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Abstract

The study of gene interactions is an important research area in biology. Nowadays, high-
throughput techniques are available to obtain gene expression data, and grouping genes with
similar expression pro�les to clusters is a �rst mandatory step towards a better understanding
of the functional relationships between genes. In Kaba et al. [7], a new clustering approach
was presented, using gene interaction graphs to model this data, and decomposing the graphs
by means of clique minimal separators. For that, the similarity between each pair of genes is
estimated by a distance function, then a family of gene interaction graphs is constructed by
choosing several thresholds, where an edge is added between two genes if their distance is below
the threshold. Hereby, both the choice of the distance function and of the threshold in�uences the
construction of the gene interaction graphs. In Kaba et al. [7], several criteria are developed to
select thresholds in an appropriate way. Here we discuss the impact of the choice of the distance
functions on the gene interaction graphs. Our results suggest that the choice of the distance
functions does not e�ect the �nal decomposition of the gene interaction graphs into clusters.

1 Introduction

The study of gene interactions is an important research area in biology. Nowadays, high-throughput
techniques are available to obtain gene expression data. To analyse this huge amount of transcrip-
tomic data, clustering is a �rst mandatory step towards a better understanding of the functional
relationships between genes. Various clustering methods are used; all of them group genes with si-
milar expression pro�les into clusters. We distinguish two types of clustering approaches: hierarchical
clustering (such as phylogenetic trees [11]), and partitional clustering (such as K-Means [9]).

In Kaba et al. [7], a new partitional approach was presented, using graphs to model this data,
and decomposing the graphs into overlapping clusters. The advantage is twofold: �rstly, a gene with
several functions can be modelized accurately (as genes participating in several cell functions appear
in di�erent clusters) and secondly, the overlaps de�ne a meta-graph (namely, an intersection graph
of the clusters) which gives insight on the global organization of the clusters. In addition, e�cient
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algorithms exist to compute this graph decomposition [3, 1], and the resulting set of clusters is
uniquely de�ned.

To con�rm clustering results, Kaba et al. [7] applied the new approch to gene expression data
for the sporulation of Saccharomyces cerevisiae with data from [4], and compared their clusters
with those resulting from a K-Means execution. In fact, their results were similar, but presented an
improvement on K-Means for untypical gene expression pro�les. Moreover, the intersection graph
illustrated exactly the temporal succession of sporulation steps.

The method presented in Kaba et al. [7] to process microarray data is de�ned by the following
steps (see Section 2.3 and [3] for more details). Generally, microarray data consists of a list of genes,
and for each gene there are several experimental measurements.
(1) For clustering genes, it is necessary to estimate the similarity between each pair of genes. In
practice this is done by a distance function to obtain a distance matrix with dissimilarity values
between all pairs of genes.
(2) This information can in turn be viewed as a family of gene interaction graphs resulting from the
application of a threshold: each graph corresponds to a threshold, where an edge is added between
two genes if their distance is below the threshold.
(3) Each of the resulting gene interaction graphs is �nally decomposed in terms of so-called clique
minimal separators, in order to obtain overlapping clusters.

Hereby, both the choice of the distance function and of the threshold in�uences the construction
of the gene interaction graphs. In Kaba et al. [7], several criteria are developed to select thresholds
in an appropriate way (see Section 2.4). Here we discuss the impact of the choice of the distance
functions on the construction of the gene interaction graphs with
(1) a theoretical study in order to exhibit that di�erent distance functions may de�ne di�erent graphs
(Section 3);
(2) a practical study, where we use six di�erent distance functions: the �ve most used in bioinforma-
tics, and one further (Section 4). We evaluate the impact of each of these distance functions on the
clustering obtained on the data set used in [4] and compare it with the results form [7].

2 Materials and Methods

2.1 Biological data

Usually, the initial microarray data are stored in a matrix, with rows corresponding to individual
genes and columns corresponding to the consecutive experiments during which gene expression levels
were measured. The gene expression vectors are ofen normalized to have 0 as average value and 1 as
variance; a distance matrix is then computed [5, 7].

2.2 Mathematical distance functions

For any clustering analysis method, one tries to group together genes with similar expression
pro�les. To de�ne a similarity, one typically determines a distance function which assigns a value
inversely proportional to the similarity between two gene expression pro�les [10]. We refer to this
dissimilarity measurement with the misnomer �distance between two genes�.
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De�nition A distance function d is de�ned as d : X×X 7−→ IR, for all x, y, z in X, which respects
the following four conditions:

� non-negativity: d(x, y) ≥ 0
� symmetry: d(x, y) = d(y, x)
� identity: d(x, y) = 0 if and only if x = y

� triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)
�� ��
We study several distance functions, �ve commonly used in bioinformatics, and one further.

Euclidean distance functions are the most common distance function in bioinformatic analysis
[10]. This distance is the most intuitive one:

dE(x, y) =

√

√

√

√

n
∑

i=1

(xi − yi)2

Standardized Euclidean distance functions, used for comparison, di�er from the Euclidian
one since every dimension is divided by its variance (S2

i : variance of experiment i). The variance
measures how far each value in the data set is from the mean. Dimensions with smaller variance
have more importance in distance values, due to the equalization of the variances on each axis. The
standardized Euclidean distance is a special case of the Mahalanobis distance. [10].

dSE(x, y) =

√

√

√

√

n
∑

i=1

1

S2
i

|xi − yi|2

Manhattan distance functions, also known as city block distance functions, represent the distance
along axes, as there are no diagonal directions.

dM (x, y) =

n
∑

i=1

|xi − yi|

By the Pythagorean Theorem, values obtained by the Manhattan distance function are greater than
those obtained by the Euclidean distance function.

Chebychev distance functions simply keep the value of the largest di�erence on each dimension
to express the dissimilarity. This distance function is very resilient to any amount of noise [10].

dC(x, y) = max
1≤i≤n

|xi − yi|

Pearson correlation distance functions use the Pearson correlation coe�cient to de�ne the
dissimilarity between two genes, which expresses the similarity of two gene expression variations,
and takes values between −1 and 1. The Pearson distance corresponds to 1 − r, and takes values
between 0 and 2.

dP (x, y) = 1− r with r =

∑n

i=1

[

xi−x̄
σx

× yi−ȳ
σy

]

n− 1
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In this formula, x̄ is the average of all i experiments of gene x and σx is the standard deviation of x,
i.e. the square root of the variance.

Arc-tangent distance functions are added as a distance function which we devised speci�cally
for our purpose. It is built from the arc-tangent function and deforms the data space. The main
e�ect is to compress +∞ on π

2
and −∞ on −π

2
. In the neighborhood of 0, there is no impact on the

distance between objects, but when the values grow, objects become closer than they have to be.
Our purpose is to estimate the e�ect of a space distortion on graph-clustering results.

dAT (x, y) =

n
∑

i=1

| arctan(xi)− arctan(yi)|

For more information about the di�erent distance functions used in bioinformatic the reader can
refer to [12], to the review of [10] and references therein.

2.3 Graph decomposition

Graph notions In this work, we use graph decomposition for clustering. For a better understan-
ding we �rst introduce some graph notions. A graph is a set of vertices - here genes, and a set of
edges. An edge is a pair {x, y} of interacting vertices - here two genes will be linked by an edge if
they are close enough. If {x, y} is an edge, x and y are said to be adjacent. A clique is a set of vertices
that are all pairwise adjacent. A complete graph is a clique. An isolated vertex is a vertex to which
no other vertex is adjacent.
A graph is said to be connected if for any pair {x, y} of vertices, there is a path from x to y. A
maximal connected part of the graph is called a connected component. A set of vertices S is called a
separator if the removal of S increases the number of connected components of the graph. Roughly
speaking, a separator S is minimal if there is no proper subset of S able to disconnect the graph
into the same connected components as S does (see [3] for precise details on separation). Naturally,
a clique minimal separator (CMS) is a minimal separator which is a clique.

Graph decomposition into atoms The decomposition by clique minimal separators (CMSs)
consists in repeatedly copying a CMS into all the connected components which its removal de�nes,
and doing this for all the CMSs of the graph until no CMS can be found anymore [1, 13]. At the
end of the process, we obtain a set of subgraphs, called atoms - in bioinformatic called clusters -
with overlaps in the CMSs. Isolated vertices are called trivial atoms. A trivial atom is alone in his
atom/cluster. The decomposition obtained is unique [8]. E�cient algorithms exist to decompose a
graph quickly [1]) For classical graph de�nitions the reader is re�ered to [6], and to [2] for more
detailed results on minimal separators.

For this work, implementations for graph-clustering were done in C++ ; graphs were produced
with Graphviz (http://www.graphviz.org/), graphics with Gnuplot (http://www.gnuplot.info/).

2.4 Choice of a threshold

As mentioned previously in the Introduction we need to choose a threshold for the graph-
clustering analysis. As in [7], we de�ne �ve criteria:
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- the percentage of isolated vertices: if genes are alone in their clusters, they produce no infor-
mation for grouping genes.

- the density: to evaluate the number of edges versus the number of vertices.

- the variance: to evaluate the clustering quality of each threshold calculating the variance of gene
expression, for this threshold we calculate the average of the variance (see also [7]).

- the number of clique minimal separators and the number of non-trivial atoms: we eva-
luate these two parameters in order to balance the number of clusters/atoms versus their size.

- the size of the clique minimal separators: we evaluate this parameter to avoid too big over-
laps between clusters.

With these criteria, [7] identi�ed the �best� interval of thresholds. In [7], as in this work, the curves
representing the number of CMSs and the number of non-trivial atoms have the same appearance,
a threshold is chosen near the local minimum of the curve representing the number of non-trivial
atoms in this interval, with a number of non-trivial atoms egal to 8. Threshold 1.25 was chosen.

3 Theorical results and their discussion

With the example presented in Figure 1, we illustrate the complete method to process microarray
data by graph-clustering. Recall that this method requires two choices: �rstly, we have to choose a
distance function - in Example 1 the Euclian distance function - and secondly, we have to choose the
value of the threshold for the graph analysis.

3.1 Theorical results: In�uence of distances on graph structures

In each clustering analysis, we work with dissimilarity values, and we calculate these values
with distance functions. In this section, we demonstrate the impact of the distance function on the
structure of the resulting graphs. For that we work with only 3 of the 7 distance functions previously
presented, Euclidean distance, Manhattan distance and Chebychev distance.

In the following example presented in Figure 2, we can see the di�erent dissimilarity values
obtained with the distance functions using data of Figure 1.

For our graph-clustering approach, it is necessary to know whether this choice of the distance
function impacts the succession of thresholds in the graph. The �rst point to examine is the number
of potential thresholds. If we consider threshold 0 as the �rst threshold, in our example, with the
Euclidean distance function there are 8 thresholds, with the Manhattan distance function there are
8 thresholds, and with the Chebychev distance function there are 4 thresholds (Figure 2).

The second point is in which order the edges enter the gene intersection graphs. In Figure 3, we
present the graph family resulting from these 3 distance functions.

To conclude, with this example we exhibit that, for some data sets, the distance function impacts
the succession of thresholds and thus the graphs obtained.

4 Biological data : Results and discussion

Biological data from yeast sporulation We work with a set of microarray experiments on the
Saccharomyces cerevisiae sporulation process induced by transfer on a nitrogen-de�cient medium.
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Figure 1 � From Microarray Data to Clusters
Six genes named O, A, B, C, D, E are considered. For these 6 genes, we have gene expression data from 3
experiments, with 3 di�erent experimental conditions, as shown in (a). The representation of measurements
as a vector for each gene, or as a point in a multidimensional space, makes the application of a distance
function easier. For this representation, in (b) each experiment is a dimension of the space, and we obtain
a 3-dimensional view of the data. In (c) we apply a distance function (the Euclidean distance function)
and we calculate a distance matrix (d) corresponding to a complete graph with weighted edges (e). In (f),
we present the graph with the chosen threshold of 2 - we keep all edges with a weight smaller than the
threshold. After the graph-decomposition, we obtain three overlapping clusters presented in (g).

Figure 2 � E�ect of the distance function on dissimilarity values of a data set.
Some values from the same data set obtained with several distance functions. Distance functions used are
indicated with their name as used in Section 2.2.
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Succession of graphs obtained with:

Euclidean distance

θ = 0 θ = 1.73 θ = 2 θ = 2.83 θ = 3.32 θ = 3.46 θ = 4.36 θ = 5.2

Manhattan distance

θ = 0 θ = 2 θ = 3 θ = 4 θ = 5 θ = 6 θ = 7 θ = 9

Chebychev distance

θ = 0 θ = 1 θ = 2 θ = 3

Figure 3 � Impact of the distance function on our example data set.
This �gure shows the graphs obtained with each threshold (θ) for each distance function.

Measurements are done on 7 consecutive time points. We have a matrix with 40 rows (the genes),
and 7 columns (the experiments) (see [4] for details). Although more recent data is available, we
work with the same set as [7] to produce comparable results. In Table 1, we list the genes and the
associated vertex numbers (using the same numbers as in [7]).

Analysis of criteria to choose a threshold As seen previously, we de�ne some criteria to choose
a threshold. For each distance function, all criteria de�ned in Section 2.4 are represented as curves,
with the value of the threshold on the x-axis and the value of the criterion on the y-axis.

For sporulation data, the values of thresholds are di�erent, as expected. However, the general
aspect of the curves for each criterion seems to be preserved for each distance function.

For the curves representing the percentage of isolated vertices, the density and the variance,
respectively, each distance function produces nearly the same variation. For the curves representing
the number of CMSs, the number of non-trivial atoms, and the average size of overlaps, respectively,
there are some di�erences between distance functions. However, the global aspect is still preserved,
and for each distance function the curves representing the number of CMSs and the number of
non-trivial atoms have the same appearance, see Figure 4.

Choice of a threshold for each distance function According to the criteria curves, for each
distance function, we de�ne four signi�cant intervals of thresholds (see Table 3 in the Appendix),
and on each interval we analyze, as in [7], the validity of the four criteria. We work with a percentage
of isolated vertices less than 50%, a density between 7% and 35%, a variance below 1 and a size of

7



Gene xi Gene xi Gene xi Gene xi Gene xi

YAL062W 1 YER095W 9 YGL180W 17 YIR028W 25 YLR329W 33
YBL084C 2 YER096W 10 YGR108W 18 YIR029W 26 YLR438W 34
YBR088C 3 YFL003C 11 YGR109C 19 YJL146W 27 YOL091W 35
YCR002C 4 YFR028C 12 YHL022C 20 YJR137C 28 YPL111W 36
YDL155W 5 YFR030W 13 YHR139C 21 YJR152W 29 YPL121C 37
YDR402C 6 YFR036W 14 YHR152W 22 YKL022C 30 YPL122C 38
YDR403W 7 YGL116W 15 YHR157W 23 YKR034W 31 YPL178W 39
YEL061C 8 YGL163C 16 YHR166C 24 YLR263W 32 YPR120C 40

Table 1 � Genes and their number in the study (xi stands for the vertex number)

Figure 4 � Comparative analysis of sporulation data.
Percentage of isolated vertices - Density - Variance
Number of CMSs - Number of non-trivial atoms - Average size of overlaps

clique minimal separators less than 7.
After this analysis, we de�ne one interval per distance function, which ful�lls these criteria. For

each distance function, we choose a threshold whithin this interval near the local minimum of the
number of non-trivial atoms, to obtain between 6 and 12 non-trivial atoms. The goal is to balance
the number of clusters versus their size: we need enough clusters to group many di�erent genes in
the same cluster, but not too many clusters, so as not to lose information about the formation of
groups. Chosen thresholds are listed in Table 4 of the Appendix.

Data clustering results with the six distance functions For this analysis, we compute the
graph-clustering on the same sporulation data set pre-processed with several distance functions. We
then compare the obtained clusters to the chosen threshold for each distance function.

As we can see in Table 2, in all 6 cases, we obtain very similar clusters, where the biggest
di�erences appear in the intermediate clusters. Depending on the distance function used, the largest
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Euclidean Euclidean St. Manhattan Chebychev Pearson Arc-tangent
I1={1} I1={1} I1={1} I1={1} I1={1} I1={1}
I2={3} I2={3} I2={3} I2={3} I2={3} I2={3}
I3={13} I3={13} I3={13} I3={13} I3={13} I3={13}
I4={21} I4={21} I4={21} I4={25} I4={21} I4={21}
I5={25} I5={25} I5={25} I5={28} I5={25} I5={25}
I6={28} I6={28} I6={28} B1={26 29} I6={28} I6={28}
B1={26 29} I7 = {31} B1={26 29 31} B2={29 31} B1={26 29 31} B1={26 29 31}
B2={29 31} B1={26 29} A1={9 16 34

36}
A1={9 16 34
36}

A1={9 16 34
36}

C1={9 16}

A1={9 16 34
36}

A1={9 16 34
36}

A2={11 16 20
23 32 33 37 38
40}

A2={9 16 32} A2={11 16 20
23 32 33 37 38}

C2={9 34 36}

A2={11 16 20
23 32 33 37 38}

A2={11 16 20
23 32 33 37 38
40}

A3={8 11 33 38
40}

A3={8 11 14 16
18 20 23 32 33
37 38 40}

A3={8 11 32 38
40}

A1={11 20 33
37 38}

A3={8 11 32 38
40}

A3={8 11 18 32
38 40}

A4={9 16 37} A4={7 21} A4={8 14 18 32
38 40}

A2={11 32 37
38}

A4={8 14 18 35
38 40}

A4={2 5 6 7 30} {A5={2 4 5 6 7
8 10 12 14 15 17
18 19 22 24 27
30 35 38 39 40}

A5={4 8 14 15
18 22 35 39 40}

A5={4 8 12 14
15 18 22 30 35
38 39 40}

A3={20 23 33
37}

A5={4 8 14 15
18 22 35 39 40}

A5={10 12 17} A6={4 8 14 18
22 35 38 39 40}

A6={2 4 5 6 7 8
10 12 15 17 18
19 22 24 27 30
35 39 40}

A4={11 38 40}

A6={2 4 5 6 7
8 10 12 15 17
18 19 22 24 27
30 35 39 40}

A6={2 4 5 8 12
14 15 17 18 19
22 24 27 30 35
38 39 40}

A7={4 5 8 12 15
18 22 24 30 35
39 40}

A5={2 5 6 7 10
12 19 24 30}

A8={2 4 5 8 12
15 18 19 22 24
30 39 40}

A6={4 5 8 12 14
15 18 19 22 24
30 35 38 39 40}

A9={2 5 6 7 8
10 12 15 17 18
19 22 24 27 30
39 40}

A7={2 4 5 12 15
17 18 19 22 24
27 30 39}

Table 2 � Results of the graph-clustering for each distance function
In this Table, genes are represented by numbers (see Table 1).
Typical construction: A1 = {1 2 3}: genes #1, #2 and #3 are in the same atom/cluster named A1.
I: for isolated vertex ; A: for atoms/clusters from the biggest component ; B: for atoms/clusters from the
smallest component. Specially for the Arc-tangent distance graph-decomposition: C1 and C2: Two small
atoms/clusters linked together identical to the atom/cluster A1 of the other graph-decompositions.

cluster can be preserved, or, in the case of the Arc-tangent distance function, this set of genes is
decomposed into smaller clusters. In each case, isolated vertices are preserved.

To complete these results, for each atom/cluster of each distance function, we group expression
pro�les of genes which participate to this atom/cluster. In Figure 5 of the Appendix, we present in
the same �gure the expression pro�les of all the 40 genes of the study. In Figures 6 to 11 in the
Appendix, for each distance function we represent results of the graph-clustering. From that, we
can conclude: with each distance function, the graph-clustering groups genes into coherent groups,
and in any group, the genes have similar expression pro�les. However, in each case, appart form the
Arc-tangent distance, the biggest cluster is the less coherent for expression pro�le, as expected.

Comparative analysis of sporulation data process with the six functions Concerning spo-
rulation data and the �ve usual distance functions used in bioinformatics (Euclidean, Standardized
Euclidean, Manhattan, Chebychev and Pearson distance functions), we obtain nearly the same cri-
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teria curves (Figure 4), we choose the threshold with the same rules and we obtain nearly the same
clusters. On this sporulation data set, these �ve common distance functions studied do not in�uence
the graph-clustering results.

We devised the Arc-tangent distance function to compress the space, and we expect some e�ect
on the graph-clustering. In this paper, we use normalised data. The mean is equal to 0 and the va-
riance to 1, i.e. the big majority of values are between −1 and 1. This Arc-tangent distance function
compresses space of big values as explained in Section 2.2, so in our case the distance function does
not disturb distance relationships in normalised data set. With the Arc-tangent distance function,
we obtain nearly the same clusters, as decribed previously.

5 Conclusion

From the small theoretical example in Section 3, we see that the choice of the distance function
may in�uence the order in which the edges enter the gene interaction graph (see Figure 3), and
thus may in�uence the decomposition result as well. This e�ect was not observed in the practical
example with sporulation data in Section 4, where, despite an e�ect on graph structures, the �ve
usual distance functions used in bioinformatics (Euclidean, Standardized Euclidean, Manhattan,
Chebychev and Pearson distance functions) showed quite similar graph-clustering results.

This suggests that biological data are not sensitive to the choice of any of the �ve usual distance
functions used in bioinformatics such that it is possible to use the (easy to compute) Euclidean dis-
tance as reference without impacting the results. We plan to evaluate this expectation by comparing
the structural speci�cities of clustering results for various biological data sets.
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Appendix: Tables and Figures

Euclidean

Thresholds interval [0, 0.6]
[

0.6 , 1.8
]

[1.8, 2.5] [2.5, 4.6]
Isolated vertices 100% - 52.5% 52.5% - 2.5% 2.5% - 0% 0%
Density 0% - 2.3% 2.3% - 34.1% 34.1% - 51.9% > 51.9%
Variance 0 - 0.25 0.25 - 0.77 0.77 - 1.05 1.05 - 1.88
Size of overlaps 0 - 1.125 1.125 - 6.25 6.25 - 14 > 14 or 0

Thresholds interval [0, 1]
[

1 , 2.6
]

[2.6, 3.4] [3.4, 6.7]
Isolated vertices 95% - 37% 37% - 30% 30% - 0% 0%

Standardized Density 0% - 3.7% 3.7% - 33% 33% - 48% > 48%
Euclidean Variance 0 - 0.29 0.29 - 0.82 0.82 - 0.99 > 0.99

Size of overlaps 0 - 1.5 1.5 - 5.25 5.25 - 12.28 > 12.28 or 0

Manhattan

Thresholds interval [0, 1.2]
[

1.2 , 3.2
] [

3.2 , 4.6
]

[4.61, 11]
Isolated vertices 95% - 57% 57% - 12% 12% - 0% 0%
Density 0% - 1.7% 1.7% - 26.4% 26.4% - 42.7% > 42.7%
Variance 0 - 0.23 0.23 - 0.68 0.68 - 0.97 > 12.28 or 0
Size of overlaps 0 - 1 1 - 4 4 - 8.6 > 12.28 or 0

Chebychev

Thresholds interval [0, 0.4]
[

0.4 , 1.2
]

[1.2, 1.7] [1.7, 3.5]
Isolated vertices 90% - 50% 50% - 0% 0% 0%
Density 0% - 5.2% 3.8% - 36% 36% - 56% > 56%
Variance 0 - 0.29 0.29 - 0.87 0.87 - 1.27 > 1.27
Size of overlaps 0 - 1.33 1.3 - 5.3 5.3 - 17.5 > 17.5

Pearson

Thresholds interval [0, 0.04]
[

0.04 , 02
]

[0.2, 0.44] [0.44, 1.5]
Isolated vertices 95% - 37% 37% - 5% 0% 0%
Density 0% - 5.2% 5.2% - 31.5% 31.5% - 51.3% > 51.3%
Variance 0 - 0.32 0.32 - 0.74 0.74 - 1.7 > 1.7
Size of overlaps 0 - 1.76 1.76 - 5.77 5.77 - 13.4 > 13.4

Arc-tangent

Thresholds interval [0, 0.8]
[

0.8 , 2.1
]

[2.1, 3.4] [3.4, 8.2]
Isolated vertices 95% - 55% 55% - 0% 0% 0%
Density 0% - 2.9% 2.9% - 26% 26% - 45% > 45%
Variance 0 - 0.27 0.27 - 0.7 0.7 - 1.1 > 1.1
Size of overlaps 0 - 1.625 1.625 - 6.222 6.222 - 10.75 > 10.75

Table 3 � Comparative analysis of thresholds intervals of each distance function
In this table, validated criteria are enhanced by bolted numbers. For all distance functions, all criteria are
validated in the second interval.
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Distance functions Chosen thresholds

Euclidean distance 1.25
Standardized Euclidean distance 1.9

Manhattan distance 2.8
Chebychev distance 0.9
Pearson distance 0.12

Arc-tangent distance 1.75

Table 4 � Chosen thresholds for the graph-clustering study
For each distance function, we chose a threshold in the �best� interval for this function, near the local
minimum and with a number of non-trivial atoms between 6 and 12.

13



Figure 5 � The 40 genes expression pro�les. Expression pro�les of all the 40 genes of the study.

Figure 6 � Genes expression pro�les in clusters - Euclidean distance
Line #1: B1 - B2 - A1 � Line #2: A2 - A3 - A4 � Line #3: A5 - A6
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Figure 7 � Genes expression pro�les in clusters - Standardized Euclidean distance
Line #1: B1 - A1 - A2 � Line #2: A3 - A4 - A5 � Line #3: A6
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Figure 8 � Genes expression pro�les in clusters - Manhattan distance
Line #1: B1 - A1 - A2 � Line #2: A3 - A4 - A5
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Figure 9 � Genes expression pro�les in clusters - Pearson distance
Line #1: B1 - A1 - A2 � Line #2: A3 - A4 - A5 � Line #3: A6

17



Figure 10 � Genes expression pro�les in clusters - Chebychev distance
Line #1: B1 - B2 - A1 � Line #2: A2 - A3 - A4 � Line #3: A5 - A6 - A7 � Line #4: A8 - A9
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Figure 11 � Genes expression pro�les in clusters - Arc-tangent distance
Line #1: B1 - C1 - C2 � Line #2: A1 - A2 - A3 � Line #3: A4 - A5 - A6 � Line #4: A7
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