
HAL Id: hal-00679269
https://hal.science/hal-00679269v1

Submitted on 15 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimum Mosaic Inference of a Set of Recombinants
Guillaume Blin, Romeo Rizzi, Florian Sikora, Stéphane Vialette

To cite this version:
Guillaume Blin, Romeo Rizzi, Florian Sikora, Stéphane Vialette. Minimum Mosaic Inference of a Set
of Recombinants. International Journal of Foundations of Computer Science, 2013, 24 (1), pp.51-66.
�10.1142/S0129054113400042�. �hal-00679269�

https://hal.science/hal-00679269v1
https://hal.archives-ouvertes.fr

Minimum Mosaic Inference of a Set of

Recombinants

Guillaume Blin3, Romeo Rizzi1, Florian Sikora2,3, and Stéphane

Vialette3

1DIMI, Università di Udine, Italy. romeo.rizzi@uniud.it
2Lehrstuhl für Bioinformatik, Friedrich-Schiller Universität Jena, Ernst-Abbe

Platz 2, 00743 Jena, Germany. florian.sikora@uni-jena.de
3Université Paris-Est, LIGM - UMR CNRS 8049, 77454 Marne-la-VallÃ©e Cedex 2,

France. {gblin,vialette}@univ-mlv.fr

Abstract

In this paper, we investigate the central problem of �nding recombi-
nation events. It is commonly assumed that a present population is a
descendent of a small number of speci�c sequences called founders. The
recombination process consists in given two equal length sequences, gen-
erates a third sequence of the same length by concatenating the pre�x of
one sequence with the su�x of the other sequence. Due to recombination,
a present sequence (called a recombinant) is thus composed of blocks from
the founders. A major question related to founder sequences is the so-
called Minimum Mosaic problem: using the natural parsimony criterion
for the number of recombinations, �nd the �best� founders. In this article,
we prove that the Minimum Mosaic problem given haplotype recombi-
nants with no missing values is NP-hard when the number of founders
is given as part of the input and propose some exact exponential-time
algorithms for the problem, which can be considered polynomial provided
some extra information. Notice that Rastas and Ukkonen proved that
the Minimum Mosaic problem is NP-hard using a somewhat unrealis-
tic mutation cost function. The aim of this paper is to provide a better
complexity insight of the problem.

1

1 Introduction

Given any two unrelated people, their DNA sequences di�ers by only about
0.1%. This small genetic variability is of particular importance since it in�uences
how people di�er with respect to risk of disease and response to drugs, and it
represents 90% of the human genetic variation. A main challenge is to discover
the DNA variants that contribute to common disease risk. These variations
mostly arise on speci�c single positions called Single Nucleotide Polymorphisms
(SNPs) where the corresponding nucleotides, called alleles, di�er. To illustrate
the SNPs, consider the three following DNA fragments from di�erent individuals
of a population:

. . .GGACCTG . . .

. . .GGACATG . . .

. . .GGACTTG . . .

This SNP is composed of the three alleles in bold C, A and T. Gathering
SNPs is very cheap when compared to the cost of full sequencing. Furthermore,
each individual has two almost identical copies of all chromosomes except the
sex chromosomes. Given a population, an haplotype refers to a combination of
alleles at di�erent positions on a chromosome. Therefore, each individual has
two haplotypes (one maternal and one paternal) for each chromosome.

As a simple illustration, consider the following two partial haplotypes (a
chromosome region where only the SNPs are shown)

. . .A . . .C . . .C . . .T . . .G . . .T . . .

. . .A . . .C . . .A . . .G . . .C . . .T . . .

The genotype corresponds to the set of alleles that a person has; thereby
de�ning at each SNP the alleles of the two haplotypes. The corresponding
genotype is

. . .A/A . . .C/C . . .A/C . . .G/T . . .C/G . . .T/T . . .

Alleles of an SNP are called heterozygous if they di�er (e.g. A/C), and ho-
mozygous otherwise (e.g. A/A). Since most SNPs are composed of only two
alleles (among the 16 possibilities) that occur in a large percentage of the pop-
ulation, haplotypes are usually represented by binary sequences (one character
for each of the two possible alleles per SNP). Genotypes, however, are usually
represented by ternary sequences (0 and 1 denote the two homozygote alleles
and 2 denotes the heterozygote one). Notice that it is common to denote miss-
ing values by the extra symbol �−�. Therefore, the sequences are built over the
alphabet {0, 1, 2,−}.

Genetic variation within species is mostly induced by a process called re-
combination. Given two equal length sequences, a recombination generates a
third sequence of the same length by concatenating the pre�x of one sequence
with the su�x of the other sequence [1]. In the resulting sequence, the assembly
point is referred to as a breakpoint. An illustration is given in Figure 1.

2

Figure 1: Recombination of S1 and S2 leading to T .

Finding recombination events has become a central problem in computa-
tional biology [2, 3, 4, 1, 5, 6]. In most combinatorial models, a present popula-
tion is assumed to be a descendent of a small number of speci�c sequences called
founders. Due to recombination, a present sequence, called a recombinant, is
considered as composition of blocks from the founders. The term mosaic is
often used to denote the mosaic-like structure of DNA induced by the recom-
binations [3] (cf. Figure 2). Indeed, considering one color assigned for each
founder sequence, the coloration of the recombinants considering the colors of
the founders induces a mosaic-alike pattern.

Figure 2: A Mosaic issued from a set of founders

A major question related to founder sequences is the so-called Minimum
Mosaic problem [3]: using the natural parsimony criterion for the number of
recombinations, �nd the �best� founders. More formally, theMinimum Mosaic
problem is de�ned as follows: Given a set D of m equal n-length haplotype or
genotype sequences (the current population) and a given number of founders
K, �nd a set F of K founders inducing a minimum number of breakpoints.

There exists a dual problem, called the Minimum Segmentation prob-
lem [7]: given a set of founders F and a recombinant r ∈ D, the goal is to �nd
a minimum number of segments of r (i.e. a segmentation), where each segment
of r is inherited from the corresponding (i.e. same location) region of some
founder.

This paper is organized as follows. In Section 2 we present the related state-
of-the-art, and we introduce in Section 3 the needed material. Section 4 is
devoted to computational complexity of the Minimum Mosaic problem. In

3

Section 5, we propose some exact exponential-time algorithms for this last.

2 Related works and known results

Ukkonen was the �rst to formulate an optimization problem based on the mosaic
model and parsimony [3]. He considered two criteria: the number of founders
and the number of recombinations in a solution. Ukkonen gave two polynomial-
time algorithms: an O(n(m + K3)) time algorithm for the Minimum Seg-
mentation problem and an O(mn) time algorithm for the Minimum Mosaic
problem for K = 2 (Wu and Gus�eld gave a similar result [6]). Also, Ukkonen
designed an O(nKO(m)) time dynamic programming algorithm for the general
(i.e. K ≥ 2) Minimum Mosaic problem (the time complexity is not explicitly
stated in the paper but will be given and justi�ed in Section 5). According to
the authors, this latter algorithm does not perform well for a moderate number
of founders and/or recombinants.

A di�erent but related problem was introduced by Gus�eld [8] where there
is no restriction on the number of founders. In the Haplotype Inference
problem, we are given a set of n genotype sequences and the goal is to �nd a
set of n pairs of haplotype sequences (one pair per genotype) that is a good
�explanation� of the given genotype sequences. For biological pertinence, a
solution must be compatible with (or guided by) a given perfect phylogeny.
Rastas and Ukkonen [5] observed that this latter problem is equivalent for K >√

2m to the Minimum Mosaic problem for genotype recombinants without
missing values (i.e., D ⊂ {0, 1, 2}n) � the latter being NP-complete [9].

In [5], Rastas and Ukkonen considered the Minimum Mosaic problem with
missing values and mutations (i.e. mismatches between founders and recombi-
nants) leading to a di�erent parsimony criterion. For each recombinant r ∈ D,
a score k + k′c is computed where (1) k is the number of breakpoints of a re-
combinant r′ such that the Hamming distance between r and r′ is k′ (i.e. the
number of mutations) and (2) c is the relative weight for a mutation compared
to recombinations. Rastas and Ukkonen improved the complexity of Minimum
Segmentation problem by providing an O(nmK) algorithm. They also proved
that the Minimum Mosaic problem for haplotype recombinants with possible
missing values (i.e. D ⊂ {0, 1,−}n) is NP-complete. Finally, they proved that
even when missing values are forbidden, the Minimum Mosaic problem for
haplotype recombinants (i.e. D ⊂ {0, 1}n) remains NP-complete for K = 2;
it is equivalent to the NP-complete Hypercube Segmentation problem [10].
One should notice that this latter result is a bit �arti�cial�, in the sense that the
extra condition that the mutation cost c = 1

nm (necessary in the NP-hardness
proof) roughly corresponds to forbid (and thus ignore) recombinations. Indeed,
nm mutations become less expensive than a single recombination event. This is
precisely the reason why Ukkonen [3] and Wu et al. [6] have been able to �nd a
polynomial-time algorithm for the problem without mutation. Our contribution
provide a better complexity insight of the problem.

A lower bound on the necessary breakpoints have been proposed by Wu et

4

al. [11]. The main purpose of this last is to speed up application for �nding ex-
act minimum mosaic using branch and bound. Wu and Gus�eld [6] designed an
O(nm) time algorithm for the Minimum Mosaic problem for genotype recom-
binants without missing values (i.e. D ⊂ {0, 1, 2}n) and K = 2. Furthermore,
they gave an exact algorithm for the general case (haplotype recombinants with-
out missing values). Notice that the time complexity of this latter algorithm is
not given in the paper and the authors claim it to be practical for moderate n
and m.

In [7], Zhang et al. investigated the Minimum Segmentation problem
for genotype recombinants and provided two dynamic programming algorithms
with time complexity O(nK4) and O(nK + PK4), where P is the number of
rows of the dynamic programming table. Recently, in [12], Roli et al. presented
large neighbourhood search algorithms to tackle this problem. Any such algo-
rithm performs a local search in which neighbourhoods have exponential size
in the founder sequence length. Using an e�cient tree-search technique, the
neighbourhoods are exhaustively explored. Roli et al., futhermore, evaluated
these algorithms on three benchmark sets and �nally, compared the best one to
the state-of-the-art techniques.

3 Notations

In the rest of the paper, we do not consider missing values, i.e., haplotypes are
de�ned on {0, 1}n. Given any string s = s1s2 . . . sn, and two integers i and
j, 1 ≤ i ≤ j ≤ n, we denote by s[i, j] the substring sisi+1 . . . sj of s. Given
a set of haplotype founders f1, f2, . . . , fK , each in {0, 1}n, and an haplotype
recombinant r of size n, a segmentation of r from f1, f2, . . . , fK is a partition of
the interval [1 . . . n] = {1, 2, . . . , n} into consecutive intervals I1, I2, . . . , Ik such
that, for each 1 ≤ i ≤ k, we have r[Ii] = fj [Ii] for some j ∈ {1, 2, . . . ,K}. The
cost of the segmentation is k−1. For example, for r = 001011, f1 = 000000 and
f2 = 111111, {I1 = f1[1 . . . 2], I2 = f2[3 . . . 3], I3 = f1[4 . . . 4], I4 = f2[5 . . . 6]}
is a segmentation of r out from f1 and f2 of cost 3. The cost of segmenting
r out from f1, f2, . . . , fK is denoted cost(r; f1, f2, . . . , fK) (the cost of a best
segmentation can be found in O(nK) time [5]).

The Minimum Mosaic problem can be de�ned as follows:

Minimum Mosaic

• Input : A set of m recombinants D = {r1, r2, . . . , rm}, ri ∈ {0, 1}n for
1 ≤ i ≤ m, and an integer K

• Solution : A set of K founders F = {f1, f2, . . . , fK}, fj ∈ {0, 1}n for
1 ≤ j ≤ K, such that

∑m
i=1 cost(ri; f1, f2, . . . , fK) is minimized.

5

4 Hardness result for theMinimumMosaic prob-

lem

In this section, we prove the Minimum Mosaic problem when K is part of the
input to be NP-hard without relying on unrealistic prohibitive mutation costs
(as done in [5]). For the sake of presentation, we �rst generalize the problem to
arbitrary strings. The following lemma proves that this can be done safely.

Lemma 1 If the Minimum Mosaic problem on arbitrary strings is NP-hard,
then so is the Minimum Mosaic problem on binary strings.

Proof: Assume to be given a natural K and a set of m recombinants D =
{r1, r2 . . . rm} ⊂ Σn where Σ = {σ1, σ2 . . . σk} is any alphabet on k sym-
bols. Then, take any encoding of the symbols in Σ by binary strings of length
dlog2 ke. In other words, let δ : Σ 7→ {0, 1}k′

be any injection from Σ to
{0, 1}k′

with k′ = dlog2 ke. Once such an encoding has been �xed, we can ex-
tend δ to get an injective function which maps every string ri over Σ into a
binary string δ(ri) of length |δ(ri)| = k′ |ri|. Notice that any feasible solution
〈f1, f2 . . . fK〉 for the instance 〈K, r1, r2 . . . rm〉 naturally maps into the feasible
solution 〈δ(f1), δ(f2), . . . , δ(fK)〉 for the instance 〈K, δ(r1), δ(r2) . . . δ(rm)〉, and
the cost remains una�ected.

Let us show that the converse is also true. To do so, we claim that, given
any feasible solution 〈f ′1, f ′2 . . . f ′K〉 for the instance 〈K, δ(r1), δ(r2) . . . δ(rn)〉, we
can always modify it, without increasing its cost, in such a way that each of
the f ′i is actually the binary encoding of some string over Σ. In other words,
we can assume that f ′1 = δ(f1), f ′2 = δ(f2) . . . f ′K = δ(fK). In this way, the
converse would directly follow. In order to prove our claim, we can actually
act on the f ′i 's and �clean� them out one by one. Assume f ′i is not cleaned,
that is, f ′i does not belong to the image of map δ. Then there exists some
1 ≤ j ≤ n such that f ′i [k

′(j − 1) + 1, k′j] does not belong to the codewords set
∆(Σ) := {δ(σ) : σ ∈ Σ }. In this case, where σ is any symbol in Σ such that
δ(σ) has a longest su�x in common with f ′i [k

′(j − 1) + 1, k′j], we modify f ′i
precisely on the interval [k′(j − 1) + 1, k′j], and, more precisely, by replacing it
by the string δ(σ). Considering the way the procedure for �nding a minimum
cost segmentation operates, it is easy to see that this modi�cation does not
increase the cost. Indeed, given the set of founders, �nding the segmentation
of a given row r consists in iteratively "cover" the position of r with longest
common substrings (e.g. Algorithm 1). �

In order to facilitate the understanding of the proof, let us further strengthen
the formulation of our problem: consider the more general formulation where
K ′ of the K founders comprising the solution (and to be given in output) are
actually given as speci�ed in advance in the input. We will refer to those speci�c
founders as forced founders and will �rst show how one can force a part of the
founders.

6

Algorithm 1 Algorithm for �nding a minimum cost segmentation :
FS(r; f1, f2, ..., fK)

1: Let i = |r|
2: if i = 0 then
3: return
4: end if

5: Let j be the smallest positive natural such that r[j..i] = fk[j..i] for some k
6: if j > i then
7: return "No production exists"
8: end if

9: return FS(r[1, j − 1]; f1[1, j − 1], f2[1, j − 1], . . . , fK [1, j − 1]) + [j..i]

Indeed, here is a polynomial-time reduction from any instance containing
forced founders to an instance without ones: for each forced founder ff , add
nm copies of ff in the recombinants set D. It is clear that in a solution,
one has to include ff in the founder set, otherwise, it will induce at least nm
breakpoints which is the maximal number of breakpoints one can get in the
original instance. Note that given an objective of at most B breakpoints, it
su�ces to add B copies of ff to get this property.

Thus, for the purpose of the reduction, we can without loss of generality as-
sume to have instances of the form 〈K,D,F f 〉 such that D = {r1, r2 . . . rm′′} ⊂
Σn is the set of recombinants and F f = {ff1 , f

f
2 . . . f

f
m′} ⊂ Σn is the set of forced

founders. Let us now provide a reduction from the NP-hard Vertex-Cover
problem:

Vertex-Cover

• Input : A graph G = (V,E) such that |V | = nG, |E| = mG and an
integer kG

• Solution : A subset V ′ of V such that each edge of G is incident to
at least one vertex of V ′ and |V ′| ≤ kG

Our reduction begins by giving an arbitrary orientation to each edge of G,
that is, for each ej ∈ E, let tj and hj be indices such that vtj is the tail and vhj

is the head of the arbitrary oriented edge ej .
We consider the alphabet Σ := {W,Z}∪ {Xi : i = 1, 2, . . . nG}. Informally,

there is one letter for each vertex of V , whileW and Z act like separators letters.
We de�ne m = C nG + 3 recombinants, each of length n = 6mG built as follows
(C is a constant de�ned later):

• r1 = (WWZZWW)mG ,

• r2 =
∏mG

j=1(ZZXtjXtjZZ) and r3 =
∏mG

j=1(ZZXhjXhjZZ),

• rji = (XiXiXiXiXiXi)
mG , for each 1 ≤ i ≤ nG, 1 ≤ j ≤ C.

7

We then de�ne a set F f of K ′ = 1 + 2mGnG forced founders as follows.

• F f
1 = (ZZZZZZ)mG ,

• F f
i,t = Z3 tXiXiXiZ

3 (2mG−t−1), for each 0 ≤ t ≤ 2mG−1, and 1 ≤ i ≤ nG.

Finally, we setK = 2mGnG+kG+2; that is asking forK ′′ = kG+1 founders.
An example of this construction is shown Figure 3. The idea is that kG of these
founders correspond to the kG vertices in the vertex cover while the single extra
founder will collect, from each one of the edges, the endpoint (at most one) not
included in the vertex cover.

Lemma 2 If the graph G = (V,E) admits a vertex cover of size at most kG
then the corresponding built instance of our problem admits a solution of cost
at most C(nG − kG)(2mG − 1) + 6mG.

Proof: Let V ′ ⊆ V be a vertex cover of size kG of G. For each 1 ≤ j ≤ mG,
we let cj be an index such that vcj ∈ V ′ ∩ ej (such an index exists since V ′ is a
vertex cover). By de�nition, cj ∈ {tj , hj}. Let cj = {tj , hj}\cj . We construct
our solution with the following set F ′ of K ′′ = kG + 1 founders:

• F ′0 =
∏mG

j=1(WWXcjXcjWW),

• F ′i = (XiXiXiXiXiXi)
mG , for each vi ∈ V ′.

Let us now compute the corresponding cost. First, notice that regarding
r1, the associated cost is cost(r1;F ′ ∪ F f) = 2mG. Indeed, we have to switch

from F ′0 to F f
1 and from F f

1 to F ′0 for each mG blocks of length 6. Then,
considering r2 and r3, the corresponding costs are cost(r2;F ′∪F f) = 2mG and
cost(r3;F ′ ∪ F f) = 2mG. Indeed, for each 1 ≤ j ≤ mG, since V

′ is a vertex
cover, F ′cj and F

′
0 will prevent a breakpoint between the Xtj 's (and between the

Xhj
's) since cj ∈ {tj , hj} and cj = {tj , hj}\cj . Therefore, by switching from

F f
1 to F ′cj or F

′
0 and back to F f

1 for each mG blocks of length 6, it only induces

2 breakpoints for each block. Finally, for 1 ≤ j ≤ C, cost(rji ;F ′ ∪ F f) = 0 for

each vi ∈ V ′ whereas cost(rji′ ;F ′∪F f) = C(2mG−1) for each vi′ /∈ V ′. Indeed,
considering each recombinants rji′ such that vi′ /∈ V ′, by switching from F f

i′,2t−2

to F f
i′,2t−1 for the t

th block of length 6, it will only induce 2 breakpoints for each
block (except the last one). Since |V ′| = kG, there are nG − kG recombinants
which costs (2mG − 1) each.

On the whole,
∑2

i=1 cost(ri;F
′ ∪ F f) +

∑nG

i=1

∑C
j=1 cost(r

j
i ;F ′ ∪ F f) =

2mG + (2× 2mG) +C(nG− kG)(2mG− 1) = C(nG− kG)(2mG− 1) + 6mG. �

We now turn to considering the reverse direction. As a technical hint, two
main driving forces here are that the extra founder will essentially be enforced by
feasibility (each recombinant must be obtained from the founders) whereas the
kG covering founders will be enforced by parsimony, assuming C is su�ciently
big.

8

v w

u

G

r1 : W W Z Z W W W W Z Z W W
r2 : Z Z XuXu Z Z Z Z XuXu Z Z
r3 : Z Z XvXv Z Z Z Z XwXw Z Z
rju : XuXuXuXuXuXuXuXuXuXuXuXu C times
rjv : XvXvXvXvXvXvXvXvXvXvXvXv C times
rjw : XwXwXwXwXwXwXwXwXwXwXwXw C times

F f
1 : Z Z Z Z Z Z Z Z Z Z Z Z

F f
u,0 : XuXuXu Z Z Z Z Z Z Z Z Z

F f
u,1 : Z Z Z XuXuXu Z Z Z Z Z Z

F f
u,2 : Z Z Z Z Z Z XuXuXu Z Z Z

F f
u,3 : Z Z Z Z Z Z Z Z Z XuXuXu

F f
v,0 : XvXvXv Z Z Z Z Z Z Z Z Z

F f
v,1 : Z Z Z XvXvXv Z Z Z Z Z Z

F f
v,2 : Z Z Z Z Z Z XvXvXv Z Z Z

F f
v,3 : Z Z Z Z Z Z Z Z Z XvXvXv

F f
w,0 : XwXwXw Z Z Z Z Z Z Z Z Z

F f
w,1 : Z Z Z XwXwXw Z Z Z Z Z Z

F f
w,2 : Z Z Z Z Z Z XwXwXw Z Z Z

F f
w,3 : Z Z Z Z Z Z Z Z Z XwXwXw

F
′

0 : W W XvXv W W W W XwXw W W

F
′

1 : XuXuXuXuXuXuXuXuXuXuXuXu

Figure 3: An example of our construction, from a graph G with nG = 3 nodes
and mG = 2 edges. We also set kG to 1. From this graph, nG×C + 3 = 3C + 3
recombinants are built, and 1+2×mG×nG = 13 forced founders sequences are
set � hence only kG + 1 = 2 founders have to be found. They are shown as F

′

0

and F
′

1, and the associated breakpoints in the recombinants are drawn (there
is a breakpoint between one gray block and one white block, and a breakpoint
between one white block and one gray block).

9

Lemma 3 Given a graph G = (V,E) and the corresponding built instance of our
problem, if the latter one admits a solution of cost at most C(nG − kG)(2mG −
1) + 6mG, and C > 6mG, then G admits a vertex cover of size at most kG.

Proof: Let us prove that the cost of recombinants rji , 1 ≤ i ≤ nG, 1 ≤ j ≤ C,
for any solution is greater than C((nG − kG)(2mG − 1)). Note �rst that, only
considering the set of forced founders F f , each rji , 1 ≤ i ≤ nG, 1 ≤ j ≤ C, has

a cost(rji , F
f) = C(nG(2mG − 1)). Indeed, given a recombinant rji , one has to

switch from F f
i,t to F

f
i,t+1 for 0 ≤ t ≤ 2mG − 2.

Considering now both F f and F , if the set of K ′′ = kG + 1 founders is
composed of exact copies of K ′′ di�erent recombinants {r1i1 , r

1
i2
. . . r1ikG+1

} (for
some 1 ≤ i1, i2 . . . ikG+1 ≤ nG), then

∑nG

i=1

∑C
j=1 cost(r

j
i ;F ′ ∪ F f) = C(nG −

(kG + 1))(2mG − 1). However, r1 is built over some W letters; which does not
belong to any forced founders. Therefore, there should be founders among the
K ′′ including a W in positions 6t + 1, 6t + 2, 6t + 5, 6t + 6, for each 0 ≤ t ≤
mG−1. Then, for any 0 ≤ t ≤ mG−1, there will exist among the recombinants
{r1i1 , r

1
i2
. . . r1ik+1

} one recombinant � say r1i1 � that will induce a switch (for each

of its C copies) from a founder of F to F f
i1,t+1 (resp. F f

i1,t+2) due to the WW
at positions 6t + 1, 6t + 2 (resp. 6t + 5, 6t + 6) in the corresponding founder.
Therefore, on the whole, one will end-up with an extra cost of 2CmG. In the best
case, one should only �sacri�ce� one of theK ′′ founders (which was only allowing

a gain of 2C(mG − 1) breakpoints). On the whole,
∑nG

i=1

∑C
j=1 cost(r

j
i ;F ′ ∪

F f) ≥ C(nG − kG)(2mG − 1). Moreover, considering the objective cost (i.e.
C(nG − kG)(2mG − 1) + 6mG) and that C > 6mG, the following is enforced.

Property 4 Considering any position, each of the K ′′ founders has a di�erent
letter.

Proof: By contradiction, suppose there are two founders with the same letter
in a given position. Then, there is at least one more breakpoint for each copy

of a given recombinant of {rj1i1 , r
j2
i2
. . . r

jkG+1

ikG+1
} which leads to a cost above the

objective. �

Property 5 A founder with a letter Xu in a given position contains only letters
Xu in the next positions until a letterW or the end of the founder is encountered.

Proof: By contradiction, in an optimal solution, suppose there is a founder
with a letter Xu at position k followed by a letter Xv. Then, due to Property 4,
there should not exist another founder such that Xu is at position k nor Xv at
position k + 1. Therefore, there is a breakpoint between positions k and k + 1
in all rju (resp. rjv); that is 2C breakpoints. Consider now changing Xv into Xu

in the corresponding founder. Then it will induce at least C less breakpoints,
leading to a better solution; a contradiction. �

10

Property 6 All the W letters occur in the same founder.

Proof: Let us �rst prove that W letters at position 6t+ 1 and 6t+ 2 belong to
the same founder. By contradiction, suppose it is not the case; e.g. there is a
W letter at position 6t + 1 in founder Fi and a W letter at position 6t + 2 in
founder Fj , i 6= j. By Property 4, there is no W letter at position 6t+ 2 (resp.
6t+ 1) in founder Fi (resp. Fj). Thus, there is a breakpoint in the recombinant
r1 between positions 6t+ 1 and 6t+ 2. Consider now swapping Fi[1..6t+ 1] and
Fj [1..6t+ 1]. This will decrease the number of breakpoints at least by one since
it only changes the cost due to positions 6t+1 and 6t+2. Same argument holds
for the other W positions.

We now know that the W letters appears by block of size 4 (except for the
�rst and last blocks; which are of size 2). It also appears that if the blocks of
letters W are not on the same founder, it creates at least C more breakpoints.
Figure 4 illustrates this con�guration. Indeed, in an optimal solution, consider
two founders Fi and Fj such that there areW letters at positions 6t+1 and 6t+2
(resp. 6t+ 5 and 6t+ 6) in Fi (resp. Fj). Assume, moreover, that a Xu (resp.
Xv) appears in position 6t+ 3 (resp. 6t+ 4) in Fi (resp. Fj). Then considering
the forced founders, Fi and Fj , there will be one breakpoint between positions
6t + 3 and 6t + 4 in all rxu and rxv , for 1 ≤ x ≤ C and one breakpoint between
positions 6t + 6 and 6t + 7 in all rxv , for 1 ≤ x ≤ C. Consider now swapping
Fi[1..6t + 4] and Fj [1..6t + 4] and replacing the Xi's of Fj by Xj 's. It will in-
duce at least C less breakpoints, leading to a better solution; a contradiction. �

In the following, let us assume that F0 denotes the founder containing the
W letters; the other founders are referred to as F1, F2,..., FK′′ . Now that we
know the precise topology of the founders of any optimal solution, we can now
prove that {F1, F2 . . . FK′′} corresponds to a vertex cover in G. Let V ′ ⊆ V be
de�ned as follows. For each founder Fi, 1 ≤ i ≤ K ′′, if Fi is the exact copy of
the recombinant ryx, then add vx in V ′. Let us prove that V ′ is a vertex cover
of G. By contradiction, suppose it is not. Then, it exists at least one y such
that (vhy

, vty) ∈ E and both {vhy
, vty} ∩ V ′ = ∅. Therefore, there is at least

a breakpoint between Xty and Xty in r2 or between Xhy
and Xhy

in r3 since
neither hy nor ty appears in {F1, F2 . . . FK′′}, and F0 can contain at most one
of the two in the corresponding positions. It is worth noting that none of the
forced founders can prevent these breakpoints since they never have the same
letters at position 6t+ 3 and 6t+ 4. �

With Lemma 2 and Lemma 3, we obtain the following result.

Proposition 7 The Minimum Mosaic problem given haplotype recombinants
with no missing values is NP-hard.

11

W not on the same founder

a)...(XuXuXuXuXuXu)(Xu...
...(XvXvXvXvXvXv)(Xv ...

b)...(W W XuXuXuXu)(Xu...
...(XvXvXvXvW W)(W ...

c) ...(XuXuXuZ Z Z)(Z ...
...(Z Z Z XuXuXu)(Z ...
...(XvXvXvZ Z Z)(Z ...
...(Z Z Z XvXvXv)(Z ...

W on the same founder

a)...(XuXuXuXuXuXu)(Xu...
...(XvXvXvXvXvXv)(Xv ...

b)...(W W XuXuW W)(W ...
...(XvXvXvXvXvXv)(Xv ...

c) ...(XuXuXuZ Z Z)(Z ...
...(Z Z Z XuXuXu)(Z ...
...(XvXvXvZ Z Z)(Z ...
...(Z Z Z XvXvXv)(Z ...

Figure 4: a) The recombinants rxu and ryv . b) Two founders involving Xu and
Xv. c) Forced founders. The created breakpoints in the recombinants induced
by b) and c) are between gray and white blocks.

5 Exact algorithms for the Minimum Mosaic

problem

In this section, we will provide exact algorithms considering a variant of the
Minimum Mosaic/Segmentation problems where extra information on the
breakpoints are given (e.g. position, number, . . .).

5.1 An FPT algorithm for theMinimum Mosaic problem

Let us �rst give a complexity study of the general solution proposed by Ukkonen
in Section 4 of [3]. Indeed, the corresponding solution shows that, once the
number of founders (i.e. K) is a constant, then the minimum mosaic problem

12

is in FPT. The main idea of the dynamic programming solution of Ukkonen
is to compute every partition of size K of the m input recombinants for each
column. The central recurrence is based on the fact that the �best� K-partitions
for the i �rst columns can be computed using one of all the �best� K-partitions
of the i− 1 �rst columns and any K-partition of the ith column; the parsimony
criterion being the number of breakpoints induced. In a dynamic programming
table, one store the minimum cost of any K-partition of the i �rst columns
for all the K-partitions of the ith column. On the whole, since (1) there are
Km K-partitions of any column i and (2) one has to compute the minimum
number of breakpoints considering all the K-partitions of column i− 1 for each
K-partition of column i, the time complexity is O(nK2m); which leads to a
polynomial solution when the number of recombinants m is a constant. It also
provides a practical solution when the number of founders K is a constant.

5.2 An algorithm when the location of the breakpoints is

known

Let us now design exact algorithms for a variant of the Minimum Mo-
saic/Segmentation problems that considers that extra informations on
the breakpoints are given. Let us �rst consider a kind of reverse prob-
lem of Minimum Segmentation problem where given a set of m recom-
binants D = {r1, r2, . . . , rm} ⊂ {0, 1}n and a set of B identi�ed break-
points on D � i.e. an overall cost B segmentation of the recombinants
S = {I11 , I12 . . . I1k1

, . . . Im1 , I
m
2 . . . Imkm

} such that (
∑m

i=1 ki)−m = B and Ixy is the

yth segment of recombinant rx � �nd a set of K founders F = {f1, f2, . . . , fK} ⊂
{0, 1}n such that the B cost segmentation can be derived from F . We propose a
polynomial-time algorithm (Algorithm 2) that solves this problem. For any Ixy ,
let Lx

y (resp. Rx
y) denote the leftmost (resp. rightmost) position of Ixy in [1..n].

Let us now prove that this algorithm indeed �nd a solution if one exists.
Roughly, the algorithm tries to reassemble the segments in order to produce
at most K founders. To do so, the algorithm computes the founders from left
to right using the available segments in L. For each available segment Ixy , the
algorithm tries �rst to detect if there is a founder that has the longest common
pre�x with Ixy at the given position Lx

y . If there exist one then the corresponding
founder is �merged� with Ixy for the positions from Lx

y to Rx
y . Otherwise, the

algorithm tries to �nd a founder such that the position Lx
y is empty and then

merge the founder and Ixy .
Let us prove that, if there exist a solution then the algorithm will �nd it.

First, notice that if there exist such a solution then any segments can be placed
entirely in one of the K founders. Thus when considering all the segments
starting at a given position, one should be able to �nd a distribution of the
segments among the K founders. This ensures that when considering Ixy , the

choice of the founder for Ixy will not interfere with placement of I ′x
′

y . Indeed,

either in the solution segments Ixy and I ′x
′

y originated from the same founder

and thus will have a common pre�x or segments Ixy and I ′x
′

y were obtained from

13

Algorithm 2 Find K founders according to a segmentation S

1: Let L be a sorted list � according to the leftmost position � of elements of
S

2: F = {F1, F2 . . . FK} such that Fi = [””, ””, . . . , ””], 1 ≤ i ≤ K
3: while L is not empty do
4: Ixy ← pop(L) //remove and return head element of L
5: LCP = 0, F ′ = null
6: for each Fi in F do

7: Z ← the leftmost empty position in Fi greater than L
x
y

8: if Fi[L
x
y ..Z] and Ixy share a common pre�x then

9: if LCP< Z − Lx
y then

10: F ′ = Fi

11: LCP = Z − Lx
y

12: end if

13: end if

14: end for

15: if F ′! = null then
16: F ′[Lx

y , R
x
y]← Ixy

17: goto _end;
18: end if

19: //No common pre�x found
20: //Find the �rst empty position
21: for each Fi in F do

22: if Fi[L
x
y] is empty then

23: Fi[L
x
y , R

x
y]← Ixy

24: goto _end;
25: end if

26: end for

27: Exit with error
28: //This case is only reachable
29: //if no solution can be found
30: _end :
31: end while

32: return F

14

di�erent founders. This leads to an overall O(BKL) time-complexity algorithm
where L is the length of the longest segment.

5.3 An algorithm when the number of breakpoints for

each recombinant is known

Let us now consider the case where only the number of breakpoints for each
recombinant is known (i.e. without the positions of these breakpoints). Then,
one can test all the possible positions for each recombinant and apply the
previously proposed algorithm. On the whole, since given a recombinant ri
of length n with bi breakpoints, there are at most

(
n
bi

)
= O(nbi) possibil-

ities of placement of the breakpoints, the corresponding algorithm runs in
O(nb1 .nb2nbm .BKL) = O(nb1+b2+···+bm .BKL) = O(nB .BKL).

5.4 An algorithm when the number of breakpoints is

known

Finally, we give an algorithm with a lower complexity than the algorithm in the
previous section in the case one only knows the number B of allowed break-
points. Let �rst give the maximum number of di�erent strings in D, that is
the number md of di�erent recombinants among the m recombinants of D. In
the worst case, there is only one breakpoint on each recombinant, that is B
di�erent recombinants. Moreover, there is a maximum number of K di�erent
recombinants with no breakpoint in D (they are copies of the founders). Thus,
we can give the following upperbound for the number of di�erent recombinants
in D : md ≤ K +B. We also have K ≤ md ≤ m.

Let now decide which recombinants in D will have some breakpoints. There-
fore, we have to choose B recombinants among the md recombinants with
at least one breakpoint. We will try all di�erent possibilities. There are(
md

B

)
=
(
K+B
B

)
= (K + B)B di�erent con�gurations. For each one, run the

exact O(nK2m) algorithm of Ukkonen to �nd the best possible founders. This
algorithm is ran among a set of only B chosen recombinants. Thus, the run-
ning time of the exact algorithm is O(nK2B). On the whole, the total run-
ning time of the algorithm when only the number of breakpoints is known is
O((K + B)B × nK2B). This last result demonstrates that once the number of
breakpoints is a constant the problem becomes polynomial.

6 Open problems

In this article, we showed that theMinimum Mosaic problem given haplotypes
with no missing values is hard when the number K of founders is given as part
of the input. When K is a constant but the number m of recombinants is not,
the problem is still widely open. Indeed, there is an ocean between the linear
complexity of the problem when m (and thus K) is a constant, the polynomial-
time complexity when K = 2, and the NP-hardness when K is unbounded. It

15

is also widely open whether the problem admits some PTAS since our reduction
does not preserve the approximation features.

7 Acknowledgement

The authors acknowledge partial funding from DFG PABI BO1910/9-1 and
ANR project BIRDS JCJC SIMI 2-2010, and also would like to thanks the
anonymous reviewers for valuable comments and remarks.

References

[1] Mikko Koivisto, Pasi Rastas, and Esko Ukkonen. Recombination systems.
In Juhani Karhumäki, Hermann A. Maurer, Gheorghe Paun, and Grzegorz
Rozenberg, editors, Theory Is Forever, volume 3113 of Lecture Notes in
Computer Science, pages 159�169. Springer, 2004.

[2] John D. Kececioglu and Dan Gus�eld. Reconstructing a history of recom-
binations from a set of sequences. Discrete Applied Mathematics, 88(1-
3):239�260, 1998.

[3] Esko Ukkonen. Finding founder sequences from a set of recombinants. In
Roderic Guigó and Dan Gus�eld, editors, Algorithms in Bioinformatics,
Second International Workshop (WABI), volume 2452 of Lecture Notes in
Computer Science, pages 277�286. Springer, 2002.

[4] Russell Schwartz, Andrew G. Clark, and Sorin Istrail. Inferring piecewise
ancestral history from haploid sequences. In Sorin Istrail, Michael S. Water-
man, and Andrew G. Clark, editors, Computational Methods for SNPs and
Haplotype Inference, volume 2983 of Lecture Notes in Computer Science,
pages 62�73. Springer, 2002.

[5] Pasi Rastas and Esko Ukkonen. Haplotype inference via hierarchical geno-
type parsing. In Ra�aele Giancarlo and Sridhar Hannenhalli, editors, Al-
gorithms in Bioinformatics, 7th International Workshop (WABI), volume
4645 of Lecture Notes in Computer Science, pages 85�97. Springer, 2007.

[6] Yufeng Wu and Dan Gus�eld. Improved algorithms for inferring the
minimum mosaic of a set of recombinants. In Bin Ma and Kaizhong
Zhang, editors, Combinatorial Pattern Matching, 18th Annual Symposium
(CPM), volume 4580 of Lecture Notes in Computer Science, pages 150�161.
Springer, 2007.

[7] Qi Zhang, Wei Wang, Leonard McMillan, Jan Prins, Fernando Pardo-
Manuel de Villena, and David Threadgill. Genotype sequence segmen-
tation: Handling constraints and noise. In Keith A. Crandall and Jens

16

Lagergren, editors, Algorithms in Bioinformatics, 8th International Work-
shop (WABI), volume 5251 of Lecture Notes in Computer Science, pages
271�283. Springer, 2008.

[8] Dan Gus�eld. Haplotyping as perfect phylogeny: conceptual framework
and e�cient solutions. In 6th International Conference on Computational
Biology (RECOMB), pages 166�175, 2002.

[9] Giuseppe Lancia, Maria Cristina Pinotti, and Romeo Rizzi. Haplotyping
populations by pure parsimony: Complexity of exact and approximation
algorithms. INFORMS Journal on Computing, 16(4):348�359, 2004.

[10] Jon M. Kleinberg, Christos H. Papadimitriou, and Prabhakar Ragha-
van. Segmentation problems. In 13th ACM Symp. Theory of Computing
(STOC), pages 473�482, 1998.

[11] Yufeng Wu. Bounds on the minimum mosaic of population sequences under
recombination. In Amihood Amir and Laxmi Parida, editors, Combinato-
rial Pattern Matching, 21st Annual Symposium (CPM), volume 6129 of
Lecture Notes in Computer Science, pages 152�163. Springer, 2010.

[12] Andrea Roli, Stefano Benedettini, Thomas Stützle, and Christian Blum.
Large neighbourhood search algorithms for the founder sequence recon-
struction problem. Computers & OR, 39(2):213�224, 2012.

17

