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In this paper new methodologies for fault tolerant control (FTC) are proposed in order to compensate actuator faults in
nonlinear systems. These approaches are based on the representation of the nonlinear system by a Takagi-Sugeno model.
Two control laws are proposed requiring the simultaneous estimation of the system states and of the occurring actuator
faults. The first approach concerns the stabilization problem in the presence of actuator faults. In the second one, the
system state is forced to track a reference trajectory even in the faulty situation. The control performance depends on the
estimation quality, indeed, it is important to accurately and rapidly estimate the states and the faults. This task is then
performed with an Adaptive Fast State and Fault Observer (AFSFO) for the first case, and a Proportional-Integral Observer
(PIO) in the second case. The stability conditions are established with Lyapunov theory and expressed in Linear Matrix
Inequality (LMI) formulation to ease the design of the FTC. Furthermore, relaxed stability conditions are given with the
use of the Polya’s theorem. Some simulation examples are given in order to illustrate the proposed approaches.

Keywords: Takagi-Sugeno model (T-S), fault tolerant control (FTC), simultaneous fault and state estimations, Polya’s
theorem, Lyapunov theory, input-to-state stability (ISS).

1. Introduction

Since several years, the problem of fault tolerance has
been treated from many points of view. Two classes can
then be considered: passive control and active control.
The first class may be viewed as a robust control. It re-
quires thea priori knowledge of the possible faults which
may affect the system. The principal idea of this kind of
control is based on the consideration of all possible faults
as uncertainties which are taken into account for the de-
sign of the tolerant control by using different techniques
like H∞ (Patton, 1997), (Niemann and Stoustrup, 2005).
The interest of this approach lies in the fact that no on line
information is needed and the structure of the control law
remains unchanged. Generally, the structure of the un-
certainties (faults) are not taken into account in order to
lead to a convex optimization problem. Furthermore, the
class of considered faults is limited, it becomes then risky
to use only the passive fault tolerant control (see (Mufeed
et al., 2003) for more details).

The second class concerns active fault tolerant con-
trol which is more interesting due to its possibility to
take into account a large class of faults, because of its
variable structure which may change in the presence of
faults. The knowledge of some informations about these
last are required and are obtained from a Fault Detection
and Diagnosis (FDD) block. Different ideas are devel-
oped in the literature, for example, a Control Law Re-
scheduling (Ocampo-Martinez et al., 2010), (Leith and
Leithead, 1999), (Stilwell and Rugh, 1997). This ap-
proach requires a very robust Fault Detection and Iso-
lation (FDI) block which constitutes its major disadvan-
tage. Indeed, a false alarm or a non detected fault can
lead to degraded performance or even to instability. Other
smooth fault tolerant control laws are proposed in (Ichalal
et al., 2010) for Takagi-Sugeno systems and in (Patton and
Klinkhieo, 2009a) for LPV systems.

Many efforts have been dedicated to the problem of
designing active fault tolerant controllers for nonlinear
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systems, the obtained results are linked to the system rep-
resentation. Some works can be mentioned in the FTC
field for nonlinear systems. For example, in (Gao and
Ding, 2007), the authors took into account actuator faults
for nonlinear descriptor systems with Lipschitz nonlinear-
ities. In (Ocampo-Martinez et al., 2010), a method which
requires only the fault isolation was proposed for T-S sys-
tems. It was based on a bank of observer based controllers.
A switching mechanism is then designed depending on the
obtained residuals. An efficient way to deal with the sys-
tem nonlinearity in the FTC design is the T-S approach
introduced by (Takagi and Sugeno, 1985). This approach
is used in (Ichalal et al., 2010) where the FTC is based
on trajectory tracking and Proportional-Integral Observer
(PIO) design for T-S systems with weighting functions de-
pending on the state of the system which is not accessible
for measure.

In this paper, a new actuator fault tolerant control
is proposed. Using a fast adaptive observer proposed in
(Zhang et al., 2008) and extended here to nonlinear T-S
systems, the state and the fault affecting the system are
rapidly estimated. The use of such an observer is moti-
vated by the fact that if a fault occurs, it is important to
quickly and accurately detect it in order to take it into ac-
count and preserve the system performances. With the
use of Lyapunov theory, sufficient conditions are obtained
for asymptotic stability in the constant fault case and for
input-to-state stability (ISS) in the case of time varying
faults. The LMI formulation is used for representing the
obtained stability conditions in an adequate form for exist-
ing LMI solvers. Relaxed stability conditions are obtained
with the use of Polya’s theorem (Sala and Ariño, 2007).
Finally, another FTC strategy is proposed, based on tra-
jectory tracking. Put in other words, the system state is
kept as close as possible to a reference state, even in the
faulty situation. Some simulations illustrate the obtained
results.

2. Takagi-Sugeno structure for modeling

The T-S modeling allows to represent the behavior of non-
linear systems by the interpolation of a set of linear sub-
models. Each sub-model contributes to the global behav-
ior of the nonlinear system through a weighting function
µi(ξ(t)). The T-S structure is given by







ẋ(t) =
r
∑

i=1

µi(ξ(t))(Aix(t) + Biu(t))

y(t) = Cx(t)
(1)

wherex(t) ∈ R
n is the state vector,u(t) ∈ R

nu is the
input vector,y(t) ∈ R

ny represents the output vector.
Ai ∈ R

n×n, Bi ∈ R
n×nu andC ∈ R

ny×n are known ma-
trices. The functionsµi(ξ(t)) are the weighting functions
depending on the variableξ(t) which is, in the sequel of

 

the paper, accessible for measure (as the input or the out-
put of the system). These functions verify the following 
properties:







r
∑

i=1

µi(ξ(t)) = 1

0 ≤ µi(ξ(t)) ≤ 1 ∀i ∈ {1, 2, ..., r}
(2)

Obtaining a T-S model (1) can be performed from dif-
ferent methods such as linearization around some oper-
ating points and using adequate weighting functions. It
can also be obtained by black-box approaches which al-
low to identify the parameters of the model from input-
output data. Finally, a T-S model can be obtained from the
well-known nonlinear sector transformations (Tanaka and
Wang, 2001), (Nagy et al., 2009). These transformations
allow to obtain an exact T-S representation of a nonlinear
model with no information loss on a compact set of the
state space.

Thanks to the convex sum property of the weighing
functions (2), it is possible to generalize some tools devel-
oped in the linear domain to the nonlinear systems. The
representation (1) is very interesting in the sense that it
simplifies the stability studies of nonlinear systems and
the design of control laws and observers. In (Tanaka and
Wang, 2001), (Kruszewski et al., 2008), the stability and
stabilization tools are inspired from the study of linear sys-
tems. In (Akhenak et al., 2008), (Marx et al., 2007), the
authors worked on the problem of state estimation and di-
agnosis of T-S systems. The proposed approaches in these
last papers rely on the generalization of the classical ob-
servers (Luenberger Observer (Luenberger, 1971) and Un-
known Input Observer (UIO) (Darouach et al., 1994)) to
the nonlinear systems. Recently in (Sala and Ariño, 2007),
a new approach, derived from the Polya’s theorem, leads
to asymptotic necessary and sufficient stability conditions.
FTC was also envisaged for T-S systems with time-delay
in (Zhang et al., 2009), but no reference tracking was con-
sidered.

In the remaining of the paper, the two following lem-
mas and notations are used.

Lemma 1. Consider two matricesX and Y with ap-
propriate dimensions andG a symmetric positive definite
matrix. The following property is verified:

XT Y + Y T X ≤ XT GX + Y T G−1Y, G > 0. (3)

Lemma 2. (Congruence)Consider two matricesP and
Q, if P is positive definite and ifQ is a full column rank
matrix, then the matrixQPQT is positive definite.

Notations. For any square matrixM , λmax(M) repre-
sents the maximum singular value of the matrixM and
S(M) is defined byS(M) = M + MT . A block diagonal



matrix with the block matricesMi on the diagonal entries
is denoteddiag(M1,M2, . . . ,Mn). In a partitionned ma-
trix, the sign∗ denotes the terms induced by symmetry.

3. Problem statement

Under actuator faults, the system (1) can be rewritten in
the following form:







ẋ(t) =
r
∑

i=1

µi(ξ(t)) (Aix(t) + Bi (u(t) + f(t)))

y(t) = Cx(t)
(4)

wheref(t) is an actuator fault. Faults can affect a sys-
tem in many different ways. They can be represented by
an additive or a multiplicative external signal. It can be
pointed out that if the fault depends on the system state,
it can change the model structure and cause its instabil-
ity. For instance, malfunctions of an actuator can be rep-
resented by a faulty control input defined byuf (t) =
(Inu

−γ)u(t) which can easily be rewritten as an external
additive signal:(u(t) + f(t)) wheref(t) = −γu(t) and
γ = diag (γ1, γ2, · · · γnu

) , 0 ≤ γi ≤ 1 (i = 1, ..., nu)
where:







γi = 1 ⇒ a total failure of theith actuator,
γi = 0 ⇒ theith actuator is healthy,
γi ∈]0 1[⇒ a loss of effectiveness of theith actuator.

For example ifγ2 = 0.4, there is a40% loss of effective-
ness of the second actuator. Note that such multiplicative
faults can cause the system instability.

Assumption 1 In this paper, it is assumed that:

• A1. the faults have norm bounded first time deriva-
tive

∥

∥

∥
ḟ(t)

∥

∥

∥
≤ f1max, 0 ≤ f1max < ∞. (5)

• A2. rank(CBi) = nu, i = 1, . . . , r.

• A3. only partial actuator failures are considered, i.e.
γi ∈ [0 1[, i = 1, . . . , r.

The objective of the FTC design is to find the control law
u(t) in (4) such that the system remains stable even in the
faulty case. For this purpose, the state and fault estima-
tions will be used in order to minimize the fault influence
on the system stability.

4. Stabilizing fault tolerant control for non-
linear systems

In order to estimate the state and the faults of the system
(4), the following adaptive observer is proposed



























˙̂x(t) =
r
∑

i=1

µi(ξ(t))(Aix̂(t) + Bi(u(t) + f̂(t)) + Liey(t))

ŷ(t) = Cx̂(t)
˙̂
f(t) = Γ

r
∑

i=1

µi(ξ(t))Fi(ėy(t) + σey(t))

ey(t) = y(t) − ŷ(t)
(6)

and the active fault tolerant control is chosen as

u(t) = −
r
∑

i=1

µi(ξ(t))Kix̂(t) − f̂(t). (7)

This control law can be seen as a generalization to the
nonlinear case of the approach proposed in (Patton and
Klinkhieo, 2009b). The solution of the FTC problem is
obtained by settingΓ ∈ R

nu×nu and the scalarsσ and
β ∈ R and determining the gainsLi ∈ R

n×ny , Fi ∈
R

nu×ny andKi ∈ R
nu×n by LMI optimization such that

the state of the system asymptotically converges to zero
if the fault f(t) is constant or to a small set around the
origin whenf(t) is time varying with norm bounded first
time derivative. The expression describing the dynamic of
the estimated fault̂f(t) given in (6) depends on both the
output error and the derivative of the output error.

Let us consider the state and fault estimation errors
ex(t) andef (t) defined by

ex(t) = x(t) − x̂(t) (8)

ef (t) = f(t) − f̂(t) (9)

The dynamics of the state estimation error and the closed-
loop system with the control (7) obey the differential
equations:

ėx(t) =

r
∑

i=1

µi(ξ(t)) (Φiex(t) + Bief (t)) (10)

ẋ(t) =

r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t)) (Ξijx(t)

+Bief (t) + BiKjex(t)) (11)

whereΦi = Ai − LiC andΞij = Ai − BiKj .

Theorem 1. Under the assumptions 1, given positive
scalarsσ and β, if there exists symmetric and positive
definite matricesX ∈ R

n×n, P2 ∈ R
n×n, a positive def-

inite matrix G ∈ R
nu×nu , matricesMi ∈ R

nu×n and
Ni ∈ R

n×ny and a positive scalarη solution to the opti-
mization problem:

min η s.t. (12)



(

ηI BT
i P2 − FiC

∗ ηI

)

> 0 (13)

Qij =













Sij BiMj Bi 0 0
∗ −2βX 0 βI 0
∗ ∗ −2βI 0 βI
∗ ∗ ∗ Ωi Rij

∗ ∗ ∗ ∗ Ψij













< 0

(14)

Sij = S(AiX − BiMj) (15)

Ωi = S(P2Ai − NiC) (16)

Rij = − 1

σ
(AT

j P2 − CT NT
j )Bi (17)

Ψij = − 1

σ

(

BT
i P2Bj + BT

j P2Bi

)

+
1

σ
G (18)

then the state of the systemx(t), the state estimation error
ex(t) and the fault estimation erroref (t) are bounded.
Furthermore, if the bound of the first time derivative of
f(t) is zero i.e. f1max = 0, these variables converge
asymptotically to zero. The gains of the observer and the
fault tolerant control are given byFi, Li = P−1

2 Ni and
Ki = MiX−1.

Proof. In order to prove both the stability of the closed-
loop system and the convergence of the state and fault es-
timation errors, consider a Lyapunov function depending
onx(t), ex(t) andef (t) defined by:

V (t) = xT (t)P1x(t) + eT
x (t)P2ex(t) +

1

σ
ef (t)Γ−1ef (t)

(19)
whereP1, P2 andΓ are symmetric and positive definite
matrices with appropriate dimensions.

According to the equations (10) and (11), the time
derivative ofV (t) is given by:

V̇ (t) =

r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))(x
T (t)Πijx(t)

+ eT
x (t)Ωiex(t) + 2xT (t)P1BiKjex(t)

+ 2xT (t)P1Bief (t) + 2eT
x (t)P2Bief (t)

+
2

σ
eT
f (t)Γ−1ėf (t)) (20)

where

Πij = ΞT
ijP1 + P1Ξij (21)

and

Ωi = ΦT
i P2 + P2Φi (22)

Knowing thatėf (t) = ḟ(t) − ˙̂
f(t) and using the expres-

sion of f̂(t) in (6), one obtains:

V̇ (t) =

r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))(x
T (t)Πijx(t)

+ eT
x (t)Ωiex(t) + 2xT (t)P1BiKjex(t)

+ 2xT (t)P1Bief (t) + 2eT
x (t)P2Bief (t)

− 2

σ
eT
f (t)Fi(ėy(t) + σey(t)) +

2

σ
eT
f (t)Γ−1ḟ(t))

(23)

whereey(t) = Cex(t).
Using the differential equation (10) generatingex(t),

the following is obtained:

V̇ (t) =
r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))(x
T (t)Πijx(t)

+ eT
x (t)Ωiex(t) + 2xT (t)P1BiKjex(t)

+ 2xT (t)P1Bief (t) + 2eT
x (t)P2Bief (t)

− 2

σ
eT
f (t)FiCΦjex(t) − 2

σ
eT
f (t)FiCBjef (t)

− 2eT
f (t)FiCex(t) +

2

σ
eT
f (t)Γ−1ḟ(t)). (24)

Using Lemma 1 and assumptionA1, we deduce that:

2
1

σ
eT
f (t)Γ−1ḟ(t)

≤ 1

σ
eT
f (t)Gef +

1

σ
ḟT (t)Γ−1G−1Γ−1ḟ(t)

≤ 1

σ
eT
f (t)Gef +

1

σ
f2
1 maxλmax

(

Γ−1G−1Γ−1
)

(25)

and using assumptionA2, it is possible to obtainFi and
P2 such thatBT

i P2 = FiC holds. The time derivative of
the Lyapunov function (24) is bounded as follows

V̇ (t) ≤ x̃T (t)

r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))∆ij x̃(t)+δ (26)

where

x̃T (t) = (xT (t) eT
x (t) eT

f (t))T (27)

δ =
1

σ
f2
1 maxλmax

(

Γ−1G−1Γ−1
)

(28)

∆ij =





Πij P1BiKj P1Bi

∗ Ωi − 1
σ
ΦT

j P2Bi

∗ ∗ Ψij



 . (29)

If the following inequality holds

r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))∆ij < 0 (30)



5

it is established that:

V̇ (t) < −ε ‖x̃(t)‖2
+ δ (31)

whereε > 0 is defined by:

ε = min
t>0

λmin



−
r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))∆ij



 (32)

or can also be bounded by

ε ≤ min
i,j

λmin(−∆ij) (33)

It follows that V̇ (t) < 0 if ε ‖x̃(t)‖2
> δ, and accord-

ing to Lyapunov stability theory the statex(t), the state
estimation errorex(t) and the fault estimation erroref (t)
converge to a small set around the origin and then lies into
it. This set is smaller as the constantδ converges to zero.

In order to achieve the proof, it remains to establish
some LMI conditions to ensure that (30) andBT

i P2 =
FiC hold. The latter is first considered.

As pointed out in (Zhang et al., 2008), it
is difficult to solve simultaneously the inequality
r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))∆ij < 0 with the equality con-

straintBT
i P2 = FiC. A technique for reducing this dif-

ficulty is to formulate the equality constraint as an opti-
mization problem (Corless and Tu, 1998):

min η s.t.

(

ηI BT
i P2 − FiC

∗ ηI

)

> 0. (34)

For the sake of simplicity, the following notations
will be used:

Yξ =

r
∑

i=1

µi(ξ(t))Yi, (35)

Yξξ =
r
∑

i=1

r
∑

i=1

µi(ξ(t))µj(ξ(t))Yij , (36)

whereYi andYij are given matrices. Using this represen-
tation, the inequality (30) becomes:

∆ξξ =

(

Πξξ Θξξ

ΘT
ξξ Λξξ

)

< 0 (37)

where:
Θij =

(

P1BiKj P1Bi

)

(38)

Λij =

(

Ωi − 1
σ
ΦT

j P2Bi

∗ Ψij

)

. (39)

Considera symmetric matrixX defined as follows:

X =

(

P−1
1 0
0 X1

)

, X1 =

(

P−1
1 0
0 I

)

. (40)

Using Lemma 2, post and pre-multiplying the inequality
(37) byX, it follows that (37) is equivalent to the follow-
ing inequality:

(

P−1
1 ΠξξP

−1
1 P−1

1 ΘξξX1

∗ X1ΛξξX1

)

< 0. (41)

Since the following inequality holds for any scalarβ
(

X1 + βΛ−1
ξξ

)T

Λξξ

(

X1 + βΛ−1
ξξ

)

≤ 0

⇔ X1ΛξξX1 ≤ −2βX1 − β2Λ−1
ξξ (42)

and with a Schur complement, it follows that the inequal-
ity (41) holds if (43) is satisfied




P−1
1 ΠξξP

−1
1 P−1

1 ΘξξX1 0
∗ −2βX1 βI
∗ ∗ Λξξ



 < 0. (43)

Using the notations (35)-(36) and the definitions of the
matricesΠξξ, Θξξ andΛξξ given by (21), (38) and (39),
and with the changes of variablesX = P−1

1 , Mi = KiX ,
Ni = P2Li it is easy to obtain the inequalities given in the
theorem 1. Finally, the inequality (31) is satisfied, if the
optimization problem given by (12) under LMI constraints
(13)-(14) has a solution, which ends the proof. �

Remark 1. After solving the optimization problem
given in the theorem 1, the input-to-state stability condi-
tion given in (31) is satisfied. Thus, in the case of time
varying faults with bounded first time derivative, the state
x(t), the state estimation errorex(t) and the fault estima-
tion erroref (t) converge to an origin centered ball defined
by the termsδ andε. The radius of the ball in which̃x con-
verges can be minimized by a choice of the parameterΓ
that minimizesδ without changingε (that does not depend
onΓ). It thus improves the accuracy of the estimation.

Remark 2. The objective of fault tolerant control is
to compensate the faults, so it is important to estimate
them as soon as possible with a good accuracy. The
adaptive observer studied in this paper can be considered
as an improvement of the classical PI observer, in the
sense that convergence of the state and fault estimations
is proved (in an origine centered ball) even in non con-
stant fault case, whereas the assumption of constant fault
is needed to prove the estimation error convergence when
using a PI observer (Koenig and Mammar, 2002), (Ichalal
et al., 2009a). Note that if the faultf(t) is constant, then
f1max = 0 and with (28)δ = 0, consequently the asymp-
totic stability is achieved, sincėV (t) < 0 for everyx̃(t).

5. Simulation example

To illustrate the performances of the proposed approach,
let us consider the system (4) defined by the matrices:

A1 =

(

0 1
17.2941 0

)

, A2 =

(

0 1
3.5361 0

)

,



B1 =

(

0
−0.1765

)

, B2 =

(

0
−0.1763

)

, C = I2.

The weighting functions are given byµ1(x(t)) = 1−
2
π
|x1(t)| and µ2(x(t)) = 1 − µ1(x(t)). Let us consider

the faultf(t) defined as follows:

f(t) =







0 t ≤ 20
7.5 sin(2t + 2.1) + 15 20 ≤ t ≤ 70

−0.89u(t) 70 ≤ t ≤ 100
(44)

For t ≥ 70 s, the faultf(t) describes a loss of ef-
fectiveness of the actuator, satisfying assumptionA3. The
first simulation is obtained by synthesizing a classical con-
troller without taking the faults into account the faults:
u(t) = −∑r

i=1 µi(x(t))Kix(t), using an approach pro-
posed in (Tanaka and Wang, 2001). The gainsKi are ob-
tained byKi = MiP

−1 whereP andMi are solution of
the LMIs

S(PAi − BiMj) < 0, i, j = 1, 2. (45)

With this control law, as shown in the figure 1, the
states of the system converge to zero in fault free case (i.e.
for t < 20), but in the faulty case the system performances
are degraded fromt = 20 s to t = 70 s and the system
becomes unstable fort ≥ 70 s.
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Fig. 1. System states with classical control

The proposed fault tolerant control is designed by
solving the optimization problem of theorem 1. For that,
the parameter valuesσ = 0.8, Γ = 100 andβ = 10 are
chosen. The obtained gains of the observer and the con-
troller are:

L1 =

(

0.52 1.22
17.24 0.27

)

, L2 =

(

0.52 1.21
3.48 0.26

)

F1 =
(

3.63 −43.25
)

, F2 =
(

3.62 −43.20
)

K1 =
(

−161.89 −65.95
)

,

K2 =
(

−156.25 −65.24
)

The figure 2 illustrates the results of the proposed
control law obtained after solving the optimization
problem of theorem 1. One can note that, with the fault

f(t) defined in (44), the performances are better than
those of the classical control and the system remains
stable fort ≥ 70 (figure 2 (top)). The observer rapidly
and accurately estimates the fault as shown in the figure
2 (bottom). In this example, the classical control cannot
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Fig. 2. Fault tolerant control : states of the system (top) - fault
and its estimation (bottom)

preserve the stability of the system whenγ ≥ 0.89
however (based on simulations not displayed here due to
space limitation it can be claimed that) the proposed FTC
strategy can tolerate faults untilγ = 0.992 which means
that if the loss of effectiveness of the actuator is less than
99.2%, the proposed controller makes the system stable.
In figure 3, aftert > 70 the loss of effectiveness of the
actuator is considered withγ = 0.99 and we see that the
controller compensates it despite of its severity.
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Fig. 3. Fault tolerant control withγ = 0.99 : states of the sys-
tem (top) - fault and its estimation (bottom)

In addition, this approach provides a rapid and ac-
curate estimation of occurred actuator faults with the
adaptive observer (figure 2 (bottom)) which constitutes
a FDI block for diagnosis. Iff(t) = 7.5 sin(2t +
2.1) + 15, its derivative over the time is bounded by
15, then in this simulation example, the termδ =
1
σ
f2
1maxλmax(Γ−1G−1Γ−1) = 0.0186, and the termε

can be minimized by an appropriate choice ofΓ to reduce
the radius of the ball in which converge the estimation er-
rors and then obtain a more accurate fault estimation.



6. Conservatism reduction with Polya’s the-
orem

In the previous section, the proposed result may be
conservative in the sense that common Lyapunov ma-
trices were sought to satisfyr2 LMIs. Recently, a new
interesting method to reduce the conservativeness of the
matrix summations inequality has been proposed with the
use of Polya’s theorem (Sala and Ariño, 2007).

Let us consider the inequality (46):

∆ξξ =

r
∑

i=1

r
∑

j=1

µi(ξ(t))µj(ξ(t))∆ij < 0 (46)

where∆ij is defined in equation (29).

Noticing that(
∑r

i=1 µi(ξ(t)))
p

= 1 for any positive
integerp, it can be deduced that inequalities like∆ξξ < 0
can be rewritten as(

∑r

i=1 µi(ξ(t)))
p
∆ξξ < 0. By gather-

ing all terms in the left hand side of the inequality with the
same coefficient, less conservative LMI conditions than
∆ij < 0 for i, j = 1, . . . , r can be obtained. As proved in
(Sala and Arĩno, 2007), if a solution exists for a givenp,
this solution satisfies the inequalities obtained forp+1. As
a consequence, increasingp will provide less restrictive
conditions and ifp → +∞ asymptotic necessary and suf-
ficient conditions for the negativity of (46) are obtained.
The authors proposed also an algorithm to compute finite
values ofp which gives necessary and sufficient condi-
tions with a given accuracy. The reader can refer to the
paper (Sala and Ariño, 2007) for more details on Polya’s
theorem based relaxation approach.

Theorem 2. Under the assumptions 1, given positive
scalarsσ andβ, if there exists symmetric and positive def-
inite matricesX ∈ R

n×n, P2 ∈ R
n×n, G ∈ R

nu×nu and
matricesMi ∈ R

nu×n andNi ∈ R
n×ny and a positive

scalarη solution to the optimization problem

min η s.t. (47)

(

ηI BT
i P2 − FiC

∗ ηI

)

> 0 (48)

Qii < 0

i = 1, ..., r

3Qii + Qij + Qji < 0

i, j = 1, ..., r, i 6= j

3Qii + Qjj + 3Qij + 3Qji < 0

i, j = 1, ..., r, i 6= j

6Qii + 3Qij + 3Qik + 3Qji

+3Qki + Qjk + Qkj < 0

i, j, k = 1, ..., r, i < j < k

3Qii + 3Qjj + 6Qij + 6Qji + 3Qik

+3Qki + 3Qjk + 3Qkj < 0

i, j, k = 1, ..., r, i < j < k

6Qii + 6Qij + 6Qji + 6Qik

+6Qki + 6Qil + 6Qli + 3Qjk

+3Qkj + 3Qjl + 3Qlj + 3Qkl + 3Qlk < 0

i, j, k = 1, ..., r, i < j < k < l

6(Qij + Qji + Qik + Qki + Qil + Qli + Qim

+Qmi + Qjk + Qkj + Qjl + Qlj + Qjm

+Qmj + Qkl + Qlk + Qkm + Qmk) < 0

i, j, k, l,m = 1, ..., r, i < j < k < l < m

whereQij is defined in(14). Then the state of the sys-
tem x(t), the state estimation errorex(t) and the fault
estimation erroref (t) are bounded. The gains of the
observer and the fault tolerant control are given byFi,
Li = P−1

2 Ni andKi = MiX−1.

Proof. According to theorem 1, the solution of the FTC
problem is obtained by minimizingη under the constraints
(13) and

∑r

i=1

∑r

j=i µi(ξ(t))µj(ξ(t))Qij < 0, which
due to the convex property of the weighting functions is
equivalent to

(

r
∑

k=1

µk(ξ(t))

)p r
∑

i=1

r
∑

j=i

µi(ξ(t))µj(ξ(t))Qij < 0

(49)
Settingp = 3 and gathering the terms sharing the same



combinations of weighting functions, we obtain

r
∑

i=1

r
∑

j=1

µiµjQij =

(

r
∑

i=1

µi

)3 r
∑

i=1

r
∑

j=1

µiµjQij

=

r
∑

i=1

µ5
iQii +

r
∑

i,j=1
i6=j

µ4
i µj (3Qii + Qij + Qji)

+

r
∑

i,j=1
i6=j

µ3
i µ

2
jQ̃ij +

r
∑

i=1

r
∑

j=1
i<j

r
∑

k=1
j<k

µ3
i µjµkQ̃ijk

+
r
∑

i=1

r
∑

j=1
i<j

r
∑

k=1
j<k

µ2
i µ

2
jµkQ̃∗

ijk

+

r
∑

i=1

r
∑

j=1
i<j

r
∑

k=1
j<k

r
∑

l=1
k<l

µ2
i µjµkµlQ̃ijkl

+

r
∑

i=1

r
∑

j=1
i<j

r
∑

k=1
j<k

r
∑

l=1
k<l

r
∑

m=1
l<m

µiµjµkµlµmQ̃ijklm (50)

with

Q̃ij =3Qii + Qjj + 3Qij + 3Qji

Q̃ijk =6Qii + 3(Qij + Qji + Qik + Qki)

+ Qjk + Qkj

Q̃∗
ijk =3Qii + 3Qjj + 6Qij + 6Qji + 3Qik

+ 3Qki + 3Qjk + 3Qkj

Q̃ijkl =6(Qii + Qij + Qji + Qik + Qki + Qil + Qli)

Q̃ijklm =6(Qij + Qji + Qik + Qki + Qil + Qli + Qim

+ Qmi + Qjk + Qkj + Qjl + Qlj + Qjm

+ Qmj + Qkl + Qlk + Qkm + Qmk)

Finally, with the same reasoning as in the theorem 1, the
optimization problem with relaxed LMI constraints of the-
orem 2 is obtained. �

7. Fault tolerant control by trajectory track-
ing

In this section the control objective is not only closed-loop
stabilization but also trajectory tracking. First, the FTC
strategy is detailed, before addressing the FTC design.

7.1. FTC strategy. The state trajectoryx(t) to be fol-
lowed by the controlled system is given by a reference

 

model which corresponds to the model of the fault-free 
system with nominal input u(t) defined by















ẋ(t) =
r
∑

i=1

µi(ξ(t)) (Aix(t) + Biu(t))

y(t) =
r
∑

i=1

µi(ξ(t))Cix(t)
(51)

Because of the faultf(t), the state of the faulty controlled
system, denotedxf (t), may differ from the reference tra-
jectory. As a consequence, the control input of the system
has to be modified, the resulting applied input is denoted
uf (t). The faulty system is given by















ẋf (t) =
r
∑

i=1

µi(ξf (t)) (Aixf (t) + Bi(uf (t) + f(t)))

yf (t) =
r
∑

i=1

µi(ξf (t))Cixf (t)

(52)
The considered faults are the same as in previous sec-
tions. Note that, the weighting functions depend on a
faulty premise variableξf (t). These last may be the input
of the system, which in closed-loop depend on the state
xf (t), or the outputyf (t), consequently the fault neces-
sarily affects these variables. In order to minimize the
state deviation due to the fault, the controlled inputuf (t)
encompasses two additive terms respectively depending
on the fault estimate and on the estimated state deviation
x(t) − x̂f (t). One should note that the reference state is
simulated from (51), and thus is accessible for the control
law, whereas the faulty system state has to be estimated.
The FTC lawuf (t) is given by

uf (t) = −f̂(t) + K(x(t) − x̂f (t)) + u(t) (53)

A PI observer is designed to provide the controller with
both the estimates of the actuator fault and of the faulty
system state. The proposed PI observer is given by



































˙̂xf (t) =
r
∑

i=1

µi(ξf (t))(Aix̂f (t) + Bi(uf (t) + f̂(t))

+H1i(yf (t) − ŷf (t)))
˙̂
f(t) =

r
∑

i=1

µi(ξf (t)) (H2i(yf (t) − ŷf (t)))

ŷf (t) =
r
∑

i=1

µi(ξf (t))Cix̂f (t)

(54)
The premise variableξf (t) is assumed to be known and
the observer weighting functions depend on the same
premise variable as the system (52).

The overall scheme of the proposed FTC strategy is
depicted by the figure 4. The FTC design consists in de-
termining the control law (53) and the PIO (54), such the
controlled system statexf (t) is as closed as possible from
the reference statex(t).
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Fig. 4. Fault tolerant control scheme

7.2. FTC design. The FTC design consists in deter-
mining the gainsK in (53) andH1i and H2i in (54)
that minimize the trajectory tracking error defined by
e(t) = x(t) − xf (t) and the state and fault estimation
errors, respectively defined byex(t) = xf (t)− x̂f (t) and
ef (t) = f(t) − f̂(t). From (51), (52), (53) and (54) and
the definition of the errors, it follows

ẋ(t) =

r
∑

i=1

µi(ξf (t))(Aix(t) + Biu(t)) + δ(t) (55)

ẋf (t) =
r
∑

i=1

µi(ξf (t)) (Aixf (t) + Bi(u(t)

+ef (t) + K(e(t) + ex(t)))) (56)

˙̂xf (t) =

r
∑

i=1

r
∑

j=1

µi(ξf (t))µj(ξf (t)) (Aix̂f (t) + Bi(u(t)

+K(e(t) + ex(t))) + H1iCjex(t)) (57)

whereδ(t) is defined by

δ(t) =
r
∑

i=1

(µi(ξ(t))−µi(ξf (t)))(Aix(t)+Biu(t)) (58)

Assumingḟ(t) = 0 the dynamics of the errors is given by

˙̃e(t) =

(

Aξf
− Bξf

K −L̃ξf

0 Ãξf
− Hξf

C̃ξf

)

ẽ(t) + Γ̃δ(t)

(59)
with the following notations

ẽ(t) =





e(t)
ex(t)
ef (t)



 Γ̃ =





In

0
0



 Hi =

(

H1i

H2i

)

L̃i =
(

BiK Bi

)

Ãi =

(

Ai Bi

0 0

)

C̃i =
(

Ci 0
)

In order to design the PIO, it is necessary that the pairs
(C̃, Ãi) are observable or at least detectable.

Remark 3. One can note that in the previous section,
the weighting functions depend on the premise variable
ξf (t). It can be an external known variable which is not
affected by faults. Indeed, in (Witczak et al., 2008), the

authors proposed a method for this case with an applica-
tion to the three tank system in open-loop control. In this
case,ξ(t) = ξf (t) and the equation (59) becomes an au-
tonomous system

˙̃e(t) =

(

Aξf
− Bξf

K −L̃ξf

0 Ãξf
− Hξf

C̃ξf

)

ẽ(t) (60)

In Takagi-Sugeno modeling, it is often considered that the
premise variableξ(t) is the input, the output or the state
of the system, which are necessarily affected by faults,
consequentlyξ(t) 6= ξf (t) and the fault and state estima-
tion errors and the state tracking error are expressed by
(59). Whenξ(t) = u(t) andξf (t) = uf (t), the termδ(t)
does not converge to zero ifxf (t) converges to the refer-
ence statex(t) but if ξ(t) = y(t) andξf (t) = yf (t), the
tolerant control allows the convergence ofxf (t) to x(t)
and yf (t) to y(t), then the termδ(t) converges also to
zero which gives better results compared to the case where
ξ(t) = u(t). The same problem can appear if the output
is also affected by faults. In these cases, the fault tolerant
control design aims to minimize the difference between
xf (t) andx(t) and to minimize theL2 gain of the transfer
from δ(t) to the state tracking error.

The gainsK, H1i andH2i are determined by solving
the optimization problem under LMI constraints given in
the next theorem.

Theorem 3.Considerλ a positive scalar. The system(59)
that generates the state tracking errore(t) and the state
and fault estimation errorsex(t) and ef (t) is stable and
theL2−gain of the transfer fromδ(t) to e(t) is bounded if
there exists symmetric and positive definite matricesX1,
X2 and P2, matricesH̄i and K̄ and a positive scalar̄γ
solution to the following optimization problem

min
X1,X2,P2,K̄i,H̄i

γ̄ (61)

s.t.
Yii < 0, i = 1, ..., r

1
r−1Yii + Yij + Yji < 0, i < j

(62)

where

Yij =













Ψi −BiM 0 In X1

∗ −2λX λIn+nu
0 0

∗ ∗ ∆ij 0 0
∗ ∗ ∗ −γ̄In 0
∗ ∗ ∗ ∗ −In













< 0

(63)

Ψi = S(AiX1 − BiK̄) (64)

∆ij = S

(

P2Ãi − H̄iC̃ij

)

(65)

M =
(

K̄ X2

)

, X =

(

X1 0
0 X2

)

(66)



The controller and observer gains are computed from

Hi =

(

H1i

H2i

)

= P−1
2 H̄i, K = K̄X−1

1 (67)

and theL2-gain fromδ(t) (58) to the tracking errore(t)
is obtained by

γ =
√

γ̄ (68)

Proof. With the variable changesX1 = P−1
1 , K̄ = KX1,

H̄i = P2Hi, M =
[

K̄ X2

]

which implies

BiM = L̃i

(

X1 0
0 X2

)

= L̃iX

and a Schur complement, the inequalities (63) are equiva-
lent to





Ξi −L̃iX In

∗ −2λX − λ2∆−1
ij 0

∗ ∗ −γ2In



 < 0 (69)

where∆i is defined in (65) andΞi given by

Ξi = S
(

AiP
−1
1 − BiKP−1

1

)

+ P−1
1 P−1

1 (70)

If (63) hold, then the(3, 3) blocks ofYi, i.e. ∆i, are nega-
tive definite and the two following equivalent inequalities
yield

(

X + λ∆−1
ij

)T
∆ij

(

X + λ∆−1
ij

)

≤ 0

⇔ X∆ijX ≤ −λ
(

X + XT
)

− λ2∆−1
ij (71)

Consequently, (69) implies




Ξi −L̃iX In

∗ X∆ijX 0
∗ ∗ −γ2In



 < 0 (72)

Pre- and post-multiplying (72) bydiag(P1,X
−1, In), it

follows that (63) implies

Nij =





S (Λi) + In −P1L̃i P1

∗ ∆ij 0
∗ ∗ −γ2In



 < 0 (73)

with Λi defined byΛi = P1Ai − P1BiK. Choosing a
quadratic Lyapunov function defined by

V (ẽ(t)) = ẽT (t)

(

P1 0
0 P2

)

ẽ(t)

with P1 ∈ R
n×n andP2 ∈ R

(n+nu)×(n+nu) real sym-
metric positive definite matrices, it is easily derived from
(59) that

V̇ (ẽ(t))+eT (t)e(t)−γ2δT (t)δ(t) =

(

e(t)
δ(t)

)T

Nij

(

e(t)
δ(t)

)

(74)

V̇

 

As a consequence, (63) implies

(ẽ(t)) + eT (t)e(t) − γ2δT (t)δ(t) < 0

which is well known to be a sufficient condition for the
L2-gain from δ(t) to e(t) to be bounded by γ and for 
ẽ(t) to asymptotically converges toward zero when δ(t) is
identically null. Finlay, the application of Tuan’s lemma, 
given in (Tuan et al., 2001), and minimization of γ leads to 
the the optimization problem with LMI constraints given 
in theorem 3. �

Remark 4. The conservatism of the results given in the 
previous theorem could be reduced by applying, in similar 
way, the Polya’s theorem presented in the first strategy.

Remark 5. The assumption that the fault signal is con-
stant over the time is restrictive, but in many practical 
situations where the faults are slowly time-varying sig-
nals, the estimation of the faults is correct, and the pro-
posed FTC scheme can be applied. In the case where the 
faults are not slowly time-varying or constant, the PIO 
can be replaced by a Proportional Multiple Integral Ob-
server (PMIO). Such an observer was introduced in or-
der to filter high-frequency disturbance in (Ibrir, 2004). It 
is able to estimate a large class of time-varying signals 
which satisfies the assumption f (q+1)(t) = 0. The prin-
ciple of this observer is based on the estimation of the q 
first derivatives of the signal f(t). This observer can also 
be extended to the case where f (q+1)(t) is bounded (see 
(Ichalal et al., 2009b)). It is also possible to use the adap-
tive observer given in the first part of the paper, since, as 
shown in the example, this observer can estimate faults 
with fast variations.

8. Simulation examples

In this section, two examples are proposed to illustrate the 
proposed FTC. The first one discusses some aspects of 
the proposed approach and the second one is dedicated 
to actuator fault tolerant control of lateral dynamics of a 
vehicle.

8.1. Example 1. To illustrate the proposed actuator 
fault tolerant control strategy for T-S systems with mea-
surable premise variables and affected by actuator faults, 
two academic examples are presented.

8.2. First case : ξ(t) = u(t). Consider the T-S system 
described by







ẋf (t) =
r
∑

i=1

µi(u(t)) (Aixf (t) + Bi(uf (t) + f(t)))

yf (t) = Cxf (t) + ω(t)
(75)



where

A1 =





−2 1 1
1 −3 0
2 1 −8



 , A2 =





−3 2 −2
0 −3 0
5 2 −4



 ,

B1 =





0
1
1



 , B2 =





1
1
0



 , C =

[

1 1 1
1 0 1

]

The weighting functions depend on the inputu(t) which
is the nominal control of the system in the fault-free
case; they are defined byµ1(u(t)) = (1 − u(t))/2 and
µ2(u(t)) = 1 − µ1(u(t)). To apply the proposed FTC
strategy, the following reference model is considered







ẋ(t) =
r
∑

i=1

µi(u(t)) (Aix(t) + Biu(t))

y(t) = Cx(t)
(76)

The faultf(t) is time varying and defined as follows

f(t) =











0, t < 10

−0.5u(t), 10 ≤ t ≤ 20

1, 20 < t

(77)

andω(t) is a random signal with maximum value corre-
sponds to10% of the maximum amplitude of the mea-
sured signaly(t). Notice that even if the assumption
ḟ(t) = 0 is not satisfied, the PIO is able to reconstruct
time varying signals with slow variation.

Solving the optimization problem under LMI con-
straints in theorem 3 withλ = 20, results in the following
matrices

H11 =





−24.84 59.47

30.05 −29.75

31.54 −43.02



 , H12 =





−11.03 45.34

31.58 −33.25

17.80 −26.25





H21 =
[

337.82 −356.67
]

, H21 =
[

338.57 −353.93
]

K =
[

6.5179 4.9204 1.2659
]

, γ = 0.4721

The figure 5 (top) shows the time evolution of the fault
f(t) and its estimatêf(t), while the bottom part depicts
the nominal controlu(t) and the FTCuf (t). The state
estimation errors,xf (t) − x̂f (t) are shown in the top of
figure 6, while the bottom part shows the state tracking
errorsx(t) − xf (t). Finally, figure 7 allows the compar-
ison of the reference model states with the state obtained
when the system is faulty without any modification of the
control law and those of the system when using FTC.

Even if a fault occurs, the system trajectory follows
the trajectory of the reference model which represents the
trajectory of the system in the fault-free situation. Thus,
the FTC control law compensates the fault and allows a
normal functioning of the system in the presence of faults.
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states with fault and nominal control and states with fault
and FTC

8.3. Second case :ξ(t) = y(t). In this subsection, the
previous system is considered, but with weighting func-
tions depending on the first component of the system out-
put vector. The figure 8 illustrates the state estimation
errors (top) and the state tracking errors (bottom). It is
clear that the use of weighting functions depending on the
output of the system provides better results than the case
where they are depending on the control input. This is



due to the fact that the system is only affected by actua-
tor faults and the perturbation like termδ(t) converges to
zero whenyf (t) converges to the referencey(t). But in
the previous simulation, the termδ(t) did not converge to
zero, in the presence of fault, becauseu(t) 6= uf (t) which
leads toµi(u(t)) 6= µi(uf (t)). As a conclusion, consid-
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ering the problem of fault tolerant control of T-S systems
with actuator faults, it is more interesting to use the output
of the system as a premise variable. However, when actu-
ator and sensor faults simultaneously occur, better results
are obtained by using the state of the system as a premise
variable. This is a more difficult and general case but the
obtained state tracking error is less than the ones obtained
above, first results on this point are published in (Ichalal
et al., 2010).

8.4. Example 2. In this second example, a interesting
model is used. Security and assistance in vehicles are im-
portant especially in dangerous situations like cornering
and land keeping with high speed. For that purpose, this
example deals with the problem of fault tolerant control
of lateral dynamics of a vehicle in cornering situation (for
example). Let us consider the nonlinear model of the ve-
hicle lateral dynamics given by the following differential
equations

{

m(v̇ + ur) = 2 (Ff + Fr)
Jṙ = 2 (afFf − arFr)

(78)

whereu andv are the longitudinal and lateral velocities
(v = βu), r is the yaw rate,β denotes the side slip an-
gle,m andJ are the mass and the yaw moment of inertia
respectively,af andar are the distances of the front and
rear axle from the center of gravity.Ff andFr are front
and rear lateral forces. A T-S simplified model as given in
(Oudghiri et al., 2008) is represented by















ẋ(t) =
2
∑

i=1

µi (|αf |) (Aix(t) + Biδf )

y(t) =
2
∑

i=1

µi (|αf |) (Cix(t) + Diδf )

(79)

 

where xT = [v r], δf is the steering angle of the front 
wheel. The output y contains the lateral acceleration and 
yaw rate given by the inertial unit and expressed as func-
tions of state variables. The matrices defining the model 
are

A1 =

(

−6.9426 −0.8775
26.5175 −7.8343

)

, B1 =

(

3.4892
39.2914

)

A2 =

(

−0.4735 −0.9971
0.6356 −0.4921

)

, B2 =

(

0.2767
3.1155

)

C1 =

(

−6.9426 2.4491
0 1

)

, D1 =

(

69.7847
0

)

C2 =

(

−0.4735 0.0587
0 1

)

, D2 =

(

5.5333
0

)

The weighting functions depend on the slip angleαf

which is assumed to be known. An additive actuator fault
signal affecting the vehicle is given in the form

f(t) =







0 t < 10
−0.1 sin(0.314t) 10 ≤ t < 14.95
0.1 t ≥ 14.95

(80)

Furthermore, a random noise with maximal magni-
tude0.05 is added to output measurements. Figure 9 il-
lustrates a comparison between the states of the reference
model (without fault), the states of the faulty vehicle with-
out FTC and finally the states of the vehicle with FTC.
Clearly, the proposed strategy is robust with respect to ac-
tuator additive faultf(t). In figure 10, we can observe the
estimation of the fault. Moreover, the FTC scheme pro-
vides good results in the presence of measurement noises
as shown in the figures. Figure 11 illustrates the state es-
timation of vehicle states.
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Fig. 9. States of the reference model, vehicle model without
FTC and with FTC

9. Conclusions and future works

This paper is dedicated to the study of a new actuator
fault tolerant control for nonlinear systems described by a
Takagi-Sugeno model. The stabilizing active fault tolerant
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control is studied. It requires the simultaneous estimations
of the state and fault, obtained by the proposed adaptive
observer. This observer is able to simultaneously estimate
time varying faults and state variables with a good accu-
racy. Furthermore, it rapidly gives the estimations, which
is important to preserve the performances of the system.
The stability analysis, studied with Lyapunov theory and
input-to-state stability, is proved in the case of time vary-
ing faults, and furthermore asymptotic stability is guar-
anteed in the case of constant faults. Sufficient stability
conditions are given in terms of LMI. In order to reduce
the conservatism of the given conditions, Polya’s theo-
rem is used to derive relaxed conditions for FTC design
for nonlinear systems. Secondly, an extension of the first
work is proposed in order to provide a new control law
which forces the faulty-state of the system to track a ref-
erence trajectory given by the fault free model of the sys-
tem. For that purpose the control law is modified in order
to take into account the trajectory tracking error and the
estimated actuator faults. Finally, an application to a non-
linear model of lateral dynamics of a vehicle with additive
actuator fault is given in order to illustrate the second ap-
proach. Future works will concern the FTC of systems
affected by both sensor and actuator fault and/or uncer-
tainties and/or perturbations. Secondly, the consideration
of the case when the premise variables are unmeasured
(like states of the system). It will also be interesting to
study the case when a set of actuators is completely out of
order, in this situation the dimensions of the matricesBi

and of the control vectoru(t) are decreased.
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