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Abstract The study of gene interactions is an important research area in biology and grouping
genes with similar expression profiles to clusters is a first step towards a better understanding
of their functional relationships. In Kaba et al. [0], a new clustering approach was presented,
using gene interaction graphs to model this data, and decomposing the graphs by means of clique
minimal separators. For that, the similarity between each pair of genes is estimated by a distance
function, then a family of gene interaction graphs is constructed by choosing several thresholds,
where an edge is added between two genes if their distance is below the threshold. Hereby, both
the choice of the distance function and of the threshold influences the construction of the gene
interaction graphs. In [0], several criteria are developed to select thresholds in an appropriate
way. Here we discuss the impact of the choice of the distance function; our results suggest that
this choice does not effect the final decomposition of the gene interaction graphs into clusters.

Keywords transcriptomic data, gene clustering, graph theory, clique separator

1 Introduction

The study of gene interactions is an important research area in biology. Nowadays, high-throughput tech-
niques are available to obtain gene expression data. To analyse this huge amount of transcriptomic data, clus-
tering is a first mandatory step towards a better understanding of the functional relationships between genes.
Various clustering methods are used; all of them group genes with similar expression profiles into clusters.
We distinguish two types of clustering approaches: hierarchical clustering (such as phylogenetic trees [9]), and
partitional clustering (such as K-Means [8]).

In Kaba et al. [6], a new partitional approach was presented, using graphs to model this data, and decompo-
sing the graphs into overlapping clusters. The advantage is twofold: firstly, a gene with several functions can be
modelized accurately (as genes participating in several cell functions appear in different clusters) and secondly,
the overlaps define a meta-graph (namely, an intersection graph of the clusters) which gives insight on the
global organization of the clusters. In addition, efficient algorithms exist to compute this graph decomposition
[2,7], and the resulting set of clusters is uniquely defined.

To confirm clustering results, Kaba et al. [6] applied the new approach to gene expression data for the
sporulation of Saccharomyces cerevisiae with data from [3], and compared their clusters with those resulting
from a K-Means execution. In fact, their results were similar, but presented an improvement on K-Means for
untypical gene expression profiles. Moreover, the intersection graph illustrated exactly the temporal succession
of sporulation phases.

The method presented in [6] to process microarray data is defined by the following steps (see Section 2.3
and [2] for more details). Generally, microarray data consist of a list of genes, and for each gene there are
several experimental measurements.

(1) For clustering genes, it is necessary to estimate the similarity between each pair of genes. In practice this is
done by a distance function to obtain a distance matrix with dissimilarity values between all pairs of genes.

(2) This information can in turn be viewed as a family of gene interaction graphs resulting from the application
of a threshold: each graph corresponds to a threshold, where each gene is a vertex and an edge is added between
two genes if their distance is below the threshold.
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(3) Each of the resulting gene interaction graphs is finally decomposed in terms of so-called clique minimal
separators, in order to obtain overlapping clusters.

Hereby, both the choice of the distance function and of the threshold influences the construction of the gene
interaction graphs. In Kaba et al. [6], several criteria are developed to select thresholds in an appropriate way
(see Section 2.4). Here we discuss the impact of the choice of the distance functions on the construction of the
gene interaction graphs with
(1) a theoretical study to exhibit that different distance functions may define different graphs (Section 3);

(2) a practical study, where we use six different distance functions: the five most used in bioinformatics, and
one further (Section 4). We evaluate the impact of each of these distance functions on the clustering obtained
on the data set used in [3] and compare it with the results form [6].

2 Materials and Methods
2.1 Biological data

Usually, the initial microarray data are stored in a matrix, with rows corresponding to individual genes and
columns corresponding to the consecutive experiments during which gene expression levels were measured.
The gene expression vectors are often normalized to have O as average value and 1 as variance; a distance
matrix is then computed [4,6].

2.2 Mathematical distance functions

For any clustering analysis method, one tries to group together genes with similar expression profiles. To
define a similarity, one typically determines a distance function which assigns a value inversely proportional to
the similarity between two gene expression profiles [10]. We refer to this dissimilarity measurement with the
misnomer “distance between two genes”.

Definition A distance function d is defined as a mapping d : X x X — R which, for all z, y, z in X, respects
the following four conditions:

non-negativity: d(z,y) > 0

symmetry: d(z,y) = d(y, x)

identity: d(z,y) = 0 if and only if z = y

— triangle inequality: d(z, 2) < d(x,y) + d(y, 2)

We study several distance functions, five commonly used in bioinformatics, and one further.

Euclidean distance functions are the most common distance function in bioinformatic analysis [?]. This dis-
tance is the most intuitive one:

Standardized Euclidean distance functions, used for comparison, differ from the Euclidian one since every
dimension is divided by its variance (S?: variance of experiment ). The variance measures how far each value
in the data set is from the mean. Dimensions with smaller variance have more importance in distance values,
due to the equalization of the variances on each axis. The standardized Euclidean distance is a special case of
the Mahalanobis distance.

n

1
dsp(z,y) = | G lzi —vil?

=1 "1
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Manhattan distance functions, also known as city block distance functions, represent the distance along axes,
as there are no diagonal directions.

n
dv(z,y) = Z i — yil
i=1

By the Pythagorean Theorem, values obtained by the Manhattan distance function are greater than those obtai-
ned by the Euclidean distance function.

Chebychev distance functions simply keep the value of the largest difference on each dimension to express
the dissimilarity. This distance function is very resilient to any amount of noise [?].

do(z,y) = max |z; — y;
C( ay) 1§Z§n| 2 yl|
Pearson correlation distance functions use the Pearson correlation coefficient to define the dissimilarity bet-

ween two genes, which expresses the similarity of two gene expression variations, and takes values between
—1 and 1. The Pearson distance corresponds to 1 — r, and takes values between 0 and 2.

n Ti—T Yi—y
Zi:l |: o x oy :|

dp(z,y) =1—r withr =
n—1

In this formula, ¥ is the average of all ¢ experiments of gene = and o, is the standard deviation of x, i.e. the
square root of the variance.

Arc-tangent distance functions are added as a distance function which we devised specifically for our purpose
which is built from the arc-tangent function and deforms the data space. The main effect is to compress +oo
on 5 and —oo on —3. In the neighborhood of 0, there is no impact on the distance between objects, but when
the values grow, objects become closer than they have to be. Our purpose is to estimate the effect of a space
distortion on graph-clustering results.

n

dar(z,y) = Z | arctan(z;) — arctan(y;)|
i=1

For more information about the different distance functions used in bioinformatic the reader can refer to
[10] and references therein.

2.3 Graph decomposition

Graph notions In this work, we use graph decomposition for clustering. For a better understanding we first
introduce some graph notions. A graph is a set of vertices - here genes, and a set of edges. An edge is a pair
{z,y} of interacting vertices - here two genes will be linked by an edge if they are close enough. If {x,y} is
an edge, x and y are said to be adjacent. A clique is a set of vertices that are all pairwise adjacent. A complete
graph is a clique. An isolated vertex is a vertex to which no other vertex is adjacent.

A graph is said to be connected if for any pair {x,y} of vertices, there is a path from x to y. A maximal
connected part of the graph is called a connected component. A set of vertices S is called a separator if the
removal of S increases the number of connected components of the graph. Roughly speaking, a separator .S is
minimal if there is no proper subset of S able to disconnect the graph into the same connected components as
S does (see [2] for precise details on separation). Naturally, a clique minimal separator (CMS) is a minimal
separator which is a clique.

4
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Graph decomposition into atoms The decomposition by clique minimal separators (CMSs) consists in repea-
tedly copying a CMS into all the connected components which its removal defines, and doing this for all the
CMSs of the graph until no CMS can be found anymore [?,11]. At the end of the process, we obtain a set of
subgraphs, called atoms - in bioinformatic called clusters - with overlaps in the CMSs. Isolated vertices are cal-
led trivial atoms. A trivial atom is alone in his atom/cluster. The decomposition obtained is unique [7]. Efficient
algorithms exist to decompose a graph quickly [?]). For classical graph definitions the reader is reffered to [5],
and to [1] for more detailed results on minimal separators.

For this work, implementations for graph-clustering were done in C™ ; graphs were produced with Gra-
phviz (http://www.graphviz.org/), graphics with Gnuplot (http://www.gnuplot.info/).

2.4 Choice of a threshold

As mentioned previously in the Introduction we need to choose a threshold for the graph-clustering analysis.
As in [6], we define five criteria:

- the percentage of isolated vertices: if genes are alone in their clusters, they produce no information for
grouping genes.

- the density: to evaluate the number of edges versus the number of vertices.

- the variance: to evaluate the clustering quality of each threshold calculating the variance of gene expression,
for this threshold we calculate the average of the variance (see also [6]).

- the number of clique minimal separators and the number of non-trivial atoms: we evaluate these two pa-
rameters in order to balance the number of clusters/atoms versus their size.

- the size of the clique minimal separators: we evaluate this parameter to avoid too big overlaps between
clusters.

With these criteria, [6] identified the ”best” interval of thresholds. In [6], as in this work, the curves representing
the number of CMSs and the number of non-trivial atoms have the same appearance, a threshold is chosen near
the local minimum of the curve representing the number of non-trivial atoms in this interval, with a number of
non-trivial atoms equal to 8. Threshold 1.25 was chosen.

3 Theoretical results and their discussion

With the example presented in Figure 1, we illustrate the complete method to process microarray data by
graph-clustering. Recall that this method requires two choices: firstly, we have to choose a distance function -
in this example the Euclidian distance function - and secondly, we have to choose the value of the threshold for
the graph analysis.

3.1 Theoretical results: Influence of distances on graph structures

In each clustering analysis, we work with dissimilarity values, and we calculate these values with distance
functions. In this section, we demonstrate the impact of the distance function on the structure of the resulting
graphs. For this purpose, we use only 3 of the 6 distance functions previously presented : the Euclidean distance,
the Manhattan distance and the Chebychev distance.

In the following example presented in Figure 2, we can see the different dissimilarity values obtained with
the distance functions using data of Figure 1.

For our graph-clustering approach, it is necessary to know whether this choice of the distance function im-
pacts the succession of thresholds in the graph. The first point to examine is the number of potential thresholds.
If we consider threshold O as the first threshold, in our example, with the Euclidean distance function there
are § thresholds, with the Manhattan distance function there are 8 thresholds, and with the Chebychev distance
function there are 4 thresholds (Figure 2).

The second point is in which order the edges enter the gene intersection graphs. In Figure 3, we present the
graph family resulting from these 3 distance functions.
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Figure 1. From Microarray Data to Clusters

Six genes named O, A, B, C, D, E are considered. For these 6 genes, we have gene expression data from 3 experiments,
with 3 different experimental conditions, as shown in (a). The representation of measurements as a vector for each gene,
or as a point in a multidimensional space, makes the application of a distance function easier. For this representation,
in (b) each experiment is a dimension of the space, and we obtain a 3-dimensional view of the data. In (c) we apply a
distance function (the Euclidean distance function) and we calculate a distance matrix (d) corresponding to a complete
graph with weighted edges (e). In (f), we present the graph with the chosen threshold of 2 - we keep all edges with a
weight smaller than the threshold. After the graph-decomposition, we obtain three overlapping clusters presented in (g).

To conclude, with this example we exhibit that, for some data sets, the distance function impacts the suc-
cession of thresholds and thus the graphs obtained.

Euclidian distance Manhattan distance Chebychev distance

o] A B C D E [o] A B C D E 0 A B C D E
0] 0 1731332 (346 | 436 | 52 0 0 3 5 6 7 9 (0] 0 1 3 2 3 3
A 173 0 2 173|283 | 346 A 3 0 2 3 4 6 A 1 0 2 1 2 2
B 3.32 2 0 173 | 346 | 2.83 B 5 2 0 3 6 4 B 3 2 0 1 2 2
C 346 | 1.73 | 1.73 0 173 | 1.73 [ 6 3 3 0 3 3 C 2 1 1 0 1 1
D | 436|283 |346| 173 0 2 D 7 4 6 3 0 2 D 3 2 2 1 0 2
E 52 | 346 | 283|173 2 0 E 9 6 4 3 2 0 E 3 2 2 1 2 0

Figure 2. Effect of the distance function on dissimilarity values of a data set.
Some values from the same data set obtained with several distance functions. Distance functions used are indicated with
their name as used in Section 2.2.

4 Biological data : Results and discussion

Biological data from yeast sporulation We work with a set of microarray experiments on the Saccharomyces
cerevisiae sporulation process induced by transfer on a nitrogen-deficient medium. Measurements are done on
7 consecutive time points. We have a matrix with 40 rows (the genes), and 7 columns (the experiments) (see [3]
for details). Although more recent data is available, we work with the same set as [6] to produce comparable
results. In Table 1, we list the genes and the associated vertex numbers (using the same numbers as in [6]).

Analysis of criteria to choose a threshold As seen previously, we define some criteria to choose a threshold.
For each distance function, all criteria defined in Section 2.4 are represented as curves, with the value of the
threshold on the z-axis and the value of the criterion on the y-axis.

For sporulation data, the values of thresholds are different, as expected. However, the general aspect of the
curves for each criterion seems to be preserved for each distance function.

For the curves representing the percentage of isolated vertices, the density and the variance, respectively,
each distance function produces nearly the same variation. For the curves representing the number of CMSs,
the number of non-trivial atoms, and the average size of overlaps, respectively, there are some differences
between distance functions. However, the global aspect is still preserved, and for each distance function the

6



Impact of the distance choice on clustering gene expression data using graph decompositions

Succession of graphs obtained with:

Euclidean distance

0=0 0=1.73 0=2 0 =2.83 0 =3.32 0 = 3.46 0 =4.36 0 =52

Be ok B, of B, of Be. oF Bg. oF Be. of Bg. oF By oF
Ce \(\ \ c \ Ce Ce Ce Cu
. . .

. . . . .

A D A D A D D A D

o o o o o o 0 o
. . ¢ ¢

Manhattan distance

0=0 0=2 0=3 =4 0=5 0=6 0="17 0=9

Be of Be oF Be of Be of By, oF By oF By, oF Be ol

Ce Ce [ c \ Ce Ce Ox O
. . . ‘. . . . . . . - .
A A A A A A

.
o D o ! o f o o/ " o/ " [y b o
0 . ¢ ¢ ¢

Chebychev distance

6=0 f=1 §=2 =13

Be of B, oF Be of Be. oF
Ce \ ¢ \ Ce
. . . e .
X X

. .
A D A D A D

o o o o
. . . .

Figure 3. Impact of the distance function on our example data set.
This figure shows the graphs obtained with each threshold () for each distance function.

Gene T; Gene T; Gene T; Gene T; Gene T;
YALO62W 1 YER095W 9 YGL180W 17 YIR028W 25 YLR329W 33
YBL084C 2 YER096W 10 YGR108W 18 YIR029W 26 YLR438W 34
YBRO88C 3 YFL003C 11 YGR109C 19 YIL146W 27 YOLO91W 35
YCR002C 4 YFR028C 12 YHLO022C 20 YJR137C 28 YPLI111W 36
YDL155W 5 YFRO30W 13 YHR139C 21 YIR152W 29 YPL121C 37
YDR402C 6 YFRO36W 14 YHR152W 22 YKL022C 30 YPL122C 38
YDR403W 7 YGL116W 15 YHR157W 23 YKRO34W 31 YPL178W 39
YELO061C 8 YGL163C 16 YHR166C 24 YLR263W 32 YPR120C 40

Table 1. Genes and their number in the study (z; stands for the vertex number)

curves representing the number of CMSs and the number of non-trivial atoms have the same appearance, see
Figure 4.

Choice of a threshold for each distance function According to the criteria curves, for each distance function,
we define four significant intervals of thresholds (see Table 3 in the appendix), and on each interval we analyze,
as in [0], the validity of the four criteria. We work with a percentage of isolated vertices less than 50%, a density
between 7% and 35%, a variance below 1 and a size of clique minimal separators less than 7.

After this analysis, we define one interval per distance function, which fulfills these criteria. For each
distance function, we choose a threshold whithin this interval near the local minimum of the number of non-
trivial atoms, to obtain between 6 and 12 non-trivial atoms. The goal is to balance the number of clusters versus
their size: we need enough clusters to group many different genes in the same cluster, but not too many clusters,
so as not to lose information about the formation of groups. Chosen thresholds are listed in Table Table 4 of the
Appendix.

Data clustering results with the six distance functions For this analysis, we compute the graph-clustering on the
same sporulation data set pre-processed with several distance functions. We then compare the obtained clusters
to the chosen threshold for each distance function.

As we can see in Table 2, in all 6 cases, we obtain very similar clusters, where the biggest differences appear
in the intermediate clusters. Depending on the distance function used, the largest cluster can be preserved, or,
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Euclidean —
Standardized Euclidean — 0.0
Manhattan —
Chebychev —

Pearson
Arc-tangent —

Euclidean —
Standardized Euclidean —
Manhattan —
Chebychev
Pearson
Arc-tangent —

Euclidean —
Standardized Euclidean —
Manhattan —
Chebychey —

Pearson
Arc-tangent —

Euclidean —
Standardized Euclidean —
Manhattan —
Chebychev —

Pearson
Arc-tangent —

Euclidean — Euclidean —
Standardized Euclidean — Standardized Euclidean —
Manhattan — 35 Manhattan —
Chebychev Chebychev
Pearson Pearson
Arc-tangent — Arc-tangent —

Figure 4. Comparative analysis of sporulation data with different distances. Percentage of isolated vertices - Density -
Variance - Number of CMSs - Number of non-trivial atoms - Average size of overlaps

in the case of the Arc-tangent distance function, this set of genes is decomposed into smaller clusters. In each
case, isolated vertices are preserved.

To complete these results, for each atom/cluster of each distance function, we group expression profiles
of genes which participate to this atom/cluster. In Figure Figure 5 of the Appendix, we present in the same
figure the expression profiles of all the 40 genes of the study. In Figures Figure 6 to Figure 11 in the Appendix,
for each distance function we represent results of the graph-clustering. From that, we can conclude: with each
distance function, the graph-clustering groups genes into coherent groups, and in any group, the genes have
similar expression profiles. However, in each case, appart form the Arc-tangent distance, the biggest cluster is
the less coherent for expression profile, as expected.

Comparative analysis of sporulation data process with the six functions Concerning sporulation data and the
five usual distance functions used in bioinformatics (Euclidean, Standardized Euclidean, Manhattan, Chebychev
and Pearson distance functions), we obtain nearly the same criteria curves (Figure 4), we choose the threshold
with the same rules and we obtain nearly the same clusters. On this sporulation data set, these five common
distance functions studied do not influence the graph-clustering results.

We devised the Arc-tangent distance function to compress the space, and we expect some effect on the
graph-clustering. In this paper, we use normalised data. The mean is equal to 0 and the variance to 1, i.e. the big
majority of values are between —1 and 1. This Arc-tangent distance function compresses space of big values as
explained in Section 2.2, so in our case the distance function does not disturb distance relationships in normali-
sed data set. With the Arc-tangent distance function, we obtain nearly the same clusters, as described previously.
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40}

38 40}

38 40}

Euclidean Euclidean St. Manhattan Chebychev Pearson Arc-tangent
11={1} 11={1} 11={1} 11={1} I1={1} I1={1}
12={3} 12={3} 12={3} 12={3} 2={3} 12={3}
13={13} 13={13} 13={13} 13={13} 13={13} 13={13}
14={21} 14={21} 14={21} 14={25} 14={21} 4={21}
15={25} 15={25} 15={25} 15={28} 15={25} 15={25}
16={28} 16={28} 16={28} B1={26 29} 16={28} 16={28}
B1={26 29} 17={31} B1={2629 31} B2={29 31} B1={2629 31} B1={2629 31}
B2={29 31} B1={2629} Al1={9 1634 36} Al={916 34 36} Al1={916 34 36} C1={9 16}
Al={9 16 34 Al={9 163436} A2={1116 2023 A2={9 16 32} A2={11162023 C2={934 36}
36} 3233373840} 32333738}
A2={11 16 20 A2={1116 2023 A3={8 11 33 38 A3={8 11 14 16 A3={8 11 32 38 A1={112033 37
2332333738} 3233373840} 40} 182023323337 40} 38}

3840}
A3={8 11 32 38 A3={8 11 18 32 A4={916 37} A4={721} A4={8 14 18 32 A2={11 32 37

38}

A4={8 14 18 35

A4={256730}

{A5={2456738

A5={48141518

A5={48121415

A3={20 23 33

38 40} 101214151718 22 35 39 40} 182230353839 37}
19222427 30 35 40}
38 39 40}
A5={4 8 14 15 A5={1012 17} A6={48141822 A6={245678 A4={11 38 40}
18 22 35 39 40} 35 38 39 40} 10121517 18
A6={245678 A6={245812 AT={458 1215 19222427 30 A5={2567 10
10121517 18 14151718 19 182224303539 3539 40} 1219 24 30}
1922242730 2224273035 40}
3539 40} 3839 40} A8={2 458 12 A6={45812 14
151819222430 1518192224 30
39 40} 35 38 39 40}

A9={25678 10
12151718 1922
2427 30 39 40}

A7={2451215
171819222427
3039}

Table 2. Results of the graph-clustering for each distance function
In this Table, genes are represented by numbers (see Table 1).
Typical construction: Al = {1 2 3}: genes #1, #2 and #3 are in the same atom/cluster named Al.
I: for isolated vertex ; A: for atoms/clusters from the biggest component ; B: for atoms/clusters from the smallest com-
ponent. Specially for the Arc-tangent distance graph-decomposition: C1 and C2: Two small atoms/clusters linked together
identical to the atom/cluster A1 of the other graph-decompositions.
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5 Conclusion

From the small theoretical example in Section 3, we see that the choice of the distance function may in-
fluence the order in which the edges enter the gene interaction graph (see Figure 3), and thus may influence
the decomposition result as well. This effect was not observed in the practical example with sporulation data
in Section 4, where, despite an effect on graph structures, the five usual distance functions used in bioinforma-
tics (Euclidean, Standardized Euclidean, Manhattan, Chebychev and Pearson distance functions) showed quite
similar graph-clustering results.

This suggests that biological data are not sensitive to the choice of any of the five usual distance functions
used in bioinformatics such that it is possible to use the (easy to compute) Euclidean distance as reference
without impacting the results. We plan to evaluate this expectation by comparing the structural specificities of
clustering results for various biological data sets.
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APPENDIX: TABLES AND FIGURES

Impact of the distance choice on clustering gene expression data using graph decompositions

Thresholds interval [0,0.6] (0.6, 1.8] [1.8,2.5] [2.5,4.6]
Isolated vertices 100% - 52.5% 52.5% - 2.5% 2.5% - 0% 0%
Euclidean Density 0% - 2.3% 2.3% - 34.1% 34.1% - 51.9% . 51.9%
Variance 0-0.25 0.25 - 0.77 0.77 - 1.05 1.05-1.88
Size of overlaps 0-1.125 1.125- 6.25 6.25-14 (140r0
Thresholds interval [0,1] 1,2.6] [2.6, 3.4] [3.4,6.7]
Isolated vertices 95% - 37% 37% - 30% 30% - 0% 0%
Standardized Density 0% - 3.7% 3.7% - 33% 33% - 48% L 48%
Euclidean Variance 0-0.29 0.29 - 0.82 0.82 - 0.99 ( 0.99
Size of overlaps 0-1.5 1.5-5.25 5.25-12.28 (1228 or 0
Thresholds interval [0,1.2] [1.2,3.2] [3.2,4.6] [4.61,11]
Isolated vertices 95% - 57% 57% - 12% 12% - 0% 0%
Manhattan Density 0% -1.7% 1.7% - 26.4% 26.4% - 42.7% L 42.7%
Variance 0-0.23 0.23 - 0.68 0.68 - 0.97 ( 12.28 or 0
Size of overlaps 0-1 1-4 4-8.6 (1228 or 0
Thresholds interval [0,0.4] [04,1.2] [1.2,1.7] [1.7,3.5]
Isolated vertices 90% - 50% 50% - 0% 0% 0%
Chebychev Density 0% - 5.2% 3.8% - 36% 36% - 56% . 56%
Variance 0-0.29 0.29 - 0.87 0.87-1.27 . 1.27
Size of overlaps 0-1.33 1.3-53 53-175 (175
Thresholds interval [0,0.04] [0.04, 02] [0.2,0.44] [0.44,1.5]
Isolated vertices 95% - 37% 37% - 5% 0% 0%
Pearson Density 0% - 5.2% 5.2% - 31.5% 31.5% - 51.3% 0 51.3%
Variance 0-0.32 0.32-0.74 0.74- 1.7 (1.7
Size of overlaps 0-1.76 1.76 - 5.77 5.77-134 (134
Thresholds interval [0,0.8] [0.8,2.1] [2.1,3.4] [3.4,8.2]
Isolated vertices 95% - 55% 55% - 0% 0% 0%
Arc-tangent Density 0% - 2.9% 2.9% - 26% 26% - 45% L 45%
Variance 0-0.27 0.27 - 0.7 0.7 -1.1 L1
Size of overlaps 0-1.625 1.625 - 6.222 6.222 - 10.75 ¢ 10.75

Table 3. Comparative analysis of thresholds intervals of each distance function

In this table, validated criteria are enhanced by bolted numbers. For all distance functions, all criteria are validated in the

second interval.

Distance functions Chosen thresholds
Euclidean distance 1.25
Standardized Euclidean distance 1.9
Manhattan distance 2.8
Chebychev distance 0.9
Pearson distance 0.12
Arc-tangent distance 1.75

Table 4. Chosen thresholds for the graph-clustering study

For each distance function, we chose a threshold in the ”’best” interval for this function, near the local minimum and with
a number of non-trivial atoms between 6 and 12.
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Marie DEFAY, Romain POGORELCNIK, Annegret WAGLER, Anne BERRY

enes expression

Figure 6. Genes expression profiles in clusters - Euclidean distance
Line #1: B1 - B2 - A1 — Line #2: A2 - A3 - A4 — Line #3: A5 - A6
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Impact of the distance choice on clustering gene expression data using graph decompositions

Figure 7. Genes expression profiles in clusters - Standardized Euclidean distance
Line #1: B1 - A1 - A2 — Line #2: A3 - A4 - A5 — Line #3: A6

Figure 8. Genes expression profiles in clusters - Manhattan distance
Line #1: B1 - A1 - A2 — Line #2: A3 - A4-AS
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Figure 9. Genes expression profiles in clusters - Pearson distance
Line #1: B1 - A1 - A2 — Line #2: A3 - A4 - A5 — Line #3: A6
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Impact of the distance choice on clustering gene expression data using graph decompositions

Figure 10. Genes expression profiles in clusters - Chebychev distance
Line #1: B1 - B2 - A1 — Line #2: A2 - A3 - A4 — Line #3: A5 - A6 - A7 — Line #4: A8 - A9
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Figure 11. Genes expression profiles in clusters - Arc-tangent distance

Line #1: B1 - C1 - C2 — Line #2: A1 - A2 - A3 — Line #3: A4 - A5 - A6 — Line #4: A7
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