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Observer synthesis for uncertain nonlinear systems. Application to waste-water treatment plants

The paper proposes an observer synthesis for uncertain nonlinear systems, described by multimodels with unmeasurable premise variables, affected by unknown inputs. A proportional multi-integral observer is considered in order to estimate the system states and the unknown inputs and minimize the influence of the model uncertainties. The stability analysis and the observer synthesis are expressed through linear matrix inequalities based on the Lyapunov method. The performances of the proposed observer synthesis method are highlighted through the application to a waste-water treatment plant model, which is an uncertain nonlinear system affected by unknown inputs.

INTRODUCTION

Environmental or technological systems have complex behaviors. Thus, their representation in a large operating domain involves nonlinear relations between the process variables, the system parameters, the control inputs and the external perturbations. On the other hand, in the field fields of observer design for fault diagnosis or fault tolerant control, the extension of linear methods to nonlinear systems is generally a difficult problem. Thus, it is a need to build systems that can operate over a wide range of operating conditions, such as models based on a decomposition of the system model into a number of simpler linear models. Multi-model (MM) has proven to be a powerful tool in the representation of nonlinear systems on a compact set of the state space, as mentioned in chap. 14 of [START_REF] Tanaka | Fuzzy Control System Design and analysis[END_REF] and also in the analysis and synthesis of a nonlinear control system Murray-Smith and [START_REF] Murray-Smith | Multiple model approaches to modeling and control[END_REF], [START_REF] Angelis | System Analysis, Modeling and Control with Polytopic Linear Models[END_REF].

Several techniques for obtaining MM were developed [START_REF] Johansen | On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models[END_REF], [START_REF] Tanaka | Fuzzy Control System Design and analysis[END_REF], [START_REF] Nagy | Systematic multi-modeling methodology applied to an activated sludge reactor model[END_REF]. The sector nonlinearity approach [START_REF] Tanaka | Fuzzy Control System Design and analysis[END_REF] allows to exactly rewrite a nonlinear system into a MM, but the choice of the decision variables has not been systematically realized. A systematic multi-modeling rewriting with a motivated choice of these variables is presented in [START_REF] Nagy | Systematic multi-modeling methodology applied to an activated sludge reactor model[END_REF] which also allows to avoid the model linearization and its drawbacks. This last method will be used here for obtaining the MM. This paper mainly focuses on the use of multi-models for observer synthesis [START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF], [START_REF] Marx | Design of observers for Takagi-Sugeno descriptor systems with unknown inputs and application to fault diagnosis[END_REF]. The observer design represents, in the last decades, an active research field owing to its particular importance in observerbased control, fault diagnosis and fault tolerant control [START_REF] Tanaka | Fuzzy Control System Design and analysis[END_REF], [START_REF] Chen | Design of a TS based fuzzy nonlinear unknown input observer with fault diagnosis applications[END_REF], [START_REF] Koenig | Design of proportional-integral observer for unknown input descriptor systems[END_REF], [START_REF] Ichalal | Fault tolerant control for takagi-sugeno systems with unmeasurable premise variables by trajectory tracking[END_REF].

Most of the existing works, dedicated to observer design for MM, are established for MM with measurable decision vari-ables (inputs/outputs), that represents a simplified situation [START_REF] Tanaka | Fuzzy Control System Design and analysis[END_REF], [START_REF] Marx | Design of observers for Takagi-Sugeno descriptor systems with unknown inputs and application to fault diagnosis[END_REF]. The MM under study in this paper involves unmeasurable decision variables depending on the state variables -frequently met in practical situations-that are not always accessible.

A proportional multi-integral (PMI) observer approach [START_REF] Nagy-Kiss | Observers design for uncertain Takagi-Sugeno systems with unmeasurable premise variables and unknown inputs. Application to a wastewater treatment plant[END_REF] for uncertain nonlinear systems with unknown inputs presented under a MM form is proposed in this paper. The state and unknown input estimation given by this observer is made simultaneously and the influence of the model uncertainties is minimized through a L 2 gain. The convergence conditions of the state and unknown input estimation errors are expressed through LMIs (Linear Matrix Inequalities) [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF], [START_REF] Tanaka | Fuzzy Control System Design and analysis[END_REF] by using the Lyapunov method and the L 2 approach. PMI observers were previously proposed by [START_REF] Jiang | Design of observer with integrators for linear systems with unknown input disturbances[END_REF] for linear systems, by [START_REF] Koenig | Unknown input PMI observer design for linear descriptor systems: application to state and fault estimation[END_REF], [START_REF] Gao | Proportional multi-integral observer for descriptor systems with measurement output disturbances[END_REF] in order to estimate a large class of polynomial signals for LTI descriptor systems and by [START_REF] Ichalal | Simultaneous state and unknown inputs estimation with PI and PMI observers for Takagi-Sugeno model with unmeasurable premise variables[END_REF] to estimate state and unknown inputs of nonlinear systems expressed under Takagi-Sugeno form but without considering uncertainties affecting the system. Therefore, this motivates us to derive a novel PMI observer technique that handles the uncertainties influence on the estimation error.

The practical contribution of this paper is to apply the proposed modeling and observer method to the realistic model of a waste-water treatment process (WWTP) modeled by an ASM1 nonlinear model with ten states, that is equivalently rewritten as a MM. The measures used for simulation process are those of the European program benchmark Cost 624 [START_REF] Coop | Description and Simulator Manual, chapter The COST Simulation Benchmark. Office for Official of the European Communities[END_REF]. The choice of the known/unknown inputs, the measures and the real conditions is made by taking into account the properties of the Bleesbruck treatment station from Luxembourg. The numerical simulation results of the considered application show good state and unknown inputs estimation performances.

Section 2 presents the multi-modeling approach and give the problem statement. Section 3 gives the proposed observer syn-thesis. Some results and performances of the proposed observer are illustrated in section 4 through a complex model of WWTP. Conclusions and future works are given in the end of this proposal.

MULTI-MODELLING APPROACH

Generally, a nonlinear system can be described by:

ẋ(t) = f (x(t), u(t), d(t)) y(t) = g(x(t), u(t), d(t))
(1)

The MM approach allows to represent any nonlinear dynamic system with uncertainties and affected by unknown inputs in a compact set of the state space with a convex combination of linear sub-models [START_REF] Nagy | Systematic multi-modeling methodology applied to an activated sludge reactor model[END_REF]:

ẋ(t) = r ∑ i=1 µ i (x, u) [(A i + ∆A i (t))x(t) + E i d(t) +(B i + ∆B i (t))u(t)] (2a) y(t) =Cx(t) + Gd(t) (2b) r ∑ i=1 µ i (x, u) =1, µ i (x, u) ≥ 0, ∀(x, u) ∈ R n × R n u (2c)
where x(t) ∈ R n is the system state, u(t) ∈ R n u is the known input, d(t) ∈ R n d is the unknown input, y(t) ∈ R n y is the measured output and the matrices of appropriate dimensions are known and constant excepted ∆A i (t) and ∆B i (t) that satisfy the following equations

∆A i (t) = M a i F a (t)N a i , with F T a (t)F a (t) ≤ I (3a) ∆B i (t) = M b i F b (t)N b i , with F T b (t)F b (t) ≤ I (3b)
where both F a (t) ∈ R f 1 × f 1 and F b (t) ∈ R f 2 × f 2 are unknown and time varying and M a i , M b i , N a i and N b i are known matrices of appropriate dimensions. One can note that the activating functions µ i depend on the system state that is not available to the measurement. In the sequel, the following assumption is made: Hypothesis 1. The unknown input d ∈ C q is assumed to be a bounded time varying signal with null q th derivative:

d (q) (t) = 0 (4)
In proportional integral (PI) observer design, the unknown input must be constant ( ḋ(t) = 0) in order to prove the estimation error convergence [START_REF] Koenig | Design of proportional-integral observer for unknown input descriptor systems[END_REF]). This first hypothesis still gives good result if the unknown inputs vary slowly. Although, for fast variations of the unknown input no good estimation are obtained. Then, PMI observer is more adequate for this problem, because the observer estimates the (q -1) th derivatives of the unknown input and gives a good precision for the estimation of the unknown inputs as in [START_REF] Ichalal | Simultaneous state and unknown inputs estimation with PI and PMI observers for Takagi-Sugeno model with unmeasurable premise variables[END_REF]. For instance, one will see, in section 4, that good estimation results are obtained with this last hypothesis 1.

OBSERVER DESIGN FOR UNCERTAIN NONLINEAR SYSTEMS

In order to estimate both the system state and the unknown input, the following PMI Observer is proposed:

ẋ(t) = r ∑ i=1 µ i ( x(t), u(t)) A i x(t) + B i u(t) + E i d(t) +L Pi (y(t) -ŷ(t))) (5a) ḋ j (t) = r ∑ i=1 µ i ( x(t), u(t))L j Ii (y(t) -ŷ(t)) + d j+1 (5b) ŷ(t) =C x(t) + G d(t) (5c) 
for j = 1, ..., q -1 par j = 0, ..., q -1, where di , i = 0, ..., q -1 are the estimates of d(t) and its (q -1) first derivatives. The state and unknown inputs estimation errors are:

e = x -x, e 0 = ḋ -ḋ0 , ..., e q-1 = ḋq-1 -ḋq-1
The observer design reduces to find the gains 

L Ii = L 0 T Ii L 1 T Ii • • • L q-1 T Ii T and
(M) = M + M T .
Theorem 2. The observer (5) estimating the state and unknown input of the system (2) and minimizing the L 2 -gain γ of the known and unknown inputs on the state and unknown input estimation error is obtained by finding symmetric positive definite matrices

P 1 ∈ R (n+q•n d )×(n+q•n d ) and P 2 ∈ R n×n , matrices P j ∈ R (n+q•n d )×n y and positive scalars ε 1i and ε 2i for all i = 1, • • • , r that minimize the scalar γ under the following LMI constraints M i j < 0, i, j = 1, . . . , r (6) 
where M i j is defined by

M i j =          Θ 11 i j Θ 12 i j Θ 13 i j Θ 14 i j P 1 M a i P 1 M b i * Θ 22 i j P 2 B i P 2 E i P 2 M a i P 2 M b i * * Θ 33 i j 0 0 0 * * * -γI n d 0 0 * * * * -ε 1i I f 1 0 * * * * * -ε 2i I f 2          Θ 11 i j =I n+q•n d + S(P 1 A j -P j C) Θ 12 i j =P 1 ( Ãi -Ã j ) Θ 13 i j =P 1 ( Bi -B j ) Θ 14 i j =P 1 ( Ẽi -Ẽ j ) (7) 
Θ 22 i j =ε 1i N aT i N a i + S(P 2 A i ) Θ 33 i j =ε 2i N bT i N b i -γI nu with C =         C T G T 0 . . . 0         T , A i =        A i E i 0 0 • • • 0 0 0 I n d 0 • • • 0 . . . . . . . . . . . . 0 0 0 • • • I n d 0 0 • • • 0 • • • 0        , Ãi =      A i 0 . . . 0      , Ẽi =      E i 0 . . . 0      , M a i =      M a i (t) 0 . . . 0      , M b i =       M b i (t) 0 . . . 0       (8)
The L 2 -gain γ is given by γ = √ γ and the observer gains are obtained by

L j = L P j L I j = P -1 1 P j (9)
Proof. Let us define an augmented state and its estimate by

x a (t) = x(t) T d(t) T d 1 (t) T • • • d q-1 (t) T T (10) xa (t) = x(t) T d(t) T d1 (t) T • • • dq-1 (t) T T (11)
The augmented state estimation error is defined by e a (t) = x a (t)xa (t). Using (2a) and (4), the system and observer equations can be respectively written as

ẋa (t) = r ∑ i=1 µ i (x a (t), u(t)) (A i + ∆A i (t))x a (t) +(B i + ∆B i (t))u(t) (12a) y(t) =Cx a (t) (12b) with : B i =     B i 0 . . . 0     , N bT i =     N bT i 0 . . . 0     , N aT i =     N aT i 0 . . . 0     , ∆B i (t) = M b i F b (t)N b i , ∆A i (t) = M a i F a (t)N a i
(13) and

ẋa (t) = r ∑ j=1 µ j ( xa (t), u(t)) A j xa (t) + B j u(t) +L j (y(t) -ŷ(t))] (14a) ŷ(t) =C xa (t) (14b 
) One should note that in (12a) the activating functions depend on x a (t), whereas they depend on xa (t) in (14a) and then the comparison of the state x a (12a) and its reconstruction (14a) seems to be difficult. In order to cope with the difficulty of expressing the augmented state estimation error in a tractable way, (12a) is re-written, based on the property (2c). Consequently, the augmented state estimation error obeys to the following nonlinear system ėa (t)

ẋ(t) = r ∑ i=1 r ∑ j=1 µ i (x a (t), u(t))µ j ( xa (t), u(t)) • A i j (t) e a (t) x(t) + B i j (t) u(t) d(t) (15a) e a (t) = [I n+n d 0] e a (t) x(t) (15b)
where

A i j (t) = A j -L j C Ãi -Ã j + ∆A i (t) 0 A i + ∆A i (t) (16) 
B i j (t) = B i -B j + ∆B i (t) Ẽi -Ẽ j B i + ∆B i (t) E i (17) ∆A i (t) = ∆A i (t) T 0 • • • 0 T (18) The candidate Lyapunov function for (15) is V (x a (t), x(t)) = e a (t) x(t) T P 1 0 0 P 2 e a (t) x(t) ( 19 
)
where P 1 and P 2 are symmetric positive definite matrices. The objective is to find the gains L j of the observer that minimize the L 2 -gain from the known and unknown inputs u(t) and d(t) to the state and unknown input estimation error e a (t). It is well known [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF] that the L 2 -gain from

u(t) d(t) to e a (t) is bounded by γ if V (e a (t), x(t)) + e T a (t)e a (t) -γ 2 (u T (t)u(t) + d T (t)d(t)) < 0 ( 20 
) With some Schur complements and defining P j = P 1 L j and γ = γ 2 , the previous inequality becomes

r ∑ i=1 r ∑ j=1 µ i (x a (t), u(t))µ j ( xa (t), u(t))M i j < 0 (21)
It follows that ( 20) is satisfied if the LMI (6) holds, which achieves the proof. For more details see [START_REF] Nagy-Kiss | Observers design for uncertain Takagi-Sugeno systems with unmeasurable premise variables and unknown inputs. Application to a wastewater treatment plant[END_REF], where a PI observer was proposed for a reduced ASM1 model.

The proposed estimation method requires that the system must be quadratically robustly stable, as it can be seen in the block (2,2) of the LMI (6).

The performance analysis and the synthesis of observer for multi-model is based on the resolution of LMI by using the Lyapunov method. Because of the convex sum property of the weighting functions (2c), the LMI are only evaluated at the polytope vertices (A i , B i ) (or in the uncertain case adding the terms ∆A i and ∆B i ) and the weighting functions do not occur in the resolution of the LMIs. One should keep in mind that the LMI formulation of observer design for MM consists only in sufficient but not necessary conditions. That is the reason why it is essential to propose the appropriate MM structure. Detailed choice criteria for MM are discussed in [START_REF] Nagy | Systematic multi-modeling methodology applied to an activated sludge reactor model[END_REF]; it is to mention here the observability criteria, which means that MM structures with observable submodels are necessary. Thus, avoid submodel matrices C i with null rows is an observability requirement. It should be also mentioned that a MM with a low number of submodels is preferred, which leads to less computational requirements by reducing the number of LMI to be solved. Remark 3.1. If the system is also affected by unknown input which estimates are not needed, the system (2) may be written as

ẋ(t) = r ∑ i=1 µ i (x(t)) [(A i + ∆A i (t))x(t) +(B i + ∆B i (t))u(t) + E i d(t) + F i w(t)] (22a) y(t) = Cx(t) + Gd(t) + Hw(t)
(22b) where w(t) ∈ R n w denotes the unknown inputs that are not to be estimated. In this case, the previous result can readily be adapted in order to estimate both x(t) and d(t) while minimizing the influence of w(t) on the estimation errors. One should see that the matrices M i j in (6) should be replaced by Mi j defined by

Mi j = M i j Ψ i j * -γI n w (23)
with Ψ T i j = (P j H -P 1 F i ) T F T i P 2 0 0 , H T = H T 0 and

F T i = F T i 0 .

WASTE-WATER TREATMENT PLANT

Process description and ASM1 model

The widely used activated sludge based waste-water treatment consists in mixing waste-waters with a rich mixture of bacteria in order to degrade the organic matter [START_REF] Olsson | Wastewater Treatment Systems. Modelling, Diagnosis and Control[END_REF].

In this work, a part of the COST Benchmark is considered.

The Benchmark is based on the most common WWTP: a continuous flow activated sludge plant, performing nitrification and de-nitrification. A configuration with a single tank with a settler/clarifier was developed. The objective of this study is to use the data generated by this benchmark.

For observer/controller design, models of reduced complexity are generally used. Nevertheless, this paper considers a quite complete ASM1 model for WWTP involving the following components: soluble carbon S S , particulate X S , dissolved oxygen S O , heterotrophic biomass X BH , ammonia S NH , nitrate S NO , autotrophic biomass X BA , soluble inert S I , suspended inert X I , soluble organic nitrogen S ND and suspended organic nitrogen X ND . Only the following components are not considered in the ASM1 model: the inert component X P and the alkalinity S alk . As in practical situation, a single organic compound, denoted X DCO , will be considered by adding the soluble part S S and the particulate part X S [START_REF] Smets | Linearization of the activated sludge model ASM1 for fast and reliable predictions[END_REF]. The following state vector is taken:

x(t) = [X DCO (t), S O (t), S NH (t), S NO (t), X BH (t) • • • • • • X BA (t), S I (t), X I (t), S ND (t), X ND (t)] T (24)
The following assumptions are considered: the dissolved oxygen concentration input (S O,in ) is null, S NO,in ∼ = 0 and X BA,in ∼ = 0, which is in conformity with the European Benchmark COST 624 [START_REF] Coop | Description and Simulator Manual, chapter The COST Simulation Benchmark. Office for Official of the European Communities[END_REF].

In practice, the concentrations X DCO,in , S NH,in and X BH,in are not measured online. A daily mean value will be considered for X DCO,in and X BH,in . The concentration S NH,in is considered as unknown input. The measurements of (X DCO , S O , S NH and S NO ) are considered to be available online. Consequently, the output y, the known input u and the unknown input d vectors are:

y(t) = [X DCO (t), S O (t), S NH (t), S NO (t)] T (25) u(t) = [X DCO,in (t), q a (t), X BH,in , S I,in (t), • • • • • • X I,in (t), S ND,in (t), X ND,in (t)] T (26) d(t) = S NH,in (t) (27) 
Let us consider the dynamic ASM1 model with the state vector (24):

ẊDCO (t) = - 1 Y h [ϕ 1 (t) + ϕ 2 (t)] + (1 -f p ) [ϕ 4 (t) +ϕ 5 (t)] + D 1 (t) ṠO (t) = Y h -1 Y h ϕ 1 (t) + Y a -4.57 Y a ϕ 3 (t) + D 2 (t) ṠNH (t) = -i xb [ϕ 1 (t) + ϕ 2 (t)] -i xb + 1 Y a ϕ 3 (t) + (i xb -f p i xp )[ϕ 4 (t) + ϕ 5 (t)] + D 3 (t) ṠNO (t) = Y h -1 2.86Y h ϕ 2 (t) + 1 Y a ϕ 3 (t) + D 4 (t) ẊBH (t) =ϕ 1 (t) + ϕ 2 (t) -ϕ 4 (t) + D 5 (t) ẊBA (t) =ϕ 3 (t) -ϕ 5 (t) + D 6 (t) ṠI (t) =D 7 (t) ẊI (t) = f p [ρ 4 (t) + ρ 5 (t)] + D 8 (t) ṠND (t) = -ρ 6 (t) + ρ 8 (t) + D 9 (t) ẊND (t) =(i xb -f p i xp )[ρ 4 (t) + ρ 5 (t)] -ρ 8 (t) + D 10 (t) (28)
where Y a , Y h , f p , i xb and i xp are constant coefficients and ϕ i (t), i = 1, • • • , 8 are given by:

ϕ 1 (t) =µ h X DCO (t) K dco + X DCO (t) S O (t) K oh + S O (t) X BH (t) ϕ 2 (t) =µ h η NOg X DCO (t) K dco + X DCO (t) S NO (t) K no + S NO (t) K oh X BH (t) K oh + S O (t) ϕ 3 (t) =µ a S NH (t) K nh,a + S NH (t) S O (t) K o,a + S O (t) X BA (t) ϕ 4 (t) =b h X BH (t) ϕ 5 (t) =b a X BA (t) ϕ 6 (t) =k a S ND (t)X BH (t) ϕ 7 (t) =k h X DCO (t)η(t)X BH (t) ϕ 8 (t) =k h X ND (t)η(t)X BH (t) η(t) = 1 X BH (t) K dco + X DCO (t) X BH (t) S O (t) K oh +S O (t) + η h K oh K oh +S O (t) S NO (t) Kno+S NO (t)
The input/output balance is defined by:

D 1 (t) = D in (t) X DCO,in (t) -X DCO (t) D 2 (t) = D in (t) [-S O (t)] + Kq a (t) S O,sat -S O (t) D 3 (t) = D in (t) [S NH,in (t) -S NH (t)] D 4 (t) = D in (t) [-S NO (t)] D 5 (t) = D in (t) X BH,in (t) -X BH (t) + f r (1 -f w ) f r + f w X BH (t) D 6 (t) = D in (t) -X BA (t) + f r (1 -f w ) f r + f w X BA (t) D 7 (t) = D in (t) [S I,in (t) -S I (t)] D 8 (t) = D in (t) X I,in (t) -X I (t) + f r (1 -f w ) f r + f w X I (t) D 9 (t) = D in (t) [S ND,in (t) -S ND (t)] D 10 (t) = D in (t) X ND,in (t) -X ND (t) + f r (1 -f w ) f r + f w X ND (t) (29) 
where D in (t) = q in (t) V . The following heterotrophic growth and decay kinetic parameters are used [START_REF] Olsson | Wastewater Treatment Systems. Modelling, Diagnosis and Control[END_REF]: 

µ h = 3.733[1/24h], µ a = 0.3[1/24h], K s = 20[g/m 3 ], f ss = 0.79, K oh = 0.2[g/m 3 ], K o,a = 0.4[g/m 3 ], K no = 0.5[g/m 3 ], K nh,a = 1[g/m 3 ], b h = 0.3[1/24h], b a = 0.

Multi-model description for ASM1

For lack of space, only the essential points are given in the following. For more details the reader is referred to [START_REF] Nagy | Systematic multi-modeling methodology applied to an activated sludge reactor model[END_REF]. The idea is to equivalently rewrite the ASM1 model (28) under the MM form (2), i.e. to find r, the matrices A i , B i , E i , ∆A i and the weighting functions µ i (x, u). First, the decision variables are defined as nonlinearities of the system (28):

z 1 (x, u) = q in (t) V z 2 (x, u) = X DCO (t) K dco + X DCO (t) S O (t) K oh + S O (t) z 3 (x, u) = 1 K o,a + S O (t) S NH (t) K nh,a + S NH (t) X BA (t) z 4 (x, u) =S NH (t) z 5 (x, u) = X DCO (t) K dco + X DCO (t) S NO (t) K no + S NO (t) K oh K oh + S O (t) z 6 (x, u) =X DCO (t)η(t)
Remark 4.1. In order to avoid potential infeasible LMI solutions for the observer design, the number of decision variables should be reduced. Small dynamic variations and values can be observed for z 3 , z 5 and z 6 compared to the other decision variables, which allows to consider their means z3 , z5 and z6 for the construction of the MM form (2).

A convex polytopic transformation is performed for all the decision variables ( j = 1, 2, 4), as follows:

z j (x, u) =F j,1 (z j (x, u)) z j,1 + F j,2 (z j (x, u)) z j,2 (31) where the scalars z j,1 , z j,2 are respectively the maxima and minima of z j (x, u) and F j,1 (z j ), F j,2 (z j ) are defined by

F j,1 (z j ) = z j (x, u) -z j,2 z j,1 -z j,2 , F j,2 (z j ) = z j,1 -z j (x, u) z j,1 -z j,2 (32) 
By multiplying the functions F j,σ j i (z j (x, u)), the r = 8 weighting functions are obtained:

µ i (z) = F 1,σ 1 i (z 1 (u))F 2,σ 2 i (z 2 (x, u))F 4,σ 4 i (z 4 (x, u)) (33)
The constant matrices A i , B i and E i defining the 8 sub-models are given by:

A i = A(z 1,σ 1 i , z 2,σ 2 i , z 4,σ 4 i ) ( 34a 
)
B i = B(z 1,σ 1 i ) ( 34b 
)
E i = E(z 1,σ 1 i ), i = 1, ..., 8, j = 1, 2, 4 (34c) 
where the matrices E[e i, j ] ∈ R 10×1 are defined by the following compounds:

A[a i, j ] ∈ R 10×10 , B[b i, j ] ∈ R 10×6 and
a 1,1 (x, u) = a 3,3 (x, u) = a 4,4 (x, u) = a 7,7 (x, u) = a 9,9 (x, u) = b 1,1 (x, u) =b 7,3 (x, u) = b 8,4 (x, u) =b 9,5 (x, u) =b 10,6 (x, u) = e 3,1 (x, u) = -z 1 (u), b 2,2 = KS O,sat and a 1,5 (x, u) = - µ h Y h z 2 (x, u) + (1 -f p ) b h - µ h η NOg Y h z5 a 1,6 (x, u) =(1 -f p ) b a a 2,2 (x, u) = -z 1 (u) -K q a - 4.57 -Y a Y a µ a z3 a 2,5 (x, u) = (Y h -1)µ h Y h z 2 (x, u) a 3,2 (x, u) = -(i xb + 1 Y a )µ a z3 a 3,5 (x, u) =(i xb -f p i xp )b h -i xb µ h [z 2 (x, u) + η NOg z5 ] a 3,6 (x, u) =(i xb -f p i xp ) b a a 4,2 (x, u) = 1 Y a µ a z3 a 4,5 (x, u) = Y h -1 2.86Y h µ h η NOg z5 a 5,5 (x, u) =µ h z 2 (x, u) -b h + µ h η NOg z5 + z 1 (u) f a 6,2 (x, u) =µ a z3 a 6,6 (x, u) =z 1 (u) f -b a a 8,5 (x, u) = f p b h a 8,6 (x, u) = f p b a a 8,8 (x, u) = f z 1 (u) a 9,5 (x, u) = -k a z 4 (x, u) + k h z6 a 10,5 (x, u) =(i xb -f p i xp )b h -k h z6 a 10,6 (x, u) =(i xb -f p i xp )b a a 10,10 (x, u) = f z 1 (u) (35) 
where f = f r (1-f w ) f r + f w -1 . The rest of matrices compounds not mentioned here are zero. Using this, the reduced MM form (Remark 4.1) of the ten state reduced ASM1 is completed. It should be said that the reduced MM accurately represents the ASM1 (28), excepting the two concentrations S NO and X ND for which a quite good representation is nevertheless obtained, as seen in figure 1. 

M a = 1 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 T (36) F a (t) = ∆b H (t) 0 0 ∆b A (t) (37) 
N a = 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 (38)

The data used for simulation are generated with the complete ASM1 model with 13 state variables [START_REF] Henze | Activated Sludge Model no[END_REF], in order to represent a realistic behavior of a WWTP. Applying the Theorem 1 for q = 4 the observer (5) is designed by finding positive scalars ε 1i , ε 2i , positive definite matrices P 1 and P 2 and matrices Pi (i = 1, • • • , 8) -that are not given here due to space limitation-such that the convergence conditions, given in Theorem 1 hold. [0.2767, 0.2766, 0.2772, 0.2777, 0.2772, 0.2763, 0.2778, 0.2788]. A comparison between the actual state variables, the unknown inputs and their respective estimates is depicted in figures 2 and 3. In fig. 2, the estimation errors for S NO and X ND are in part generated by the reduction made on the MM (see the Remark 4.1).

CONCLUSIONS AND FUTURE WORKS

Conclusions

The MM approach provides the state of the art solutions to many problems involving estimation, filtering, control, and/or modeling. As a major advantage of the MM against a general nonlinear model there is the possibility to use many tools developed in the framework of linear system. The paper propose the observer synthesis for uncertain nonlinear systems affected by unknown inputs described by the multi-model formulation with unmeasurable decision variables. The application to a wastewater treatment plant model, which is an uncertain nonlinear system affected by unknown inputs is afterwards realized in order to prove the performance of the proposed observer.

Future Works

The future developments are numerous and among them one can think of the choice of adapted structures of the local models with specific properties, such as diagnosability. Another important problem concerns the use of MM and PMI observers to detect and isolate sensor and actuator faults in the system.

  05[1/24h], η NOg = 0.8. The stoichiometric parameters are Y h = 0.6[g cell], Y a = 0.24[g cell], i xb = 0.086[g N], i xp = 0.06[g N], f p = 0.1 and the oxygen saturation concentration is S O,sat = 10[g/m 3 ]. The fractions f r and f w : f r = 1.1, f w = 0.04 and the tank volume is V = 1333[m 3 ].

Fig. 1 .

 1 Fig. 1. Comparison between the reduced MM(dashed) and ASM1(solid)

Fig. 3 .

 3 Fig. 2. State estimation using PMI observer (dashed) for ASM1 (solid)

  L Pi s.t. the state and unknown input estimation error obey to a stable system. Notation 3.1. The symbol * in a block matrix denotes the blocks induced by symmetry. For any square matrix M, S(M) is defined by S

  In order to take into account parameter uncertainties on b H and b A , the MM structure is slightly modified. These parameters appear in the coefficients a 15 , a 16 , a 35 , a 36 , a 55 and a 66 in (35), allowing to separate the uncertain part ∆A(t) from the known one A(t). The parameter variation on b H (resp. b A ) is of 20% (resp. 25%) of its nominal value, i.e. b H ∈ [0.25 ; 0.35] (resp. b A ∈ [0.04 ; 0.06]).The uncertain terms of ASM1 ∆B i (t) = 0 and ∆A i (t) = ∆A(t) are written under the form ∆A(t) = M a F a (t)N a where:

  The value of the attenuation rate from the known and unknown inputs u(t) and d(t) to the state and fault estimation error e a (t) is γ = 0.52. The positive scalars gathered in vectors are ε 1= [0.3313, 0.3339, 0.3428, 0.3424, 0.3064, 0.3099, 0.3167, 0.3185], ε 1 =