c anc elled out by yet higher derivative terms, leading to an infi nite order eff ec tive ac tion.

O ne way out of such problems is to impose a very weak coupling of the ghost with the rest of the particles in the theory, such that the decay rate of the vacuum will become comparable to the inverse of the H ubble scale. The present vacuum state will then appear to be sufficiently stable. This is not a viable option in our theory, since the ghost state comes in the gravitational sector, which is bound to couple to all kinds of matter present and it seems physically and mathematically unlikely for the ghost graviton to couple differently than the ordinary massless graviton does. Another option is to assume that this picture does not hold up to arbitrarily high energies and that at some cutoff scale M c u to f f the theory gets modified appropriately as to ensure a ghost-free behavior and a stable ground state. This can happen for example if we assume that L orentz invariance is violated at M c u to f f , thereby restricting any potentially harmful decay rates [33].

H owever, there is no guaranty that theories of modified gravity such as the one investigated here are supposed to hold up to arbitrary energies. Such models are plagued at the quantum level by the same problems as ordinary General Relativity, i.e. they are non-renormalizable. It is therefore not necessary for them to be considered as genuine candidates for a quantum gravity theory and the corresponding ghost particle interpretation (virtual massive modes) becomes rather ambiguous. At the purely classical level, the perturbation h µν should be viewed as nothing more than a tensor representing the "stretching" of spacetime away from fl atness. A ghost mode then makes sense as just another way of propagating this perturbation of the spacetime geometry, one which carries the opposite sign in the propagator than an ordinary massive graviton would.

V iewed in this way, the presence of the massive ghost graviton will induce on an interferometer the same effects as an ordinary massive graviton transmitting the perturbation, but with the opposite sign in the displacement. Tidal stretching from a polarized wave on the polarization plane will be turned into shrinking and vice-versa. This signal will, at the end, be a superposition of the displacements coming from the ordinary massless spin-2 graviton and the massive ghost. Since these induce two competing effects, this will lead to a less pronounced signal than the one we would expect if the ghost mode was absent, setting in this way less severe constraints on the theory.

On the other hand, treating ghost modes just as small p erturbations c ould be not sensible. A s stated above, the dynamical ghost modes could be cancelled by other higher derivative terms. In that case, nonetheless, it might still mak e sense to analyse the impact on propagation owing to virtual massive mode effects (Y uk awa terms) on the massless modes [3 9 ]. However, the presence of the new modes will also affect the total energy density carried by the gravitational waves and this may also appear as a candidate signal in stochastic backgrounds, as we will see in the following.

IV. GRAVITATIONAL WAVES PROPAGATING IN A C ERTAIN D IREC TION AND TH E POSSIB LE D ETEC TOR RESPONSE

Let us consider now now the possible response of a detector revealing GWs coming from a certain direction. It is important to stress that the detector output depends on the GW amplitude that is determined by a specific theoretical model. However, one can study the detector response to each GW polarization without specifying, a priori, the theoretical model. Following [19,[22][23][24][25]39] the angular pattern function of a detector to GWs is given by

F A ( Ω) = D : e A ( Ω) , (4.1) 
D = 1 2 [û ⊗ û -v ⊗ v] ,
here A = +, ×, B, C, D, s . The symbol : is contraction between tensors. D is the detector tensor representing the response of a laser-interferometric detector. It maps the metric perturbation in a signal on the detector. The vectors û and v are unitary and orthogonal to each other. They are directed to each detector arm and form an orthonormal coordinate system with the unit vector ŵ (see Fig. 2). Ω is the vector directed along the GW propagation. E q. (4.1) holds only when the arm length of the detector is smaller and smaller than the GW wavelength that we are taking into account. This is relevant for dealing with ground-based laser interferometers but this condition could not be valid when dealing with space interferometers like LISA.

A standard orthonormal coordinate system for the detector is

   û = (1, 0, 0) v = (0, 1, 0) ŵ = (0, 0, 1)
.

On the other hand, the coordinate system for the GW, rotated by angles (θ, φ ), is given by    û = (cos θ cos φ , cos θ sin φ , -sin θ) v = (-sin φ , cos φ , 0) ŵ = (sin θ cos φ , sin θ sin φ , cos θ) .

The rotation with respect to the angle ψ, around the GW-propagating axis, gives the most general choice for the coordinate system, that is

   m = û cos ψ + v sin ψ n = -v sin ψ + û cos ψ Ω = ŵ .
Coordinates (û, v, ŵ) are related to the coordinates ( m, n, Ω) by the rotation angles (φ , θ, ψ), as in Fig. 2. By thevectors m, n, and Ω, the polarization tensors are

e + = 1 √ 2 ( m ⊗ m -n ⊗ n) , e × = 1 √ 2 ( m ⊗ n + n ⊗ m) , e B = 1 √ 2 m ⊗ Ω + Ω ⊗ m , e C = 1 √ 2 n ⊗ Ω + Ω ⊗ n . e D = √ 3 2 m 2 ⊗ m 2 + n 2 ⊗ n 2 + Ω ⊗ Ω , e s = 1 √ 2 Ω ⊗ Ω ,
Taking into account E qs. (4.1), the angular patterns for each polarization are

F + (θ, φ, ψ) = 1 √ 2 (1 + cos 2 θ) cos 2φ cos 2ψ -cos θ sin 2φ sin 2ψ , F × (θ, φ, ψ) = - 1 √ 2 (1 + cos 2 θ) cos 2φ sin 2ψ
cos θ sin 2φ cos 2ψ , F B (θ, φ, ψ) = sin θ (cos θ cos 2φ cos ψ -sin 2φ sin ψ) , F C (θ, φ, ψ) = sin θ (cos θ cos 2φ sin ψ + sin 2φ cos ψ) ,

F D (θ, φ) = √ 3 32 cos 2φ 6 sin 2 θ + (cos 2θ + 3) cos 2ψ , F s (θ, φ) = 1 √ 2 sin 2 θ cos 2φ .
The angular pattern functions for each polarization are plotted in Fig. 3. These results, also if we have considered a different model, are consistent, for example, with those in [19][20][21]. Another step is now to consider the stochastic background of GWs in order to test the possible detectability of such further contributions in gravitational radiation.

V. THE STOCHASTIC BACKGROUND OF GRAVITATIONAL WAVES

The contributions to the gravitational radiation coming from higher order gravity could be efficiently selected if it would be possible to investigate gravitational sources in extremely strong field regimes. In such a case, the further polarizations coming from the higher order contributions could be, in principle, investigated by the response of a single GW detector described above. However, this situation seems extremly futuristic at the moment so the only realistic approach to investigate these further contribution seems the cosmological background, in particular, the stochastic background of GWs. Such a GW background can be roughly divided into two classes of phenomena: the background generated by the incoherent superposition of gravitational radiation emitted by large populations of astrophysical sources (hard to be resolved individually [34]), and the primordial GW background generated by processes in the early cosmological eras [START_REF] Buonanno | P roceedings of the Les H ouches S ummer S chool, P article P hy sics and Cosmology : The Fabric of S pacetime[END_REF]. P rimordial components of such background are interesting, since they carry information on the primordial U niverse and, on the other hand, can give information on the gravitational interaction at that epochs [START_REF] Capoz Z Iello | A stro p[END_REF]41]. The physical process of GW production has been analyzed, for example, in [START_REF] Allen | P roceedings of the Les H ouches S chool on Astrophy sical S ources of G rav itational W av es[END_REF][START_REF] Rishchuk | [END_REF][38] but only for the first two standard tensorial components of Eq. (3.2), that is the GR components. Actually the process can be improved considering all the components that we have considered here. Before starting with the analysis, it has to be emphasized that, considering a stochastic background of GWs, it can be described and characterized by a dimensionless spectrum (see the definition [START_REF] Allen | P roceedings of the Les H ouches S chool on Astrophy sical S ources of G rav itational W av es[END_REF][START_REF] Rishchuk | [END_REF]39,[START_REF] Allen | O ttew ill -P hy s[END_REF]) 

Ω A g w (f ) = 1 ρ c dρ A g w d ln f , ( 5 .1) 
where

ρ c ≡ 3H 2 0 8πG (5 .2 )
is the (a c tua l) c ritic a l energ y density of the U niv erse, H 0 the toda y observ ed H ubble ex pa nsion ra te, a nd dρ s g w is the energ y density of the pa rt of the g ra v ita tiona l ra diation c onta ined in the freq uenc y ra ng e f to f + df .

ρ g w = ∞ 0 df ρg w (f ) . (5 .3)
where ρG W is the G W s energ y density per unit freq uenc y . Ω g w (f ) is rela ted to S h (f ) by [38,39 ]

Ω A g w (f ) = 4π 2 3H 2 0 f 3 S A h (f ) .
(5 .4)

N ote that the above definition is diff erent from that in the literature [38,39], by a factor of 2, since it is defined for each polariz ation. It is convenient to represent the energy density with the form h 2 0 Ω gw (f ) by param etrizing the Hubble constant as H 0 = 10 0 h 0 k m s -1 M pc -1 . T hen, the GW stochastic back ground energy density of all m odes can be written as

Ω A gw ≡ Ω + gw + Ω × gw + Ω B gw + Ω C gw + Ω D gw + Ω s gw (5.5)
we can split Ω A gw as a part arising from GR

Ω G R gw = Ω + gw + Ω × gw , Ω + gw = Ω × gw (5.6 )
a part from higher-order-gravity

Ω H O G gw = Ω B gw +Ω C gw +Ω D gw , Ω B gw = Ω C gw = Ω D gw (5.7
) and a scalar part Ω s gw . We are considering now standard units and study only the m odes which arise from higher order theory.

T he relic stochastic back ground of GWs can be derived by considering only general assum ptions and basic principles of Q uantum F ield T heory and GR . T he quantum fluctuations of the z ero-point energy can be am plified in the early Universe by the large variations of gravity and this m echanism produces GWs. A very interesting by-product of GWs is that they can be used to probe the evolution of the Universe at early tim es, even up to the P lanck epoch and the B ig B ang singularity [36 , 37 , 39, 43]. T he m echanism of the GWs is connected to inflationary scenario [START_REF] Atson | An exposition on infl ationary cosmology[END_REF]45], which fits well the WM A P data and is in particularly good agreem ent with alm ost exponential inflation and spectral index ≈ 1, [46 , 47 ].

A rem ark able fact about the inflationary scenario is that it contains a natural m echanism which gives rise to perturbations for any field. It is im portant for our aim s that such a m echanism provides also a distinctive spectrum for relic scalar GWs. T hese perturbations in inflationary cosm ology arise from the m ost basic quantum m echanical eff ect: the uncertainty principle. In this way, the spectrum of relic GWs that we could detect today is nothing else but the adiabatically-am plified z eropoint fluctuations [36 , 37 ]. T he calculation for a sim ple inflationary m odel can be perform ed for the scalar field com ponent of eq. (3.2). L et us assum e that the early Universe is described an inflationary de S itter phase em erging in a radiation dom inated phase [36 , 37 , 43]. T he conform al m etric elem ent is

ds 2 = a 2 (η)[-dη 2 + d -→ x 2 + h µν (η, -→ x )dx µ dx ν ], (5.8)
where, for a purely GW the m etric perturbation (3.2) reduces to

h µν = h A e (A)
µν .

(5.9)

where A = +, ×, B , C , D , and s. L et us assum e a phase transition between a de S itter and a radiation-dom inated phase [36 , 37 ], we have: η 1 is the inflation-radiation transition conform al tim e and η 0 is the value of conform al tim e today. If we express the scale factor in term s of com oving tim e cdt = a(t)dη, we have

a(t) ∝ exp(H d s t), a(t) ∝ √ t (5.10 ) 
for the de S itter and radiation phases respectively. In order to solve the horiz on and flatness problem s, the condition a(η 0 ) a(η 1 ) > 10 27 has to be satisfied. T he relic scalartensor GWs are the weak perturbations h µν (η, -→ x ) of the m etric (5.9) which can be written in the form

h µν = e (A) µν ( k)X(η) exp(i -→ k • -→ x ), (5.11) 
in term s of the conform al tim e η where -→ k is a constant wavevector. F rom eq.(5.11), the com ponent is

Φ (η, -→ k , -→ x ) = X(η) exp(i -→ k • -→ x ).
(5.12)

A ssum ing Y (η) = a(η)X(η), from the K lein-Gordon equation in the F R W m etric, one gets

Y + | -→ k | 2 - a a Y = 0 (5.13) 
where the prim e denotes derivative with respect to the conform al tim e. T he solutions of eq. (5. 13) can be expressed in term s of Hank el functions in both the inflationary and radiation dom inated eras, that is:

F or η < η 1 X(η) = a(η 1 ) a(η) [1 + iH d s ω -1 ] exp (-ik(η -η 1 )) , (5.14) 
for η > η 1

X(η) = a(η 1 ) a(η) [α exp (-ik(η -η 1 )) + β exp (ik(η -η 1 ))] ,
(5.15) where ω = c k/ a is the angular frequency of the wave (which is function of the tim e being k = | -→ k | constant), α and β are tim e-independent constants which we can obtain dem anding that both X and dX/ dη are continuous at the boundary η = η 1 between the inflationary and the radiation dom inated eras. B y this constraint, we obtain

α = 1 + i √ H d s H 0 ω - H d s H 0 2ω 2 , β = H d s H 0 2ω 2 (5 .16 ) 
In eqs. (5. 16 ), ω = c k/ a(η 0 ) is the angular frequency as observed today, H 0 = c / η 0 is the Hubble expansion rate as observed today. S uch calculations are referred in literature as the B ogoliubov coeffi cient m ethods [36 , 37 ].

In an inflationary scenario, every classical or m acroscopic perturbation is dam ped out by the inflation, i.e. the m inim um allowed level of fluctuations is that required by the uncertainty principle. The solution (5.14) corresponds to a de Sitter vacuum state. If the period of inflation is long enough, the today observable properties of the Universe should be indistinguishable from the properties of a Universe started in the de Sitter vacuum state. D uring the radiation dominated phase, the particles are described by the eigenmodes that correspond to the coefficients of α, while the antiparticles correspond to the coefficients of β. Therefore, the number of particles that have been created at angular frequency ω in the radiation phase is given by

N ω = |β ω | 2 = H ds H 0 2ω 2 2 . 
(5.17

)
Now it is possible to write an expression for the energy density of the stochastic scalar-tensor relic gravitons background in the frequency interval (ω, ω + dω) for each mode as

dρ A gw = ω ω 2 dω 2π 2 c 3 N ω = H 2 ds H 2 0 8π 2 c 3 dω ω = H 2 ds H 2 0 8π 2 c 3 df f , (5.18 
) where f , as above, is the frequency in standard comoving time. eq. ( 5. 18) can be rewritten in terms of the today and de Sitter value of energy density being

H 2 0 = 8πGρ c 3c 2 , H 2 ds = 8πGρ ds 3c 2 .
(5. 19)

Introducing the Planck density ρ P lan ck = c 7 G 2 the spectrum is given by

Ω A gw (f ) = 1 ρ c dρ gw d ln f = f ρ c dρ gw df = 8 9
ρ ds ρ P lan ck .

(5.20)

At this point, some comments are in order. First of all, such a calculation works for a simplified model that does not include the matter dominated era. If we also include such an era, we would also have to take into account the redshift at the equivalence epoch and this results in [38] Ω A gw (f ) = 8 9

ρ ds ρ P lan ck (1 + z e q ) -1 , (5.21) 
for the waves which, at the epoch in which the Universe becomes matter dominated, have a frequency higher than H e q , the Hubble parameter at equivalence. This situation corresponds to frequencies f > (1 + z e q ) 1/2 H 0 . The redshift correction in eq.(5. 21) is needed since the today observed Hubble parameter H 0 would result different without a matter dominated contribution. At lower frequencies, the spectrum is given by [START_REF] Allen | P roceedings of the Les H ouches S chool on Astrophy sical S ources of G rav itational W av es[END_REF][START_REF] Rishchuk | [END_REF] Ω gw (f ) ∝ f -2 .

(5.22)

As a further consideration, let us note that the results (5.20) and (5.21), which are not frequency dependent, do not work correctly in all the range of physical frequencies. Waves that have frequencies less than H 0 , the energy density is in a sense not well defined, as their wavelength becomes larger than the Hubble scale of the Universe. In a similar manner, at high frequencies, there is a maximal frequency above which the spectrum rapidly drops to zero. In the above calculation, the simple assumption that the phase transition from the inflationary to the radiation dominated epoch is instantaneous has been made. In the physical Universe, this process occurs over some time scale ∆τ , being

f m ax = a(t 1 ) a(t 0 ) 1 ∆τ , (5.23) 
which is the redshifted rate of the transition. In any case, Ω A gw drops rapidly. The two cutoffs at low and high frequencies for the spectrum guarantee that the total energy density of the relic gravitons is finite. These results can be quantitatively constrained considering the recent WMAP release. Nevertheless, since the spectrum falls off ∝ f -2 at low frequencies, this means that today, at LIGO -VIRGO and LISA frequencies, one gets for the GR part [39,[START_REF] Buonanno | arX iv :gr-q c/ 0 3 0 3 0 8 5[END_REF] Ω GR gw (f )h 2 100 < 2 × 10 -6 .

(5. 24) for the higher-order-gravity part Ω HOG gw (f )h 2 100 < 6.7 × 10 -9 .

(5. 25) and for the scalar part Ω s gw (f )h 2 100 < 2.3 × 10 -12 .

(5.26)

It is interesting to calculate the corresponding strain at ≈ 100Hz, where interferometers like VIRGO and LIGO reach a maximum in sensitivity [6,7]. With a minor modification we can use the well known equation for the characteristic amplitude [39] for one of the components of the GWs 3 : Then, since we expect a sensitivity of the order of 10 -22 for the above interferometers at ≈ 100Hz, we need to gain at least three orders of magnitude. At smaller frequencies the sensitivity of the VIRGO interferometer is of the order of 10 -21 at ≈ 10Hz and in that case it is for the GR modes h GR (100Hz) < 1.3 × 10 -22 .

h A (f ) 8.93 × 10 -19 1Hz f h 2 100 Ω gw (f ), ( 5 
(5.31) while for the higher-order modes h HOG (100Hz) < 7.3 × 10 -24 .

(5.32)

and for scalar modes

h s (100Hz) < 1.4 × 10 -25 .
(5.33)

Still, these effects are below the sensitivity threshold to be observed. The sensitivity of the LISA interferometer will be of the order of 10 -22 at ≈ 10 -3 Hz (see [8]) and in that case it is

h GR (100Hz) < 1.3 × 10 -18 .
(5.34)

while for the higher-order modes h HOG (100Hz) < 7.3 × 10 -20 .

(5. [START_REF] Buonanno | P roceedings of the Les H ouches S ummer S chool, P article P hy sics and Cosmology : The Fabric of S pacetime[END_REF] and for scalar modes h s (100Hz) < 1.4 × 10 -21 .

(5. [START_REF] Allen | P roceedings of the Les H ouches S chool on Astrophy sical S ources of G rav itational W av es[END_REF] This means that a stochastic background of relic GWs could be, in principle, detected by the LISA interferometer, including the additional modes.

VI. CONCLUSIONS

Our analysis covers extended gravity models with a generic class of Lagrangian density with higher order and terms of the form f (R, P, Q), where P ≡ R ab R ab and Q ≡ R abcd R abcd . We have linearized the field equations for this class of theories around a Minkowski background and found that, besides a massless spin-2 field (the graviton), the theory contains also spin-0 and spin-2 massive modes with the latter being, in general, ghosts. Then, we have investigated the detectability of additional polarization modes of a stochastic GW with ground-based laser-interferometric detectors and space-interferometers. Such polarization modes, in general, appear in the extended theories of gravitation and can be utilized to constrain the theories beyond GR in a model-independent way.

However, a point has to be discussed in detail. If the interferometer is directionally sensitive and we also know the orientation of the source (and of course if the source is coherent) the situation is straightforward. In this case, the massive mode coming from the simplest extension, f (R)-gravity, would induce longitudinal displacements along the direction of propagation which should be detectable and only the amplitude due to the scalar mode would be the true, detectable, " new" signal [27]. But even in this case, we could have a second scalar mode inducing a similar effect, coming from the massive ghost, although with a minus sign. So in this case, one has deviations from the prediction of f (R)-gravity, even if only the massive modes are considered as new signal.

On the other hand, in the case of the stochastic background, there is no coherent source and no directional detection of the gravitational radiation. What the interferometer picks is just an averaged signal coming from the contributions of all possible modes from (uncorrelated) sources all over the celestial sphere. Since we expect the background to be isotropic, the signal will be the same regardless of the orientation of the interferometer, no matter how or on which plane it is rotated, it would always record the characteristic amplitude h c . So there is intrinsically no way to disentangle any of the mode in the background, being h c related to the total energy density of the gravitational radiation, which depends on the number of modes available. E very mode, essentially, contributes in the same manner, at least in the limit where the mass for the massive and ghost modes are very small (as they should be). So, it should be the number of the modes available that makes the difference, not their origin.

Again, even if this does not hold, one should still get into consideration at least the massive ghost mode to get a constraint. This is the why we have considered only h GR , h HOG and h s in the above cross-correlation analysis without giving further fine details coming from polarization. For the situation considered here, we find that the massive modes are certainly of interest for direct attempts at detection with the LISA experiment. It is, in principle, possible that massive GW modes could be produced in more significant quantities in cosmological or early astrophysical processes in alternative theories of gravity, being this possibility still unexplored. This situation should be kept in mind when looking for a signature distinguishing these theories from GR, and seems to deserve further investigation. 
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 1 Figure 1: The six polarization modes of gravitational waves. The pic ture shows the displac ement that each mode induc es on a sphere of test partic les at the moments of diff erent phases b y π. The wave propagates out of the plane in (a), (b ), (c ), and it propagates in the plane in (d), (e) and (f). W here in (a) and (b ) we have respec tively the plus mode and c ross mode, in (c ) the sc alar mode, in (d), (e) and (f) the D , B and C mode.
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 2 Figure 2: The coordinate systems used to calculate the polarization tensors and the pictorial view of the coordinate transformation.
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 3 Figure 3: Plots along the panel lines from left to right of angular pattern functions of a detector for each polarization. From left plus mode F+, cross mode F×, B mode FB, C mode FC, D mode FD,a n d sc a la r mode Fs. T h e a n g u la r p a ttern fu n c tion of th e FB a n d FC mode is th e sa me ex c ep t for a rota tion .

. 27 ) 1 √ 2 d

 2712 and then we obtain for the GR modesh GR (100Hz) < 1.3 × 10 -23 .(5.28) while for the higher-order modes h HOG (100Hz) < 7.3 × 10 -25 .(5.29)and for scalar modesh s (100Hz) < 2 × 1.410 -26 .(5.30) 3 Th e d iff e re n c e b e twe e n o u r re su lt a n d e q . (1 9 ) in R e f. [3 9 ] is d u e to th e fa c t th a t th e la tte r d id th e ir c a lc u la tio n a ssu m in g th e two p o la riz a tio n m o d e s o f G R wh ile we h a n d le e a ch m o d e se p a ra te ly , h e n c e th e iff e re n c e .
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(fP 0+fQ0 ) . Perturbing the field equations (2.3) we get:

The polarizations are defined in our

3-space, not in a spacetime w ith ex tra dimensions. E ach polarization mode is orthog onal to one another and is normalized eµν e µν = 2 δ. N ote that other modes are not traceless, in contrast to the ordinary plus and cross polarization modes in G R .