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In this paper new methodologies for fault tolerant control (FTC) are proposed in order to compensate actuator faults in
nonlinear systems. These approaches are based on the representation of the nonlinear system by a Takagi-Sugeno model.
Two control laws are proposed requiring the simultaneous estimation of the system states and of the occurring actuator
faults. The first approach concerns the stabilization problem in the presence of actuator faults. In the second one, the
system state is forced to track a reference trajectory even in the faulty situation. The control performance depends on the
estimation quality, indeed, it is important to accurately and rapidly estimate the states and the faults. This task is then
performed with an Adaptive Fast State and Fault Observer (AFSFO) for the first case, and a Proportional-Integral Observer
(PIO) in the second case. The stability conditions are established with Lyapunov theory and expressed in Linear Matrix
Inequality (LMI) formulation to ease the design of the FTC. Furthermore, relaxed stability conditions are given with the

use of the Polya’s theorem. Some simulation examples are given in order to illustrate the proposed approaches.

Keywords: Takagi-Sugeno model (T-S), fault tolerant control (FTC), simultaneous fault and state estimations, Polya’s
theorem, Lyapunov theory, input-to-state stability (ISS).

1. Introduction The second class concerns active fault tolerant con-
trol which is more interesting due to its possibility to
Since several years, the problem of fault tolerance hastake into account a large class of faults, because of its
been treated from many points of view. Two classes canvariable structure which may change in the presence of
then be considered: passive control and active control.faults. The knowledge of some informations about these
The first class may be viewed as a robust control. It re- |ast are required and are obtained from a Fault Detection
quires thea priori knowledge of the possible faults which and Diagnosis (FDD) block. Different ideas are devel-
may affect the system. The principal idea of this kind of oped in the literature, for example, a Control Law Re-
control is based on the consideration of all possible faults scheduling (Ocampo-Martinez et al., 2010), (Leith and
as uncertainties which are taken into account for the de-|eithead, 1999), (Stilwell and Rugh, 1997). This ap-
sign of the tolerant control by using different techniques proach requires a very robust Fault Detection and Iso-
like H.. (Patton, 1997), (Niemann and Stoustrup, 2005). |ation (FDI) block which constitutes its major disadvan-
The interest of this approach lies in the fact that no on line tage. Indeed, a false alarm or a non detected fault can
information is needed and the structure of the control law |ead to degraded performance or even to instability. Other
remains unchanged. Generally, the structure of the un-smooth fault tolerant control laws are proposed in (Ichalal
certainties (faults) are not taken into account in order to et al., 2010) for Takagi-Sugeno systems and in (Patton and
lead to a convex optimization problem. Furthermore, the Klinkhieo, 2009a) for LPV systems.
class of considered faults is limited, it becomes then risky
to use only the passive fault tolerant control (see (Mufeed Many efforts have been dedicated to the problem of
et al., 2003) for more details). designing active fault tolerant controllers for nonlinear
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systems, the obtained results are linked to the system repthe paper,accessibléor measurdastheinput or the out-
resentation. Some works can be mentioned in the FTC put of the system). Thesefunctionsverify the following
field for nonlinear systems. For example, in (Gao and properties:

Ding, 2007), the authors took into account actuator faults

for nonlinear descriptor systems with Lipschitz nonlinear- ZT: pi(€t) =1
ities. In (Ocampo-Martinez et al., 2010), a method which =1 , ()
requires only the fault isolation was proposed for T-S sys- 0<pi(§(t) <1 Vie{l,2,..,r}

tems. Itwas based on a bank of observer based controllersO
A switching mechanism is then designed depending on the
obtained residuals. An efficient way to deal with the sys-
tem nonlinearity in the FTC design is the T-S approach
introduced by (Takagi and Sugeno, 1985). This approach
is used in (Ichalal et al., 2010) where the FTC is based

btaining a T-S model[{1) can be performed from dif-

ferent methods such as linearization around some oper-
ating points and using adequate weighting functions. It
can also be obtained by black-box approaches which al-
low to identify the parameters of the model from input-

: . . output data. Finally, a T-S model can be obtained from the
on trajectory tracking and Proportional-Integral Observer well-known nonlinear sector transformations (Tanaka and

(PIO). design for T-S systems with Weig'htin.g functions d?' Wang, 2001), (Nagy et al., 2009). These transformations
pending on the state of the system which is not acceSSIbIea”OW to obtain an exact T-S representation of a nonlinear
for measure. model with no information loss on a compact set of the
In this paper, a new actuator fault tolerant control state space

is proposed. Using a fast adaptive observer prgposed in Thanks to the convex sum property of the weighing

(Zhang et al., 2008) and extended her_e to nonlinear T'Sfunctions [2), itis possible to generalize some tools devel-
systems, t_he state and the fault affecting the system af%ped in the linear domain to the nonlinear systems. The
rapuzjlybestrl]meflted. hTh?f usfe Olf such an observer is moti- .o esentatior{1) is very interesting in the sense that it
vated by the fact that If a fault occurs, it is important to simplifies the stability studies of nonlinear systems and
quickly and accurately detect it in order to take it into ac- the design of control laws and observers. In (Tanaka and

count and preserve the sygtgm perfor'njances. With theWang, 2001), (Kruszewski et al., 2008), the stability and
use of Lyapunov theory, sufficient conditions are obtained stabilization tools are inspired from the study of linear sys-

for asymptotic stability in the constant fault case and for tems. In (Akhenak et al., 2008), (Marx et al., 2007), the

input-to-state stability (ISS) .in the case of time \_/arying authors worked on the problem of state estimation and di-
fault;. The LMI formu!a}t|on is used for representing t_he agnosis of T-S systems. The proposed approaches in these
pbtalned stability conditions inan adeq'u.ate form forepst- last papers rely on the generalization of the classical ob-
ing LMI solvers. Relaxed stability condltlons~ar_e obtained oo\ /ars (Luenberger Observer (Luenberger, 1971) and Un-
W_'th the use of Polya’s theorem (Sala and i) 2007). known Input Observer (UIO) (Darouach et al., 1994)) to
Flnally, another FTC _strategy is proposed, based on tr,a'the nonlinear systems. Recently in (Sala andigy2007),
jectory tracking. Put in other words, the system stat.e IS 2 new approach, derived from the Polya’s theorem, leads
kept as cloge as possmlie to a reference state, even in th?o asymptotic necessary and sufficient stability conditions.
faulty situation. Some simulations illustrate the obtained r1-\as also envisaged for T-S systems with time-delay
results. in (Zhang et al., 2009), but no reference tracking was con-
sidered.
2. Takagi-Sugeno structure for modeling In the remaining of the paper, the two following lem-

mas and notations are used.
The T-S modeling allows to represent the behavior of non-

linear systems by the interpolation of a set of linear sub- Lémma 1. ~ Consider two matricest and Y’ with ap-
models. Each sub-model contributes to the global behav-Propriate dimensions and' a symmetric positive definite
ior of the nonlinear system through a weighting function Matrix. The following property is verified:

1i(&(t)). The T-S structure is given by XTY +YTX < XTGX +YTG-lY, G>0. (3)

(1) = 21 wi€O)) (A () + Biu(®) g
y(t) = Cz(t) Lemma 2. (Congruence)Consider two matrice$” and
Q, if P is positive definite and if) is a full column rank

wherez(t) € R™ is the state vector(t) € R™ is the matrix, then the matrix) PQ” is positive definite.
input vector,y(t) € R" represents the output vector.
A; € R B, € R**™ andC € R™»*™ are known ma- Notations. For any square matrid/, \,,..(M) repre-
trices. The functiong; (£(t)) are the weighting functions  sents the maximum singular value of the matkik and
depending on the variabkgt) which is, in the sequel of ~ S(M) is defined by§(M) = M + M. A block diagonal



4. Stabilizing fault tolerant control for non-
linear systems

matrix with the block matriced/; on the diagonal entries
is denotediiag (M, Ma, ..., M,). In a partitionned ma-

trix, the sign denotes the terms induced by symmetry. .
In order to estimate the state and the faults of the system

(), the following adaptive observer is proposed

3. Problem statement 50 = X 1(EO) A0 + Bilu(t) + F(0) + Liey (1)
Under actuator faults, the systel (1) can be rewritten in | #%(t) = CZ(t)
the following form: f(t) _ ;M L(E(D) ey (1) + ey (1))
r eyt
i(t) = Y aE(8) (A(t) + By (ult) + £(2))) =t =t ®)
y(t) = ’5; () and the active fault tolerant control is chosen as
4) R

where f(¢) is an actuator fault. Faults can affect a sys- ZM —f). (7

tem in many different ways. They can be represented by
an additive or a multiplicative external signal. It can be This control law can be seen as a generalization to the
pointed out that if the fault depends on the system state,nonlinear case of the approach proposed in (Patton and

it can change the model structure and cause its instabil-
ity. For instance, malfunctions of an actuator can be rep-

resented by a faulty control input defined hy(t) =
(I, —v)u(t) which can easily be rewritten as an external
additive signal:(u(t) 4+ f(t)) wheref(t) = —yu(t) and

v = diag (Y1,72, * Yn, )0 < v <10 =1,..,ny)
where:

~; = 1 = atotal failure of theé*” actuator,
v = 0 = thei'" actuator is healthy,
€]0 1[= aloss of effectiveness of th&" actuator.

For example ify; = 0.4, there is a10% loss of effective-

ness of the second actuator. Note that such multiplicative

faults can cause the system instability.

Assumption 1 In this paper, it is assumed that:

e Al. the faults have norm bounded first time deriva-
tive

(%)

(t)H S flmaxa 0 S flmaw < o0.

o A2. rank(CB;) =ny,i=1,...

, T

e A3. only partial actuator failures are considered, i.e.
e 1,i=1,...,7

The objective of the FTC design is to find the control law

Klinkhieo, 2009b). The solution of the FTC problem is
obtained by setting® € R™=*"= and the scalars and
6 € R and determining the gaink; € R"*"v F, €
R™*™ and K; € R™*™ by LMI optimization such that
the state of the system asymptotically converges to zero
if the fault f(¢) is constant or to a small set around the
origin whenf(¢) is time varying with norm bounded first
time derivative. The expression describing the dynamic of
the estimated faulf (¢) given in [8) depends on both the
output error and the derivative of the output error.

Let us consider the state and fault estimation errors
ex(t) andey(t) defined by

ex(t) = x(t) — &(t) (8)
er(t) = f(t) — f(t) 9)

The dynamics of the state estimation error and the closed-
loop system with the contro[(7) obey the differential
equations:

Z i (E()) (®ieq(t) + Bieg(t)) (10)
= Z Z i (§(8)) 5 (€(2)) (i (t)
+Bies(t) + BiKje,(t)) (11)

Where(I)Z' = A, - L;,C andEZ‘j = Az — BZKJ

Theorem 1. Under the assumptions 1, given positive
scalarso and g, if there exists symmetric and positive
definite matricest € R®*", P, € R™*™, a positive def-
inite matrix G € R™*"« matricesM; € R™*" and

u(t) in (@) such that the system remains stable even in the N, € R"*™ and a positive scalan solution to the opti-
faulty case. For this purpose, the state and fault eSt'ma'mlzatlon problem:

tions will be used in order to minimize the fault influence
on the system stability.

s.t. (12)

min 7



< nl Bl P, - F,C ) >0 (13) sion of f(t) in (6), one obtains:
* nl
T
_ . : 11,
S, BM, B 0 0 2;u (€()p; (§()) (& ()L (t)
—26X 0 I 0
0, = : f o1 60 o | <o €T (t)Qien(t) + 227 (£) PLBi K jeu (t)
* * ¥ O Ry + 227 (t) Py Bies (t) + 2eX () Py Biey ()
* * * * Uy 2 5 ) 2 1
(14) ey (t)Fi(éy(t) + oey(t)) + P ()T f(1))
(23)
Sij = S(A4iX — BiM;) (15)
Q2 = S(PA; — N,C) (16) wheree, (t) = Ce,(t).
1 Using the differential equatiof (.0) generating),
Rij = _;(AJTP2 —CTN[)B; (17)  the following is obtained:
1 1
U;; = ——(BI'PBj+ Bl PB;)+—G (18) r
’ 4 Y 4 =3 > mlE®)n )@

T () (t)

i=1 j=1
+ el (1) Qen(t) + 227 () PLB; Kje,(t)
+ 227 (t) Py Biey (t) + 2eX (t) P2 Biey (1)

then the state of the systertt), the state estimation error
e;(t) and the fault estimation erroe;(t) are bounded.
Furthermore, if the bound of the first time derivative of
f(t) is zero i.e. fimaz = 0, these variables converge
asymptotically to zero. The gains of the observer and the
fault tolerant control are given by;, L, = P, N, and

K, = MiX_l.

_Eef( t)F,O® e, (t) — %ef( t)FiCBjes(t)

2 .
— 2} () F;Cey(t) + ;ef(t)r i), (29)
Proof. In order to prove both the stability of the closed- USing Lemmall and assumptiéd, we deduce that:
loop system and the convergence of the state and fault es-
timation errors, consider a Lyapunov function depending 2

onx(t), e;(t) andey(t) defined by:

Hr= f (1)
<= 1 e?( )Geys + %f'T(t)rflG”F*lf(t)

V(t)=aT 1 T

t 1 _
er(t) <—ef (t)Gey + ~ F maxAmaz (T

(19)
where P, P» andI' are symmetric and positive definite 5 using assumptioA2, it is possible to obtairF; and

matrices with appropriate dimensions. P, such thatB! P, = F;C holds. The time derivative of
According to the equation$ (110) arld[11), the time the Lyapunov functior{24) is bounded as follows
derivative ofV(t) is given by:
033 e

=3 wa€®)my (€)= Pt

i=1 j=1

(t)Pra(t) + eX (t) Pren(t) + %ef(t)l"_l 1G-Ir-)  (25)

(t))Ai;Z(t)+0 (26)
T ()T (t)

ey (1)ex(t) + 207 () PLB; K e, (t) where
+ 207 () PuBies(t) + 26T () PoBies (1) ) = @) L) )T 27
2 L. 1 P
+ =ef (T es (1)) (20) 0 = —flmadmax ((T'GTITTY) - (28)
where I;; PiB;K; P B;
15T
M; = ELP + PIEy (21) A= = L = N )
k \Ilz'j
and If the following inequality holds
Q0 =3'P, + P, (22)
ZZM (t)Ai; <0 (30)

Knowing thaté;(t) = f(t) — f(t) and using the expres- =1 =1



it is established that:
V(t) < —|z@®)]* + 6 (31)
wheree > 0 is defined by:

ZZM

=1 j=1

€= mln Amin

))Aij) (32)

or can also be bounded by

e <minApin(—Ay5)
i,J

(33)

It follows that V() < 0 if ¢||Z(¢)||> > ¢, and accord-
ing to Lyapunov stability theory the staigt), the state
estimation erroe,(t) and the fault estimation errer (t)
converge to a small set around the origin and then lies into
it. This set is smaller as the constantonverges to zero.

In order to achieve the proof, it remains to establish
some LMI conditions to ensure thdf{30) afitf P,
F;C hold. The latter is first considered.

As pointed out in (Zhang et al,
is difficult to solve simultaneously the

Z Z i (§(8)) e
1=17=1
stralntBiTPQ = F;C. A technique for reducing this dif-
ficulty is to formulate the equality constraint as an opti-

mization problem (Corless and Tu, 1998):

I_FiC ) >0. (34)

For the sake of simplicity, the following notations
will be used:

2008), it
inequality
i(€(t)A;; < 0 with the equality con-

T
min 7 s.t. < nl B P
* Ui

Ye = mi(£()Y; (35)
1=1
Yee = > > ma(&()i (6())Yiy, (36)

i=1 i=1

whereY; andY;; are given matrices. Using this represen-
tation, the inequality[(30) becomes:

Hee Oge

ANge = <0 37
3 ( 0L Ae > (37)
where:
©;; = ( PiB;K; P.B;) (38)
Q —1q>TPQB,»)
A = ’ o J ‘). (39)
! ( * Wi

Considera symmetric matrixX defined as follows:

() e

Pt
0

0
X1

Pt
0

0

. > (40)

Using LemmdXP, post and pre-multiplying the inequality
(37) by X, it follows that [3T) is equivalent to the follow-
ing inequality:

("

Since the following inequality holds for any scalar

Mg P

ES

PO Xy

<0. (41
XiheeXa ) 4D

<X1 + ﬁAggl>TAss <X1 + ﬁAg;) <0

& XiAee Xy < 28X, - AL (42)

and with a Schur complement, it follows that the inequal-
ity (1) holds if [43) is satisfied

P Mgyt PllOgX: 0
. 98X, Bl | <o0. (43)
* * A§§

Using the notationd (35)-(B6) and the definitions of the

matricesll¢e, ©¢ andA¢e given by [21), [(3B) and (39),
and with the changes of variablas= Pfl, M, = K; X,

N; = P, L, itis easy to obtain the inequalities given in the
theoren!lL. Finally, the inequaliti (B1) is satisfied, if the
optimization problem given by (12) under LMI constraints

(@3)-(I3) has a solution, which ends the proof. [ |

Remark 1.  After solving the optimization problem
given in the theorern] 1, the input-to-state stability condi-
tion given in [31) is satisfied. Thus, in the case of time
varying faults with bounded first time derivative, the state
z(t), the state estimation erreg,(¢) and the fault estima-
tion errore ¢ (t) converge to an origin centered ball defined
by the terms ande. The radius of the ball in which con-
verges can be minimized by a choice of the parameter
that minimizes) without changing (that does not depend
onT). It thus improves the accuracy of the estimation.

Remark 2. The objective of fault tolerant control is

to compensate the faults, so it is important to estimate
them as soon as possible with a good accuracy. The
adaptive observer studied in this paper can be considered
as an improvement of the classical Pl observer, in the
sense that convergence of the state and fault estimations
is proved (in an origine centered ball) even in non con-
stant fault case, whereas the assumption of constant fault
is needed to prove the estimation error convergence when
using a Pl observer (Koenig and Mammar, 2002), (Ichalal
et al., 2009a). Note that if the fauft¢) is constant, then
Sfimaz = 0 and with [28)6 = 0, consequently the asymp-
totic stability is achieved, sincg(t) < 0 for everyi(t).

5. Simulation example

To illustrate the performances of the proposed approach,
let us consider the system (4) defined by the matrices:

(i 3 4 (adr )

172941 0 3.56361 0O



0
—0.1765

0
—0.1763

(o ). 2= (b ) 05

The weighting functions are given lay (z(t)) = 1—
2 21(t)] and po(z(t)) = 1 — pa(z(t)). Let us consider
the faultf(¢) defined as follows:

0 £ <20
Ft)=1{ 75sin(2t+21)+15 20<t<70
—0.89u(t) 70 < ¢ < 100

(44)
Fort > 70 s, the fault f(¢) describes a loss of ef-

fectiveness of the actuator, satisfying assump#i@nThe
first simulation is obtained by synthesizing a classical con-
troller without taking the faults into account the faults:
u(t) = — > i, pi(z(t))K;z(t), using an approach pro-
posed in (Tanaka and Wang, 2001). The gdihsare ob-
tained byK; = M;P~! whereP andM; are solution of
the LMIs

S(PA; — B;M;) <0, i,j=12. (45)

With this control law, as shown in the figuré 1, the

states of the system converge to zero in fault free case (i.e

for ¢t < 20), but in the faulty case the system performances
are degraded from = 20 s to ¢t = 70 s and the system
becomes unstable for> 70 s.

—x,®
—X 2(t)

. . . . .
50 60 70 80 90
t(s)

1 1 1 1
10 20 30 40 100

Fig. 1. System states with classical control
The proposed fault tolerant control is designed by

solving the optimization problem of theorem 1. For that,
the parameter values = 0.8, I' = 100 andg = 10 are

chosen. The obtained gains of the observer and the con

troller are:

- (4 1) e (35 13

Fy= (363 —43.25 ), Fo=( 3.62 —43.20 )
Ky =( —161.89 —65.95 ),
Ky =( —156.25 —65.24 )

The figure[2 illustrates the results of the proposed
control law obtained after solving the optimization
problem of theorem 1. One can note that, with the fault

0.52 1.22
17.24 0.27

0.52 1.21
3.48 0.26

f(t) defined in [(4#), the performances are better than
those of the classical control and the system remains
stable fort > 70 (figure[2 (top)). The observer rapidly

and accurately estimates the fault as shown in the figure
(bottom). In this example, the classical control cannot

k>

.
10

.
90

20 —1(t)
- - estimated f(
10- 1
0
.

0

. . . . . . .
20 30 40 50 60 70 80 100

iO 2‘0 3:0 4‘0 50 éO 7‘0 éO dO 100
t(s)
Fig. 2. Fault tolerant control : states of the system (top) - fault

and its estimation (bottom)

preserve the stability of the system when > 0.89
however (based on simulations not displayed here due to
space limitation it can be claimed that) the proposed FTC
strategy can tolerate faults until= 0.992 which means
that if the loss of effectiveness of the actuator is less than
99.2%, the proposed controller makes the system stable.
In figure[3, aftert > 70 the loss of effectiveness of the
actuator is considered with = 0.99 and we see that the
controller compensates it despite of its severity.

—
—X 2(t)

.
90

—f®)
- - estimated f(

. . . . . . .
20 30 40 50 60 70 80 100

. . . . \ . .
20 30 40 60 70 80 90

.
10

50 100

t(s)

Fig. 3. Fault tolerant control with = 0.99 : states of the sys-
tem (top) - fault and its estimation (bottom)

In addition, this approach provides a rapid and ac-
curate estimation of occurred actuator faults with the
adaptive observer (figufd 2 (bottom)) which constitutes
a FDI block for diagnosis. Iff(¢) 7.5sin(2t +
2.1) + 15, its derivative over the time is bounded by
15, then in this simulation example, the tertn =
Lt aedmae(TTGTIT™1) = 0.0186, and the terme
can be minimized by an appropriate choicd'db reduce
the radius of the ball in which converge the estimation er-
rors and then obtain a more accurate fault estimation.



6. Conservatism reduction with Polya’s the-
orem

In the previous section, the proposed result may be
conservative in the sense that common Lyapunov ma-
trices were sought to satisfy’ LMIs. Recently, a new

interesting method to reduce the conservativeness of the

matrix summations inequality has been proposed with the
use of Polya’s theorem (Sala and Bai 2007).

Let us consider the inequalitly (46):

T T

Dee =Y > wil€0)ny(E() Ay <0

i=1 j=1

(46)

whereA,;; is defined in equatioh (29).

Noticing that(>";_, 1:(£(¢)))” = 1 for any positive
integerp, it can be deduced that inequalities likg, < 0
canberewrittena ;_, ui(£(t)))” Age < 0. By gather-
ing all terms in the left hand side of the inequality with the
same coefficient, less conservative LMI conditions than
A;; <0Ofori,j=1,...,r can be obtained. As proved in
(Sala and Aiiio, 2007), if a solution exists for a given
this solution satisfies the inequalities obtainedfei. As
a consequence, increasipgwill provide less restrictive
conditions and i) — +oo asymptotic necessary and suf-
ficient conditions for the negativity of (#6) are obtained.
The authors proposed also an algorithm to compute finite
values ofp which gives necessary and sufficient condi-
tions with a given accuracy. The reader can refer to the
paper (Sala and Afib, 2007) for more details on Polya’s
theorem based relaxation approach.

Theorem 2. Under the assumptions 1, given positive
scalarso and g, if there exists symmetric and positive def-
inite matrices¥ € R™"*", P, € R"*", G € R™*™ and
matricesM; € R™=*" and N; € R"*™ and a positive
scalarn solution to the optimization problem

min 7 s.t. )

* nl (48)

( )>o0

Qi <0
1=1,..,7

3Qi + Qi + Q5 <0
hj=1,.ur i#£]j

3Qii + Q) +3Q:; +39Q;; <0
=1, mi#]j

6Qi; + 39, +3Qik + 39
+3Q%; + Qjr + Qrj <0
hL,,k=1..,rmi<j<k

3Qii +3Q;; +6Q;; +6Q;; + 3Q
+3Qki +3Qjk +3Qk; <0
L, k=1...,ri<j<k

6Q;; +6Q;; +6Q;; +6Q;1

+6Qp; +6Q; + 69 + 39,

+394k; +3Q5 + 39 + 39k + 39, <0
k=1, ri<j<k<l

6(Qij + Qji + Qir + Qi + Qi + Qui + Qim
FOmi+ Qjr + Qi + Qji + Q15 + Qjm
+Qmj + Qi + Qi + Qo + Qi) <0
LW, k,Im=1..r i<j<k<l<m

where Q;; is defined in(14). Then the state of the sys-
temx(¢), the state estimation erroe,(t) and the fault
estimation errore;(t) are bounded. The gains of the
observer and the fault tolerant control are given By,

L; =P, 'N;andK; = M; X~

Proof. According to theorerhl1, the solution of the FTC
problem is obtained by minimizingunder the constraints

(@3) and>>7_, 377, ma(&()n; (6(1))Qi; < 0, which
due to the convex property of the weighting functions is
equivalent to

(Z Mk(f(t))> DO ) (E() Qi < 0
k=1 i=1 j—i
(49)

Settingp = 3 and gathering the terms sharing the same



combinations of weighting functions, we obtain

()

Z'ul Qii + Z Mzﬂj (3Qui + Qi; + sz)

1,5=1
i#£]

T T T T
Z M?M?sz + Z Z Z 1105 111 Q

ZZMM;‘ Qij

i=1 j=1

SO nini Qi =

i=1j=1

+
ij=1 i=1 j=1 k=1
i#] 1<j J<k
T T T
2 2 Ak
DD D E Qi
i=1 j=1 k=1
i<j J<k
T T I T
Y @i
=1 j=1 k=1 [=1
i<j i<k k<l
+ Z Z Z Z Z NzMJNleMsz;klm (50)
i=1 j=1 k=1 [=1 =1
i<j J<k k<l I<m
with

Qij =3Qii + Qj; +3Qu; +3Qy
Qijr =6Qui +3(Qij + Qji + Qi + Qi)
+ Qi + Oy

Qijx =3Qii +3Q; +6Q;; +6Q,; +3Qux
+ 39k + 3ij; + 3ij
Qijrt =6(Qii + Qij + Qi + Qi + Qi + Qi + Qi)

Qijrim =6(Qij + Qji + Qir + Qi + Qi + Qi + Qim
+ Qi + Qi+ Qi + Qji + Qi + Qjm
+ Qmj + Ot + Qi + Qiem + Qi)

Finally, with the same reasoning as in the theokém 1, the
optimization problem with relaxed LMI constraints of the-
orem2 is obtained. [

7. Faulttolerant control by trajectory track-
ing
In this section the control objective is not only closed-loop

stabilization but also trajectory tracking. First, the FTC
strategy is detailed, before addressing the FTC design.

7.1. FTC strategy. The state trajectory(t) to be fol-
lowed by the controlled system is given by a reference

model which correspondgo the model of the fault-free
systemwith nominalinputu(t) definedby

pi(§(t)) (As(t) + Biu(t))
pi(§())Ci(t)

(51)

Because of the faulf(¢), the state of the faulty controlled
system, denoted/(t), may differ from the reference tra-
jectory. As a consequence, the control input of the system
has to be modified, the resulting applied input is denoted
u¢(t). The faulty system is given by

M%

pi(§5(8)) (Aiz(t) + Bi(uy(t) + f(1)))
pi(§5 (1)) Ciz ¢ (1)

ap(t)

yr(t)

1

<.

Il
Mw

(52)
The considered faults are the same as in previous sec-
tions. Note that, the weighting functions depend on a
faulty premise variabl€;(t). These last may be the input
of the system, which in closed-loop depend on the state
x¢(t), or the outputy,(¢), consequently the fault neces-
sarily affects these variables. In order to minimize the
state deviation due to the fault, the controlled inputt)
encompasses two additive terms respectively depending
on the fault estimate and on the estimated state deviation
z(t) — Z;(t). One should note that the reference state is
simulated from[{(Bl1), and thus is accessible for the control
law, whereas the faulty system state has to be estimated.
The FTC lawu(t) is given by

up(t) = —f() + K(a(t) = &¢(t) +ult)  (53)
A PI observer is designed to provide the controller with
both the estimates of the actuator fault and of the faulty

system state. The proposed Pl observer is given by

Br(t) = QMKNM&@w+&me$w>
o HHu 0 - 5 )

FO) = Xm0 (Haslus(®) — 35(1)
Jy(t) = T(&umwm

~.

(54)
The premise variabl€;(t) is assumed to be known and
the observer weighting functions depend on the same
premise variable as the systdmi(52).

The overall scheme of the proposed FTC strategy is
depicted by the figuriel4. The FTC design consists in de-
termining the control law{83) and the PID{54), such the
controlled system statey (¢) is as closed as possible from
the reference state(t).



system

reference
model

Fig. 4. Fault tolerant control scheme

7.2. FTC design. The FTC design consists in deter-
mining the gainsK in (53) and Hy; and H,; in (&4)
that minimize the trajectory tracking error defined by
e(t) = z(t) — x(¢t) and the state and fault estimation
errors, respectively defined lay (¢) = z;(t) — & ;(¢) and

ep(t) = f(t) — f(t). From [51), [5R),[(58) and(54) and

the definition of the errors, it follows
B(t) = mi(&r (1) (Asa(t) + Biu(t)) + 6(t)  (55)
=1

Ty(t) = Z 1i(§7 () (Aizp(t) + Bi(u(?)
+es(t) + K(e(t) + ex(t))))
Br(t) =D mir ()i (65 (1) (Asf () + Bi(ult)

i=1 j=1
+K(e(t) + ex(t))) + Hi1iCjex(t))

(56)

(57)

whered(t) is defined by

T

8(t) =D (a(€(8)) —pal€s () (Aiz(t) +Biu(t)) (58)

=1

Assumingf(t) = 0 the dynamics of the errors is given by

ét) = (

with the following notations

Ag; — Be, K
0

_LEf -

Aff - Hff Cﬁf

) o

A B

! 0/) G = (¢ 0)

In order to design the PIO, it is necessary that the pairs
(C, A;) are observable or at least detectable.

) &(t) +To(t)
(59)

Hli
H27,'

L= (BiK B;) Ai:(

Remark 3. One can note that in the previous section,
the weighting functions depend on the premise variable
&r(t). It can be an external known variable which is not
affected by faults. Indeed, in (Witczak et al., 2008), the

authors proposed a method for this case with an applica-
tion to the three tank system in open-loop control. In this
casef(t) = &¢(t) and the equatiori (59) becomes an au-
tonomous system

é(t) = (

In Takagi-Sugeno modeling, it is often considered that the
premise variablé(¢) is the input, the output or the state
of the system, which are necessarily affected by faults,
consequently (¢) # &¢(t) and the fault and state estima-
tion errors and the state tracking error are expressed by
(59). When¢(t) = u(t) and&s(t) = us(t), the termd(t)
does not converge to zeroaf; (t) converges to the refer-
ence state:(¢) but if £(t) = y(¢) and{y(t) = ys(t), the
tolerant control allows the convergencef(t) to xz(t)
andy¢(t) to y(t), then the termy(¢) converges also to
zero which gives better results compared to the case where
&(t) = u(t). The same problem can appear if the output
is also affected by faults. In these cases, the fault tolerant
control design aims to minimize the difference between
x¢(t) andz(t) and to minimize the, gain of the transfer
from §(¢) to the state tracking error.

The gainsK, Hy; andHs; are determined by solving
the optimization problem under LMI constraints given in
the next theorem.

A¢; — Be, K
0

_Léf -

- e 60
Aff - HﬁfCEf> elt)  (60)

Theorem 3. Consider) a positive scalar. The systefB8)
that generates the state tracking erreft) and the state
and fault estimation errors,(¢t) ande;(¢) is stable and
the £, —gain of the transfer fromd(¢) to e(t) is bounded if
there exists symmetric and positive definite matri¥es
X, and P,, matricesH; and K and a positive scalafy
solution to the following optimization problem

XoXoPo Ko, (61)
s.t.
Yi<0,i=1,..,r
ii 5 yeeny . b 62
LY+ Y+ Yy < 0,6 < (62)
where
\I/i —BZM 0 In Xl
* —2AX /\In+nu 0 0
Yig=1] = * A 0 0 <0
* * * _71n 0
* *k * * *In
(63)
U = S(AX: - BiK) (64)
Aij = S (P2Ai - H; ~z‘j) (65)
% X 0
M=(K X;), X< 0 X2> (66)



The controller and observer gains are computed from

H, = ( g; > _py'H, K=RKX['  (67)

and the£,-gain from4(t) (58) to the tracking errore(t)
is obtained by

Y=V (68)

Proof. With the variable change¥; = Pfl, K =KX,
H; = P,H;, M = [K X,] which implies

_N, Xl 0 —N.
B;M =L, < 0 X2> =L;X

and a Schur complement, the inequalitied (63) are equiva-

lent to
=, —L;X I,
x —2AX — A2AY 0 <0 (69)
* * —~21,
whereA,; is defined in[(6b) ané&; given by
Zi =S(4P ' —B,KP ') + PPt (70)
If (63) hold, then the 3, 3) blocks ofY;, i.e. A;, are nega-

tive definite and the two following equivalent inequalities

yield
(X +2451)" Ay (X +2451) <0
& XAGX <-A(X+XT)-NA5 (71)

Consequently[{89) implies

E —-LiX I
* * —~2I,

Pre- and post-multiplyind(72) byiag(P, X ', 1,,), it
follows that [63) implies

S(A)+1, —PL; P
Nij = * Aij 0 <0 (73)
* * *’Yzjn

with A; defined byA; = P A; — Py B; K. Choosing a
quadratic Lyapunov function defined by

v =& ()

with P, € R*™*" and P, € R(»*tnu)x(ntnu) regl sym-

Asa consequenc implies
V(@) + e (t)e(t) — 26T ()5(t) < 0

which is well known to be a sufficientcondition for the

L5-gain from §(¢) to e(t) to be boundedby ~ and for
é(t) to asymptoticallyconvergesowardzerowhend(t) is

identicallynull. Finlay, the applicationof Tuan'slemma,
givenin (Tuanetal.,2001),andminimizationof v leadsto
the the optimizationproblemwith LMI constraintggiven
in theoren@ u

Remark 4. The conservatisnof the resultsgivenin the
previoustheorencouldbereducedy applying,in similar
way, the Polya’'stheorempresentedn thefirst strategy.

Remark 5. Theassumptiorthatthe fault signalis con-
stantover the time is restrictive, but in many practical
situationswhere the faults are slowly time-varyingsig-
nals, the estimationof the faults is correct,and the pro-
posedFTC schemecanbe applied. In the casewherethe
faults are not slowly time-varying or constant,the PIO
canbe replacedby a ProportionalMultiple Integral Ob-
server(PMIO). Suchan observerwas introducedin or-

derto filter high-frequencydisturbancen (Ibrir, 2004). It

is ableto estimatea large classof time-varying signals
which satisfiesthe assumptionf ¢+ () = 0. The prin-

ciple of this observeris basedon the estimationof the ¢

first derivativesof the signal f (¢). This observercanalso
be extendedo the casewhere f(4+1)(t) is boundedsee
(Ichalaletal., 2009b)).1t is alsopossibleto usethe adap-
tive observemivenin thefirst part of the paper,since,as
shownin the example,this observercan estimatefaults
with fast variations.

8. Simulation examples

In this section two examplesareproposedo illustratethe

proposedFTC. The first one discussesomeaspectsof

the proposedapproachand the secondoneis dedicated
to actuatorfault tolerantcontrol of lateraldynamicsof a

vehicle.

8.1. Example 1. To illustrate the proposedactuator
fault tolerantcontrol strategyfor T-S systemswith mea-
surablepremisevariablesand affectedby actuatorfaults,
two academiexamplesarepresented.

8.2. First case: £(t) = u(t). ConsidertheT-S system

metric positive definite matrices, it is easily derived from describecby

(59) that

T
V(@) +e" (t)e(t) =267 (1)d(t) = (223) M (%)
(74)

{ ip(t) = 32 pa(ut) (Ais (8) + Bi(us (1) + £(1)))

(75)
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The weighting functions depend on the inpuft) which

is the nominal control of the system in the fault-free
case; they are defined y (u(t)) = (1 — w(t))/2 and
pa(u(t)) = 1 — pi(u(t)). To apply the proposed FTC
strategy, the following reference model is considered

Fig. 5.

H0) = ¥ p(u(®) (Alt) + Bat) g0

The faultf(¢) is time varying and defined as follows
0, t <10
f(t) =14 —0.5u(t), 10 <t <20 (77)
1, 20 <t

andw(t) is a random signal with maximum value corre-
sponds to10% of the maximum amplitude of the mea-
sured signaly(t). Notice that even if the assumption Fig. 6.
f(t) = 0 is not satisfied, the PIO is able to reconstruct
time varying signals with slow variation.

Solving the optimization problem under LMI con-
straints in theoretin] 3 with = 20, results in the following
matrices

—f(t)
- - estimated f({]
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The figureb (top) shows the time evolution of the fault
f(t) and its estimatef (¢), while the bottom part depicts
the nominal controk:(¢) and the FTCus(t). The state
estimation errorsg¢(t) — &7(t) are shown in the top of
figure[8, while the bottom part shows the state tracking
errorsz(t) — xy(t). Finally, figurelT allows the compar-
ison of the reference model states with the state obtained8.3. Second caseé(t) = y(t). In this subsection, the
when the system is faulty without any modification of the previous system is considered, but with weighting func-
control law and those of the system when using FTC. tions depending on the first component of the system out-
Even if a fault occurs, the system trajectory follows put vector. The figur€l8 illustrates the state estimation
the trajectory of the reference model which represents theerrors (top) and the state tracking errors (bottom). It is
trajectory of the system in the fault-free situation. Thus, clear that the use of weighting functions depending on the
the FTC control law compensates the fault and allows a output of the system provides better results than the case
normal functioning of the system in the presence of faults. where they are depending on the control input. This is

T
I
15 30
1(s)

Comparison between states of the system without fault,
states with fault and nominal control and states with fault
and FTC

Fig. 7.



due to the fact that the system is only affected by actua- wherez” = [v 7], d; is the steeringangleof the front
tor faults and the perturbation like teréiit) converges to  wheel. The outputy containsthe lateralacceleratiorand
zero wheny(t) converges to the referengét). But in yaw rategiven by theinertial unit andexpresseasfunc-
the previous simulation, the ter#ii¢) did not converge to tions of statevariables. The matricesdefiningthe model
zero, in the presence of fault, because) # «(t) which

leads tou,; (u(t)) # pi(ur(t)). As a conclusion, consid-

—6.9426 —0.8775 B _ (34892
26.5175 —7.8343 /> T1 7\ 39.2914
] —0.4735 —0.9971 B, _ ( 0-2767
t o L 0.6356 —0.4921 )’ ~2 7 \ 3.1155
4 : . e 5 5 e ( —6.9426 2.4491 ) ( 69.7847 )
= s Dl =
. 1 0
—0.4735 0.0587 5.5333
02—( o) e ()

o w w w w w The weighting functions depend on the slip angle
which is assumed to be known. An additive actuator fault

signal affecting the vehicle is given in the form
Fig. 8. State estimation errors (top) State tracking errors (bot-

tom) 0 t <10
, f(t)=< —0.1sin(0.314t) 10<t<14.95 (80)
ering the problem of fault tolerant control of T-S systems 0.1 +> 14.95
with actuator faults, it is more interesting to use the output N
of the system as a premise variable. However, when actu- Furthermore, a random noise with maximal magni-

ator and sensor faults simultaneously occur, better resultsude 0.05 is added to output measurements. Fiddre 9 il-
are obtained by using the state of the system as a premis¢ustrates a comparison between the states of the reference
variable. This is a more difficult and general case but the model (without fault), the states of the faulty vehicle with-
obtained state tracking error is less than the ones obtainedbut FTC and finally the states of the vehicle with FTC.
above, first results on this point are published in (Ichalal Clearly, the proposed strategy is robust with respect to ac-
etal., 2010). tuator additive faultf (¢). In figure[10, we can observe the
estimation of the fault. Moreover, the FTC scheme pro-
8.4. Example 2. In this second example, a interesting Vvides good results in the presence of measurement noises
model is used. Security and assistance in vehicles are im-as shown in the figures. Figdrel11 illustrates the state es-
portant especially in dangerous situations like cornering timation of vehicle states.
and land keeping with high speed. For that purpose, this

— Lateral velocity of the reference modet—Lateral velocity without FTC- - Lateral velocity with FTG:
T T

example deals with the problem of fault tolerant control oo T N e e
of lateral dynamics of a vehicle in cornering situation (for 9
example). Let us consider the nonlinear model of the ve- 004 ]

hicle lateral dynamics given by the following differential 00

L L L L L L L L L
2 4 6 8 10 12 14 16 18 20

equations [——Yaw rate of the reference modet— Yaw rate without FTC- - Yaw rate with FT¢
: ‘ : ‘ ‘ ‘ ‘ ‘

m(v+ur) =2(Fy+ F)
{ Jr=2 (afFf — arFr)

whereu andv are the longitudinal and lateral velocities

(v = Bu), r is the yaw rate3 denotes the side slip an-

gle, m andJ are the mass and the yaw moment of inertia

respectivelya; anda, are the distances of the front and Fig. 9. States of the reference model, vehicle model without

. FTC and with FTC

rear axle from the center of gravity’; and F;. are front

and rear lateral forces. A T-S simplified model as given in

(Oudghiri et al., 2008) is represented by

(78)

9. Conclusions and future works

&(t) = Lz_: wi (Jol) (A (t) + Bidy) 79 This paper is dedicated to the study of a new actuator
5 (79) fault tolerant control for nonlinear systems described by a
y(t) = Z i (log]) (Ciz(t) + Didy) Takagi-Sugeno model. The stabilizing active fault tolerant
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Fig. 11. State estimation

control is studied. It requires the simultaneous estimations
of the state and fault, obtained by the proposed adaptive

and of the control vectoi(t) are decreased.
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