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Abstract: The paper proposes an observer synthesis for uncertain nonlinear systems, described by multi-
models with unmeasurable premise variables, affected by unknown inputs. A proportional multi-integral
observer is considered in order to estimate the system states and the unknown inputs and minimize the
influence of the model uncertainties. The stability analysis and the observer synthesis are expressed
through linear matrix inequalities based on the Lyapunov method. The performances of the proposed
observer synthesis method are highlighted through the application to a waste-water treatment plant
model, which is an uncertain nonlinear system affected by unknown inputs.

1. INTRODUCTION

Environmental or technological systems have complex behav-
iors. Thus, their representation in a large operating domain
involves nonlinear relations between the process variables, the
system parameters, the control inputs and the external perturba-
tions. On the other hand, in the field fields of observer design for
fault diagnosis or fault tolerant control, the extension of linear
methods to nonlinear systems is generally a difficult problem.
Thus, it is a need to build systems that can operate over a
wide range of operating conditions, such as models based on
a decomposition of the system model into a number of simpler
linear models. Multi-model (MM) has proven to be a powerful
tool in the representation of nonlinear systems on a compact
set of the state space, as mentioned in chap. 14 of Tanaka
and Wang [2001] and also in the analysis and synthesis of a
nonlinear control system Murray-Smith and Johansen [1997],
Angelis [2001].

Several techniques for obtaining MMwere developed Johansen
et al. [2000], Tanaka and Wang [2001], Nagy et al. [2010]. The
sector nonlinearity approach Tanaka and Wang [2001] allows
to exactly rewrite a nonlinear system into a MM, but the choice
of the decision variables has not been systematically realized.
A systematic multi-modeling rewriting with a motivated choice
of these variables is presented in Nagy et al. [2010] which also
allows to avoid the model linearization and its drawbacks. This
last method will be used here for obtaining the MM.

This paper mainly focuses on the use of multi-models for
observer synthesis Bergsten et al. [2002], Marx et al. [2007].
The observer design represents, in the last decades, an active
research field owing to its particular importance in observer-
based control, fault diagnosis and fault tolerant control Tanaka
and Wang [2001], Chen and Saif [2007], Koenig and Mammar
[2002], Ichalal et al. [2010].

Most of the existing works, dedicated to observer design for
MM, are established for MM with measurable decision vari-

ables (inputs/outputs), that represents a simplified situation
Tanaka and Wang [2001], Marx et al. [2007]. The MM under
study in this paper involves unmeasurable decision variables
depending on the state variables -frequently met in practical
situations- that are not always accessible.

A proportional multi-integral (PMI) observer approach Nagy-
Kiss et al. [2011] for uncertain nonlinear systems with unknown
inputs presented under a MM form is proposed in this paper.
The state and unknown input estimation given by this observer
is made simultaneously and the influence of the model un-
certainties is minimized through a L2 gain. The convergence
conditions of the state and unknown input estimation errors
are expressed through LMIs (Linear Matrix Inequalities) Boyd
et al. [1994], Tanaka and Wang [2001] by using the Lyapunov
method and the L2 approach. PMI observers were previously
proposed by Jiang et al. [2000] for linear systems, by Koenig
[2005], Gao and Ho [2004] in order to estimate a large class
of polynomial signals for LTI descriptor systems and by Ichalal
et al. [2009] to estimate state and unknown inputs of nonlin-
ear systems expressed under Takagi-Sugeno form but without
considering uncertainties affecting the system. Therefore, this
motivates us to derive a novel PMI observer technique that
handles the uncertainties influence on the estimation error.

The practical contribution of this paper is to apply the proposed
modeling and observer method to the realistic model of a
waste-water treatment process (WWTP) modeled by an ASM1
nonlinear model with ten states, that is equivalently rewritten as
a MM. The measures used for simulation process are those of
the European program benchmark Cost 624 Coop [2002]. The
choice of the known/unknown inputs, the measures and the real
conditions is made by taking into account the properties of the
Bleesbruck treatment station from Luxembourg. The numerical
simulation results of the considered application show good state
and unknown inputs estimation performances.

Section 2 presents the multi-modeling approach and give the
problem statement. Section 3 gives the proposed observer syn-



thesis. Some results and performances of the proposed observer
are illustrated in section 4 through a complex model of WWTP.
Conclusions and future works are given in the end of this pro-
posal.

2. MULTI-MODELLING APPROACH

Generally, a nonlinear system can be described by:

ẋ(t) = f (x(t),u(t),d(t))
y(t) = g(x(t),u(t),d(t))

(1)

The MM approach allows to represent any nonlinear dynamic
system with uncertainties and affected by unknown inputs in
a compact set of the state space with a convex combination of
linear sub-models Nagy et al. [2010]:

ẋ(t) =
r

∑
i=1

µi(x,u) [(Ai+∆Ai(t))x(t)+Eid(t)

+(Bi+∆Bi(t))u(t)] (2a)

y(t) =Cx(t)+Gd(t) (2b)
r

∑
i=1

µi(x,u) =1, µi(x,u)≥ 0,∀(x,u) ∈ R
n×R

nu (2c)

where x(t) ∈ R
n is the system state, u(t) ∈ R

nu is the known
input, d(t) ∈ R

nd is the unknown input, y(t) ∈ R
ny is the

measured output and the matrices of appropriate dimensions
are known and constant excepted ∆Ai(t) and ∆Bi(t) that satisfy
the following equations

∆Ai(t) =M
a
i Fa(t)N

a
i , with FTa (t)Fa(t)≤ I (3a)

∆Bi(t) =M
b
i Fb(t)N

b
i , with FTb (t)Fb(t)≤ I (3b)

where both Fa(t) ∈ R
f1× f1 and Fb(t) ∈ R

f2× f2 are unknown
and time varying and Mai , M

b
i , N

a
i and N

b
i are known matrices

of appropriate dimensions. One can note that the activating
functions µi depend on the system state that is not available
to the measurement.
In the sequel, the following assumption is made:

Hypothesis 1. The unknown input d ∈ Cq is assumed to be a
bounded time varying signal with null qth derivative:

d(q)(t) = 0 (4)

In proportional integral (PI) observer design, the unknown input
must be constant (ḋ(t) = 0) in order to prove the estimation
error convergence (Koenig and Mammar [2002]). This first
hypothesis still gives good result if the unknown inputs vary
slowly. Although, for fast variations of the unknown input no
good estimation are obtained. Then, PMI observer is more
adequate for this problem, because the observer estimates the
(q− 1)th derivatives of the unknown input and gives a good
precision for the estimation of the unknown inputs as in Ichalal
et al. [2009]. For instance, one will see, in section 4, that good
estimation results are obtained with this last hypothesis 1.

3. OBSERVER DESIGN FOR UNCERTAIN NONLINEAR
SYSTEMS

In order to estimate both the system state and the unknown
input, the following PMI Observer is proposed:

˙̂x(t) =
r

∑
i=1

µi(x̂(t),u(t))
(
Aix̂(t)+Biu(t)+Eid̂(t)

+LPi(y(t)− ŷ(t))) (5a)

˙̂
d j(t) =

r

∑
i=1

µi(x̂(t),u(t))L
j
Ii(y(t)− ŷ(t))+ d̂ j+1 (5b)

ŷ(t) =Cx̂(t)+Gd̂(t) (5c)

for j = 1, ...,q−1 par j = 0, ...,q−1, where d̂i, i= 0, ...,q−1
are the estimates of d(t) and its (q− 1) first derivatives. The
state and unknown inputs estimation errors are:

e= x− x̂, e0 = ḋ− ˙̂
d0, ..., eq−1 = ḋq−1− ˙̂

dq−1

The observer design reduces to find the gains

LIi =
[
L0TIi L1TIi · · · Lq−1TIi

]T
and LPi s.t. the state and unknown

input estimation error obey to a stable system.

Notation 3.1. The symbol ∗ in a block matrix denotes the
blocks induced by symmetry. For any square matrix M, S(M)
is defined by S(M) =M+MT .

Theorem 2. The observer (5) estimating the state and unknown
input of the system (2) and minimizing the L2-gain γ of the
known and unknown inputs on the state and unknown input es-
timation error is obtained by finding symmetric positive definite

matrices P1 ∈ R
(n+q·nd)×(n+q·nd) and P2 ∈ R

n×n, matrices P j ∈
R
(n+q·nd)×ny and positive scalars ε1i and ε2i for all i = 1, · · · ,r

that minimize the scalar γ under the following LMI constraints

Mi j < 0, i, j = 1, . . . ,r (6)

where Mi j is defined by

Mi j =




Θ11
i j Θ12

i j Θ13
i j Θ14

i j P1M
a
i P1M

b
i

∗ Θ22
i j P2Bi P2Ei P2M

a
i P2M

b
i

∗ ∗ Θ33
i j 0 0 0

∗ ∗ ∗ −γInd 0 0

∗ ∗ ∗ ∗ −ε1iI f1 0

∗ ∗ ∗ ∗ ∗ −ε2iI f2




Θ11
i j =In+q·nd +S(P1A j−P jC) Θ12

i j =P1(Ãi− Ã j)
Θ13
i j =P1(B̃i− B̃ j) Θ14

i j =P1(Ẽi− Ẽ j) (7)

Θ22
i j =ε1iN

aT
i N

a
i +S(P2Ai) Θ33

i j =ε2iN
bT
i N

b
i − γInu

with

C =




CT

GT

0

.

.

.

0




T

, Ai =




Ai Ei 0 0 · · · 0

0 0 Ind 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 0 · · · Ind
0 0 · · · 0 · · · 0



,

Ãi =




Ai
0

.

.

.

0


 , Ẽi =




Ei
0

.

.

.

0


 ,M

a
i =




Mai (t)
0

.

.

.

0


 ,M

b
i =




Mbi (t)
0

.

.

.

0




(8)

The L2-gain γ is given by γ =
√

γ̄ and the observer gains are
obtained by

L j =

[
LP j
LI j

]
= P−11 P j (9)

Proof. Let us define an augmented state and its estimate by

xa(t) =
[
x(t)T d(t)T d1(t)

T · · · dq−1(t)T
]T

(10)

x̂a(t) =
[
x̂(t)T d̂(t)T d̂1(t)

T · · · d̂q−1(t)T
]T

(11)



The augmented state estimation error is defined by ea(t) =
xa(t)− x̂a(t). Using (2a) and (4), the system and observer
equations can be respectively written as

ẋa(t) =
r

∑
i=1

µi(xa(t),u(t))
[
(Ai+∆Ai(t))xa(t)

+(Bi+∆Bi(t))u(t)
]

(12a)

y(t) =Cxa(t) (12b)

with :

Bi =




Bi
0
...
0


 , N

bT
i =




NbTi
0
...
0


 , N

aT
i =




NaTi
0
...
0


 ,

∆Bi(t) =M
b
i F
b(t)Nbi , ∆Ai(t) =M

a
i F
a(t)N

a
i (13)

and

˙̂xa(t) =
r

∑
j=1

µ j(x̂a(t),u(t))
[
A j x̂a(t)+B ju(t)

+L j (y(t)− ŷ(t))] (14a)

ŷ(t) =Cx̂a(t) (14b)

One should note that in (12a) the activating functions depend
on xa(t), whereas they depend on x̂a(t) in (14a) and then the
comparison of the state xa (12a) and its reconstruction (14a)
seems to be difficult. In order to cope with the difficulty of ex-
pressing the augmented state estimation error in a tractable way,
(12a) is re-written, based on the property (2c). Consequently,
the augmented state estimation error obeys to the following
nonlinear system[

ėa(t)
ẋ(t)

]
=

r

∑
i=1

r

∑
j=1

µi(xa(t),u(t))µ j(x̂a(t),u(t))

·
{

Ai j(t)

[
ea(t)
x(t)

]
+Bi j(t)

[
u(t)
d(t)

]}
(15a)

ea(t) =[In+nd 0]

[
ea(t)
x(t)

]
(15b)

where

Ai j(t) =

[
A j−L jC Ãi− Ã j+ ∆̃Ai(t)

0 Ai+∆Ai(t)

]
(16)

Bi j(t) =

[
Bi−B j+∆Bi(t) Ẽi− Ẽ j
Bi+∆Bi(t) Ei

]
(17)

∆̃Ai(t) =
[
∆Ai(t)

T 0 · · · 0
]T

(18)

The candidate Lyapunov function for (15) is

V (xa(t),x(t)) =

[
ea(t)
x(t)

]T [
P1 0
0 P2

][
ea(t)
x(t)

]
(19)

where P1 and P2 are symmetric positive definite matrices. The
objective is to find the gains L j of the observer that minimize
the L2-gain from the known and unknown inputs u(t) and d(t)
to the state and unknown input estimation error ea(t). It is well

known Boyd et al. [1994] that the L2-gain from

[
u(t)
d(t)

]
to ea(t)

is bounded by γ if

V̇ (ea(t),x(t))+ e
T
a (t)ea(t)− γ2(uT (t)u(t)+dT (t)d(t))< 0

(20)
With some Schur complements and defining P j = P1L j and

γ = γ2, the previous inequality becomes
r

∑
i=1

r

∑
j=1

µi(xa(t),u(t))µ j(x̂a(t),u(t))Mi j < 0 (21)

It follows that (20) is satisfied if the LMI (6) holds, which
achieves the proof. For more details see Nagy-Kiss et al. [2011],
where a PI observer was proposed for a reduced ASM1 model.

The proposed estimation method requires that the system must
be quadratically robustly stable, as it can be seen in the block
(2,2) of the LMI (6).

The performance analysis and the synthesis of observer for
multi-model is based on the resolution of LMI by using the
Lyapunov method. Because of the convex sum property of the
weighting functions (2c), the LMI are only evaluated at the
polytope vertices (Ai,Bi) (or in the uncertain case adding the
terms ∆Ai and ∆Bi) and the weighting functions do not occur
in the resolution of the LMIs. One should keep in mind that the
LMI formulation of observer design for MM consists only in
sufficient but not necessary conditions. That is the reason why
it is essential to propose the appropriate MM structure. Detailed
choice criteria for MM are discussed in Nagy et al. [2010]; it
is to mention here the observability criteria, which means that
MM structures with observable submodels are necessary. Thus,
avoid submodel matrices Ci with null rows is an observability
requirement. It should be also mentioned that a MM with a
low number of submodels is preferred, which leads to less
computational requirements by reducing the number of LMI to
be solved.

Remark 3.1. If the system is also affected by unknown input
which estimates are not needed, the system (2) may be written
as

ẋ(t) =
r

∑
i=1

µi(x(t)) [(Ai+∆Ai(t))x(t)

+(Bi+∆Bi(t))u(t)+Eid(t)+Fiw(t)] (22a)

y(t) =Cx(t)+Gd(t)+Hw(t) (22b)

where w(t) ∈ R
nw denotes the unknown inputs that are not to

be estimated. In this case, the previous result can readily be
adapted in order to estimate both x(t) and d(t) while minimiz-
ing the influence of w(t) on the estimation errors. One should

see that the matrices Mi j in (6) should be replaced by M̃i j

defined by

M̃i j =

[
Mi j Ψi j

∗ −γInw

]
(23)

with ΨT
i j =

[
(P jH−P1Fi)T FTi P2 0 0

]
, H

T
=

[
HT 0

]
and

F
T
i =

[
FTi 0

]
.

4. WASTE-WATER TREATMENT PLANT

4.1 Process description and ASM1 model

The widely used activated sludge based waste-water treatment
consists in mixing waste-waters with a rich mixture of bacteria
in order to degrade the organic matter Olsson and Newell
[1999].

In this work, a part of the COST Benchmark is considered.
The Benchmark is based on the most common WWTP: a
continuous flow activated sludge plant, performing nitrification
and de-nitrification. A configuration with a single tank with a
settler/clarifier was developed. The objective of this study is to
use the data generated by this benchmark.

For observer/controller design, models of reduced complexity
are generally used. Nevertheless, this paper considers a quite



complete ASM1 model for WWTP involving the following
components: soluble carbon SS, particulate XS, dissolved oxy-
gen SO, heterotrophic biomass XBH , ammonia SNH , nitrate SNO,
autotrophic biomass XBA, soluble inert SI , suspended inert XI ,
soluble organic nitrogen SND and suspended organic nitrogen
XND. Only the following components are not considered in the
ASM1 model: the inert component XP and the alkalinity Salk.
As in practical situation, a single organic compound, denoted
XDCO, will be considered by adding the soluble part SS and
the particulate part XS Smets et al. [2003]. The following state
vector is taken:

x(t) = [XDCO(t), SO(t), SNH(t), SNO(t),XBH(t) · · ·
· · ·XBA(t),SI(t),XI(t),SND(t),XND(t)]T (24)

The following assumptions are considered: the dissolved oxy-
gen concentration input (SO,in) is null, SNO,in∼= 0 and XBA,in∼= 0,
which is in conformity with the European Benchmark COST
624 Coop [2002].
In practice, the concentrations XDCO,in, SNH,in and XBH,in are
not measured online. A daily mean value will be considered
for XDCO,in and XBH,in. The concentration SNH,in is considered
as unknown input. The measurements of (XDCO, SO, SNH and
SNO) are considered to be available online. Consequently, the
output y, the known input u and the unknown input d vectors
are:

y(t) = [XDCO(t),SO(t),SNH(t),SNO(t)]
T (25)

u(t) = [XDCO,in(t),qa(t),XBH,in,SI,in(t), · · ·
· · · XI,in(t),SND,in(t),XND,in(t)]T (26)

d(t) = SNH,in(t) (27)

Let us consider the dynamic ASM1 model with the state vector
(24):

ẊDCO(t) =−
1

Yh
[ϕ1(t)+ϕ2(t)]+(1− fp) [ϕ4(t)

+ϕ5(t)]+D1(t)

ṠO(t) =
Yh−1

Yh
ϕ1(t)+

Ya−4.57

Ya
ϕ3(t)+D2(t)

ṠNH(t) =− ixb[ϕ1(t)+ϕ2(t)]−
[
ixb+

1

Ya

]
ϕ3(t)

+(ixb− fp ixp)[ϕ4(t)+ϕ5(t)]+D3(t)

ṠNO(t) =
Yh−1

2.86Yh
ϕ2(t)+

1

Ya
ϕ3(t)+D4(t)

ẊBH(t) =ϕ1(t)+ϕ2(t)−ϕ4(t)+D5(t)

ẊBA(t) =ϕ3(t)−ϕ5(t)+D6(t)

ṠI(t) =D7(t)

ẊI(t) = fp[ρ4(t)+ρ5(t)]+D8(t)

ṠND(t) =−ρ6(t)+ρ8(t)+D9(t)

ẊND(t) =(ixb− fpixp)[ρ4(t)+ρ5(t)]−ρ8(t)+D10(t) (28)

where Ya, Yh, fp, ixb and ixp are constant coefficients and

ϕi(t), i= 1, · · · ,8 are given by:

ϕ1(t) =µh
XDCO(t)

Kdco+XDCO(t)

SO(t)

Koh+SO(t)
XBH(t)

ϕ2(t) =µhηNOg
XDCO(t)

Kdco+XDCO(t)

SNO(t)

Kno+SNO(t)

KohXBH(t)

Koh+SO(t)

ϕ3(t) =µa
SNH(t)

Knh,a+SNH(t)

SO(t)

Ko,a+SO(t)
XBA(t)

ϕ4(t) =bhXBH(t)

ϕ5(t) =baXBA(t)

ϕ6(t) =kaSND(t)XBH(t)

ϕ7(t) =khXDCO(t)η(t)XBH(t)

ϕ8(t) =khXND(t)η(t)XBH(t)

η(t) =

1
XBH (t)

Kdco+
XDCO(t)
XBH (t)

[
SO(t)

Koh+SO(t)
+ ηhKoh
Koh+SO(t)

SNO(t)
Kno+SNO(t)

]

The input/output balance is defined by:

D1(t) = Din(t)
[
XDCO,in(t)−XDCO(t)

]

D2(t) = Din(t) [−SO(t)]+Kqa(t)
[
SO,sat −SO(t)

]

D3(t) = Din(t) [SNH,in(t)−SNH(t)]
D4(t) = Din(t) [−SNO(t)]

D5(t) = Din(t)

[
XBH,in(t)−XBH(t)+

fr(1− fw)
fr+ fw

XBH(t)

]

D6(t) = Din(t)

[
−XBA(t)+

fr(1− fw)
fr+ fw

XBA(t)

]

D7(t) = Din(t) [SI,in(t)−SI(t)]

D8(t) = Din(t)

[
XI,in(t)−XI(t)+

fr(1− fw)
fr+ fw

]
XI(t)

D9(t) = Din(t) [SND,in(t)−SND(t)]

D10(t) = Din(t)

[
XND,in(t)−XND(t)+

fr(1− fw)
fr+ fw

]
XND(t)

(29)

where Din(t) = qin(t)
V

. The following heterotrophic growth and
decay kinetic parameters are used Olsson and Newell [1999]:
µh = 3.733[1/24h], µa = 0.3[1/24h], Ks = 20[g/m3], fss =
0.79, Koh = 0.2[g/m3], Ko,a = 0.4[g/m3], Kno = 0.5[g/m3],

Knh,a = 1[g/m3], bh = 0.3[1/24h], ba = 0.05[1/24h], ηNOg =
0.8. The stoichiometric parameters are Yh = 0.6[g cell], Ya =
0.24[g cell], ixb = 0.086[g N], ixp = 0.06[g N], fp = 0.1 and

the oxygen saturation concentration is SO,sat = 10[g/m3]. The
fractions fr and fw: fr = 1.1, fw = 0.04 and the tank volume is
V = 1333[m3].

4.2 Multi-model description for ASM1

For lack of space, only the essential points are given in the
following. For more details the reader is referred to Nagy et al.
[2010]. The idea is to equivalently rewrite the ASM1 model
(28) under the MM form (2), i.e. to find r, the matrices Ai, Bi,
Ei, ∆Ai and the weighting functions µi(x,u). First, the decision
variables are defined as nonlinearities of the system (28):

z1(x,u) =
qin(t)

V

z2(x,u) =
XDCO(t)

Kdco+XDCO(t)

SO(t)

Koh+SO(t)

z3(x,u) =
1

Ko,a+SO(t)

SNH(t)

Knh,a+SNH(t)
XBA(t)

z4(x,u) =SNH(t)

z5(x,u) =
XDCO(t)

Kdco+XDCO(t)

SNO(t)

Kno+SNO(t)

Koh

Koh+SO(t)

z6(x,u) =XDCO(t)η(t)

Remark 4.1. In order to avoid potential infeasible LMI solu-
tions for the observer design, the number of decision variables
should be reduced. Small dynamic variations and values can



be observed for z3, z5 and z6 compared to the other decision
variables, which allows to consider their means z̃3, z̃5 and z̃6 for
the construction of the MM form (2).

A convex polytopic transformation is performed for all the
decision variables ( j = 1,2,4), as follows:

z j(x,u) =Fj,1(z j(x,u))z j,1+Fj,2(z j(x,u))z j,2 (31)

where the scalars z j,1, z j,2 are respectively the maxima and

minima of z j(x,u) and Fj,1(z j), Fj,2(z j) are defined by

Fj,1(z j) =
z j(x,u)− z j,2
z j,1− z j,2

, Fj,2(z j) =
z j,1− z j(x,u)
z j,1− z j,2

(32)

By multiplying the functions F
j,σ

j
i
(z j(x,u)), the r = 8 weight-

ing functions are obtained:

µi(z) = F1,σ1
i
(z1(u))F2,σ2

i
(z2(x,u))F4,σ4

i
(z4(x,u)) (33)

The constant matrices Ai, Bi and Ei defining the 8 sub-models
are given by:

Ai = A(z1,σ1
i
,z2,σ2

i
,z4,σ4

i
) (34a)

Bi = B(z1,σ1
i
) (34b)

Ei = E(z1,σ1
i
), i= 1, ...,8, j = 1,2,4 (34c)

where the matrices A[ai, j] ∈ R
10×10, B[bi, j] ∈ R

10×6 and

E[ei, j] ∈ R
10×1 are defined by the following compounds:

a1,1(x,u) = a3,3(x,u) = a4,4(x,u) = a7,7(x,u) = a9,9(x,u)
= b1,1(x,u) =b7,3(x,u) = b8,4(x,u) =b9,5(x,u) =b10,6(x,u) =
e3,1(x,u) = −z1(u), b2,2 = KSO,sat and

a1,5(x,u) =−
µh
Yh
z2(x,u)+(1− fp)bh−

µhηNOg
Yh

z̃5

a1,6(x,u) =(1− fp)ba

a2,2(x,u) =− z1(u)−Kqa−
4.57−Ya
Ya

µa z̃3

a2,5(x,u) =
(Yh−1)µh

Yh
z2(x,u)

a3,2(x,u) =− (ixb+
1

Ya
)µa z̃3

a3,5(x,u) =(ixb− fpixp)bh− ixbµh[z2(x,u)+ηNOg z̃5]

a3,6(x,u) =(ixb− fp ixp)ba

a4,2(x,u) =
1

Ya
µaz̃3

a4,5(x,u) =
Yh−1

2.86Yh
µhηNOg z̃5

a5,5(x,u) =µh z2(x,u)−bh+µhηNOg z̃5+ z1(u) f̃

a6,2(x,u) =µa z̃3

a6,6(x,u) =z1(u) f̃ −ba
a8,5(x,u) = fpbh
a8,6(x,u) = fpba

a8,8(x,u) = f̃ z1(u)

a9,5(x,u) =− ka z4(x,u)+ kh z̃6
a10,5(x,u) =(ixb− fp ixp)bh− kh z̃6
a10,6(x,u) =(ixb− fp ixp)ba
a10,10(x,u) = f̃ z1(u) (35)

where f̃ =
[
fr(1− fw)
fr+ fw

−1
]
. The rest of matrices compounds not

mentioned here are zero. Using this, the reduced MM form
(Remark 4.1) of the ten state reduced ASM1 is completed. It

should be said that the reduced MM accurately represents the
ASM1 (28), excepting the two concentrations SNO and XND for
which a quite good representation is nevertheless obtained, as
seen in figure 1.
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Fig. 1. Comparison between the reduced MM(dashed) and
ASM1(solid)

In order to take into account parameter uncertainties on bH
and bA, the MM structure is slightly modified. These param-
eters appear in the coefficients a15, a16, a35, a36, a55 and a66
in (35), allowing to separate the uncertain part ∆A(t) from
the known one A(t). The parameter variation on bH (resp.
bA) is of 20% (resp. 25%) of its nominal value, i.e. bH ∈
[0.25 ; 0.35] (resp. bA ∈ [0.04 ; 0.06]).The uncertain terms of
ASM1 ∆Bi(t) = 0 and ∆Ai(t) = ∆A(t) are written under the
form ∆A(t) = MaFa(t)N

a where:

Ma =

[
1 0 1 0 1 0 0 1 0 1
1 0 1 0 0 1 0 1 0 1

]T
(36)

Fa(t) =

[
∆bH(t) 0

0 ∆bA(t)

]
(37)

Na =

[
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

]
(38)

The data used for simulation are generated with the complete
ASM1 model with 13 state variables Henze et al. [1987], in
order to represent a realistic behavior of a WWTP. Applying
the Theorem 1 for q= 4 the observer (5) is designed by finding
positive scalars ε1i, ε2i, positive definite matrices P1 and P2
and matrices P̄i (i = 1, · · · ,8) -that are not given here due to
space limitation- such that the convergence conditions, given
in Theorem 1 hold. The value of the attenuation rate from the
known and unknown inputs u(t) and d(t) to the state and fault
estimation error ea(t) is γ̄ = 0.52. The positive scalars gathered
in vectors are ε1 = [0.3313, 0.3339, 0.3428, 0.3424, 0.3064,
0.3099, 0.3167, 0.3185], ε1 = [0.2767, 0.2766, 0.2772, 0.2777,
0.2772, 0.2763, 0.2778, 0.2788]. A comparison between the
actual state variables, the unknown inputs and their respective
estimates is depicted in figures 2 and 3. In fig. 2, the estimation
errors for SNO and XND are in part generated by the reduction
made on the MM (see the Remark 4.1).

5. CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions

The MM approach provides the state of the art solutions to
many problems involving estimation, filtering, control, and/or
modeling. As a major advantage of the MM against a general
nonlinear model there is the possibility to use many tools devel-
oped in the framework of linear system. The paper propose the
observer synthesis for uncertain nonlinear systems affected by
unknown inputs described by the multi-model formulation with
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Fig. 2. State estimation using PMI observer (dashed) for ASM1
(solid)
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Fig. 3. Unknown input estimation using PMI observer (dashed)
for complete ASM1 (solid)

unmeasurable decision variables. The application to a waste-
water treatment plant model, which is an uncertain nonlinear
system affected by unknown inputs is afterwards realized in
order to prove the performance of the proposed observer.

5.2 Future Works

The future developments are numerous and among them one
can think of the choice of adapted structures of the local
models with specific properties, such as diagnosability. Another
important problem concerns the use of MM and PMI observers
to detect and isolate sensor and actuator faults in the system.
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