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Sur la stabilité des systèmes linéaires impulsifs par fonctionnelles de Lyapunov

Keywords: Systèmes impulsifs, Fonctionnelles de Lyapunov, Inégalités Linéaires Matricielles

Une nouvelle approche pour l'analyse de stabilité des systèmes linéaires impulsifs est proposée. Elle repose sur l'utilisation d'une nouvelle classe de fonctionnelles de Lyapunov autorisant l'utilisation de fonctions de Lyapunov localement croissantes. Les conditions de stabilité sont exprimées sous forme d'inégalités linéaires matricielles et sont dépourvues de termes exponentiels. Cette approche peut être appliquée à une plus grande classe de systèmes que les méthodes existantes. Quelques exemples, notamment sur les systèmes échantillonnés, sont traités.

I. Introduction

Les systèmes impulsifs [START_REF] Bainov | Systems with impulse effects : Stability, theory and applications[END_REF][START_REF] Yang | Impulsive control theory[END_REF][START_REF] Cai | Converse Lyapunov theorems and robust asymptotic stability for hybrid systems[END_REF][START_REF]Smooth Lyapunov functions for hybrid systems Part ii : (pre)asymptotically stable compact sets[END_REF][START_REF] Hespanha | Lyapunov conditions for input-to-state stability of impulsive systems[END_REF] sont une classe importante de systèmes hybrides pour lesquels la trajectoire admet des discontinuités à certains instants. De tels modèles sont utilisés dans différents domaines comme l'épidémiologie [START_REF] Stone | Theoretical examination of the pulse vaccination policy in the SIR epidemic model[END_REF][START_REF] Briat | A new delay-SIR model for pulse vaccination[END_REF], les systèmes échantillonnés ou encore les systèmes commandés en réseau [START_REF] Naghshtabrizi | Exponential stability of impulsive systems with application to uncertain sampled-data systems[END_REF]. Les systèmes impulsifs peuvent être divisés en deux groupes : ceux dont les instants des impulsions dépendent de l'état du système et ceux dont ils dépendent seulement du temps. Les systèmes appartenant à cette dernière classe peuvent être représentés de la manière suivante ẋ(t) = Ax(t), t ∈ R + \I, x(t + ) = Jx(t), t ∈ I,

où x ∈ R n est l'état du système et l'ensemble I := {t i } i∈N est un ensemble dénombrable d'instants d'impulsions tel que t i+1 > t i , i ∈ N et n'admettant aucun point d'accumulation. La notation x(t + ) dénote le limite à droite de x en t, i.e. x(t + ) = lim s↓t x(s). Selon la structure des matrices A et J, le système peut avoir des comportements relativement différents. En particulier, les notions de temps d'attente minimum et maximum peuvent être définies pour les systèmes impulsifs [START_REF] Hespanha | Lyapunov conditions for input-to-state stability of impulsive systems[END_REF], comme pour les systèmes à commutations [START_REF] Liberzon | Switching in Systems and Control[END_REF][START_REF] Geromel | Stability and stabilization of continuous-time switched linear systems[END_REF]. Dans le cas des systèmes impulsifs, ces notions réfèrent aux propriétés d'un système telles que des trop petits ou trop grands intervalles entre les impulsions déstabilisent le système. Dans le cas d'impulsions périodiques de période T > 0, le problème se réduit à analyser le spectre de la matrice Je AT , qui s'avère être un problème très simple. Cependant , cette formulation souffre de certains défauts :

1. l'analyse du spectre ne permet pas de conclure sur la stabilité du système quand les impulsions ne sont plus périodiques puisque le rayon spectral n'est, en générale, pas sous-multiplicatif ; 2. il est donc nécessaire de recourir à des approches de type Lyapunov conduisant à des inégalités linéaires matricielles robustes dépendant d'une incertitude scalaire à l'exponentielle, connues pour être complexe numériquement, bien que résolvables ; 3. L'extension à la stabilité robuste est aussi difficile, encore à cause du terme exponentiel. Il n'y a, pour le moment, aucune méthode efficace permettant de traiter des incertitude matricielles à l'exponentielle.

L'approche proposée dans cet article a pour avantage de résoudre tous les problèmes ci-dessus. L'idée sous-jacente a été développée dans le récent papier [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF] où une connexion entre le temps-continu et le temps-discret a été proposée. Il est en effet montré que la stabilité en temps-discret est équivalente à un certain type de stabilité en temps-continu si cette dernière est prouvée à l'aide de fonctionnelles bien spécifiques. L'avantage des critères de stabilité en tempsdiscret est de s'intéresser à la stricte décroissance d'une séquence de points plutôt qu'à la stricte décroissance d'une fonction pour le cas continu. En choisissant ces points sur la fonction de Lyapunov de manière judicieuse et satisfaisant certains critères, il est donc possible d'obtenir une suite de valeurs décroissantes alors que la fonction n'est pas strictement décroissante, violant ainsi la condition de Lyapunov pour la stabilité asymptotique. Il est important de noter que seule la décroissance globale de la fonction de Lyapunov est importante pour la stabilité asymptotique, elle est néanmoins plus difficile à vérifier que la stricte décroissante qui impose une condition évidente sur la dérivée. De ce fait, le critère en temps discret est plus intéressant puisqu'il permet de transformer la décroissance globale en temps-continu en une stricte-décroissance en temps discret, simplifiant donc l'analyse et améliorant la précision de la méthode. Cette méthode peut être appliquée à de nombreux types de systèmes, notamment les systèmes hybrides présentant des événements discrets indiquant les points à utiliser pour la condition de stabilité en temps-discret. Cela est aussi généralisable à d'autres sousclasses de systèmes pour lesquels ces 'marqueurs temporels' peuvent être définis.

L'approche par fonctionnelles présentée ci-dessus conduit à des conditions qui peuvent être exprimées par des inégalités linéaires matricielles qui sont affines en la valeur de l'intervalle entre les impulsions, dépourvues de termes

H H H H H J A [λ(A)] < 0 [λ(A)] > 0 otherwise |λ(J)| < 1 TAa TAM TAmM |λ(J)| > 1 TAm - - otherwise
TAm -TAmM 

II. Résultats préliminaires

A. Un résultat général de stabilité L'approche basée sur fonctionnelles repose sur la caractérisation du système (1) via l'utilisation d'un formalisme similaire a celui utilisé pour les systèmes échantillonnés [START_REF] Yamamoto | New approach to sampled-data control systemsa function space method[END_REF]. L'espace d'état considéré ici consiste en l'espace des fonctions continues a support variable

K := {C(( , ∼), R ) : ∼ ∈ [T , T ]}.
Les éléments de K sont donc des fonctions continues de la forme

χ k : (0, T k ] → R n , où T k = t k+1 -t k < ∞, k ∈ N. Le nouvel espace d'état est donc de dimension infinie et vérifie χ k (τ ) := x(t k + τ ), τ > 0 χ k (τ ) = e Aτ χ k (0), lim τ ↓ χ k (τ ) = Jχ k-1 (T k-1 ) = Jx(t k+1 ).
(2) Afin de prouver la stabilité, l'idée est de regarder le comportement d'une fonction de Lyapunov candidate aux instants d'impulsion, c'est-à-dire, nous cherchons une fonction quadratique V (x) telle que la séquence {V (x(t k ))} k∈N soit décroissante monotone1 . Cela est formalisé dans le résultat ci-dessous :

Théorème 1: Soient deux réels positifs T min ≤ T max < +∞ et une fonction quadratique

V : R n → R + vérifiant ∀x ∈ R n , µ 1 ||x|| 2 2 ≤ V (x) ≤ µ 2 ||x|| 2 2 , (3) 
pour des scalaires strictement positifs µ 1 < µ 2 . Alors les deux assertions suivantes sont équivalentes.

(i) La séquence {V (x(t k ))} k∈N est décroissante ; i.e. V (x) est une fonction de la Lyapunov discrète pour le système

x(t k+1 ) = e AT Jx(t k ), T ∈ [T min , T max ]. (ii) Il existe une fonctionnelle différentiable V : [0, T max ] × K → R satisfaisant V(T, z) = V(0, z), (4) 
pour tout z ∈ K et pour tout T ∈ [T min , T max ] tels que l'inégalité W k (τ, χ k ) = Λ k + d dτ [T k V (χ k (τ )) + V(τ, χ k )] < 0, (5) soit vérifiée pour tout τ ∈ [0, T k ), T k ∈ [T min , T max ], k ∈ N et où Λ k := V (χ k (0)) -V (χ k-1 (T k-1 )). (6) 
Preuve :

(ii)⇒(i) : Soient k ∈ N, τ ∈ [0, T k ] et T k ∈ [T min , T max ]. Supposons que (ii) soit satisfaite. En intégrant W on obtient T k 0 W k (τ, χ k )dτ = T k (V (χ k (0)) -V (χ k-1 (T k-1 )))) +T k (V (χ k (T k )) -V (χ k (0))) +V(T k , χ k ) -V(0, χ k ).
Les deux derniers disparaissent en utilisant (4). Sachant que

χ k (0) = x(t + k ), χ k-1 (T k-1 ) = x(t k ), χ k (T k ) = x(t k+1 ), on obtient T k 0 W k (τ, χ k )dτ = T k V (x(t + k )) -V (x(t k )) + V (x(t k+1 )) -V (x(t + k )) = T k [V (x(t k+1 )) -V (x(t k ))] . Alors la suite {V (x(t k ))} k∈N est décroissante en k puisque Ẇk est négatif sur [0, T k ).
(i)⇒(ii) : Supposons maintenant que (i) soit satisfaite. De manière similaire à [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF], nous introduisons la fonctionnelle

V(τ, χ k (τ )) = -T k V (χ k (τ )) + τ (V (x(t k+1 )) -V (x(t k ))).
De simples calculs montrent que la condition (4) est vérifiée. En substituant dans [START_REF] Hespanha | Lyapunov conditions for input-to-state stability of impulsive systems[END_REF], on obtient Ẇk (τ,

χ k ) = V (x(t k+1 )) -V (x(t k )) < 0. L'équivalence est démontrée.
La fin de la démonstration porte sur le comportement du système continu entre deux impulses. Il s'agit de montrer que les solutions du système ne diverge pas entre ces deux instants bien que les solutions convergent en temps discret. Cela se prouve en notant que l'équation (2) assure que les solutions du système sont bornées à partir du moment où T max est borné.

L'intérêt de considérer des fonctions de Lyapunov discrètes se justifie par la possibilité de surmonter le problème des 'fonctions de Lyapunov' continues localement croissantes. En effet, en dépit d'être localement croissante, la 'fonction de Lyapunov' peut être globalement décroissante, contenant donc l'information de stabilité asymptotique du système. Cette propriété est extrêmement importante dans le cadre des systèmes impulsifs afin de tolérer des sauts expansifs et des dynamiques continues instables. En utilisant un tel cadre de travail, seulement la décroissance de la fonction évaluée aux instants d'impulsions est importante. Sur la Figure 1, nous pouvons en effet remarquer que les deux enveloppes générées par les valeurs pre-et post-impulsions de la fonction de Lyapunov continue caractérisent la stabilité asymptotique. La fonctionnelle W du Théorème 1 coincide avec l'enveloppe inférieure. Notons que les deux enveloppes sont équivalentes en terme de mesure de stabilité puisque qu'elles sont reliées par l'égalité

V (x(t + k )) = V (Jx(t k ))
. Il sera montré qu'une telle approche est capable de caractériser la stabilité d'une classe de systèmes plus large que les méthodes existantes [START_REF]Smooth Lyapunov functions for hybrid systems Part ii : (pre)asymptotically stable compact sets[END_REF][START_REF] Hespanha | Lyapunov conditions for input-to-state stability of impulsive systems[END_REF], plus précisément la classe pour laquelle ni A ni J ne sont stables. 

B. Quelques inégalités importantes

De nombreuses fois dans ce qui suit, nous utiliserons les inégalités linéaires matricielles suivantes : C(P, A) := A T P + P A, D(P, J) := J T P J -P, I(P, A, J, T ) := J T e A T T P e AT J -P, 

C. Temps d'attente pour les systèmes impulsifs

Cette section concerne l'obtention de conditions suffisantes pour la caractérisation des temps d'attente des systèmes impulsifs.

Lemme 1 (TAm) Supposons que, pour un T ≥ 0 donné, il existe une matrice P = P T 0 telle que

C(P, A) ≺ 0, (8) 
et

I(P, A, J, T ) ≺ 0. ( 9 
)
Alors pour n'importe quelle séquence d'impulsions {t k } k∈N satisfaisant t k+1 -t k ≥ T , le système (1) est asymptotiquement stable.

Preuve : Le but est de montrer que les conditions cidessus impliquent que I(P, A, J, θ) ≺ 0 est vraie pour tout θ ∈ [T, +∞). La LMI (8) implique que nous avons e A T θ P e Aθ -P 0 [START_REF] Geromel | Stability and stabilization of continuous-time switched linear systems[END_REF] pour tout θ ≥ 0. Cela se prouve facilement en montrant qu'une solution P de (8) est aussi une solution de [START_REF] Geromel | Stability and stabilization of continuous-time switched linear systems[END_REF]. En partant de [START_REF] Geromel | Stability and stabilization of continuous-time switched linear systems[END_REF], il est immédiat de montrer que, pour un κ > 0 fixé, l'inégalité e A T (κ+δ) P e A(κ+δ) e A T κ P e Aκ [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF] est vérifiée pour tout δ > 0. Ainsi, nous avons

J T e A T ( T +δ) P e A( T +δ) J J T e A T T P e A T J (12) 
pour tout δ ≥ 0 et donc ( 9) implique que

J T e A T ( T +δ) P e A( T +δ) J -P ≺ 0 (13) 
est vérifiée pour tout δ ≥ 0. La preuve est complète. Lemme 2 (TAM) Supposons que pour un T > 0 donné, il existe une matrice P = P T 0 telle que C(P, A) ≺ 0 et I(P, A, J, T ) 0 soient vérifiées. Alors pour n'importe quelle suite d'instants d'impulsions {t k } k∈N satisfaisant t k+1 -t k ≤ T , le système (1) est asymptotiquement stable.

Preuve : La preuve est similaire à celle du Lemme 1. Le principal inconvénient des résultats ci-dessus repose sur la présence de termes exponentiels empêchant une possible extension au cas incertain. Nous verrons que grace au Théorème 1 il sera possible d'obtenir des conditions suffisantes pour les Lemmes 1 and 2 présentant des propriétés intéressantes permettant l'extension au cas incertain. Le corollaire suivant est une conséquence immédiate du Lemme 1.

Corollaire 1 (TAa) Le système (1) est asymptotiquement stable indépendamment de la séquence d'impulsions {t k } k∈N s'il existe une matrice P = P T 0 telle que C(P, A) ≺ 0 et D(P, J) ≺ 0 soient satisfaites.

Preuve : Il suffit de poser T = 0 dans (9) pour obtenir ce résultat.

Il est intéressant de noter que la même condition peut être trouvée dans [2, Théorème 4.1.1] et dans [5, Théorème 2] bien qu'exprimée de manière différente.

III. Analyse de stabilité nominale des systèmes linéaires impulsifs Cette section détaille des résultats de stabilité nominale pour le cas d'impulsions périodiques et apériodiques.

A. Cas périodique

Théorème 2: Le système impulsif (1) avec t k+1 -t k = T , k ∈ N est asymptotiquement stable s'il existe des matrices

P, Z ∈ S n ++ , Q, U ∈ S n , R ∈ R n×n et N ∈ R n×2n telles que les LMIs Ψ(T ) := F 0 + T (F 2 + F 3 ) ≺ 0, Φ(T ) := F 0 -T F 3 N T -Z T ≺ 0, (14) 
soient vérifiées avec

M x = I 0 , M ζ = I -J , M -= 0 I , F 3 = M T -U M -et F 0 = T M T x (A T P + P A)M x -M T ζ QM ζ +M T -(J T P J -P )M -+ He[N T M ζ -M T ζ RM x ], F 2 = He[M T x A T QM ζ + M T x A T RM x + M T ζ RAM x ] +M T x A T ZAM x . (15 
) De plus, la fonction quadratique V (x) = x T P x est une fonction de Lyapunov discrète pour le système (1), c'est à dire la LMI I(P, A, J, T ) ≺ 0 est vérifiée.

Preuve : La preuve est inspirée de [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF]. En posant

V (x) = x T P x et V(τ, χ k ) = ( T -τ )ζ k (τ ) T [Qζ k (τ ) + 2Rχ k (τ )] +( T -τ ) τ 0 χk (s) T Z χk (s)ds +τ ( T -τ )χ k-1 ( T ) T U χ k-1 ( T ) (16) où ζ k (τ ) = χ k (τ ) -χ k (0) = χ k (τ ) -Jχ k-1 ( T ), P = P T 0, Q = Q T , Z = Z T 0 et U = U T , nous obtenons après différentiation Ẇk := T k V + V + Λ k ≤ ξ k (τ ) T [F 0 + τ F 1 + (T -τ )F 2 +( T -2τ )F 3 ξ k (τ ) (17) où F 1 = N T Z -1 N , ξ k (t) = col(χ k (τ ), χ k-1 ( T )) et Λ k = χ k-1 ( T ) T J T P J -P χ k-1 ( T ).
Pour obtenir la borne sur Ẇk , nous avons utilisé une version affine de la borne de Jensen [START_REF] Seuret | Stability analysis for sampled-data systems with a time-varying period[END_REF][START_REF] Briat | Convergence and equivalence results for the Jensen's inequality -application to time-delay and sampled-data systems[END_REF] sur le terme intégral

- τ 0 χk (s) T Z χk (s)(s)ds ≤ ξ k (τ ) T 2N T M ζ +τ N T Z -1 N ξ k (τ ). ( 18 
)
Comme l'inégalité matricielle est affine en τ , afin de vérifier sa faisabilité sur tout l'intervalle [0, T ], il est nécessaire et suffisant de la vérifier aux sommets de l'ensemble, c'est à dire pour tout τ ∈ {0, T }. Enfin, un complément de Schur sur le terme quadratique T N T Z -1 N produit le résultat.

Il est important de noter que le Théorème 1 propose une condition nécessaire et suffisante alors que le résultat cidessus n'en propose qu'une suffisante. La nécessité est en effet détruite lorsque la fonctionnelle (16) est sélectionnée. En dépit de ça, il sera montré à travers des exemples que cette fonctionnelle peut conduire à de bons résultats. Les avantages du résultat ci-dessus repose sur la possibilité de considérer des fonctions de Lyapunov non-monotones et sur l'absence de termes exponentiels facilitant l'obtention de critères pour les systèmes incertains. Le lemme ci-dessous propose une condition pour la stabilité pour des périodes arbitrairement petites.

Lemme 3: Quand T → 0, les conditions LMIs [START_REF] Briat | Convergence and equivalence results for the Jensen's inequality -application to time-delay and sampled-data systems[END_REF] tendent vers la condition D(P, J) ≺ 0, impliquant alors que la matrice J est Schur.

Preuve : Quand T → 0, nous avons Ψ(T )

→ F 0 | T =0 et Φ(T ) → F 0 | T =0 où F 0 | T =0 est donné par -M T ζ QM ζ -M T ζ RM x -M T x R T M ζ +N T M ζ + M T ζ N + M T -(J T P J -P )M -≺ 0 (19)
En vertu du Lemme de Finsler [START_REF] Skelton | A Unified Algebraic Approach to Linear Control Design[END_REF], la matrice N peut être éliminée et nous obtenons la LMI équivalente

M T ⊥ M T -(J T P J -P )M -M ⊥ ≺ 0 (20) 
où M ⊥ = J T I T . En évaluant l'expression, on obtient le résultat. Cela signifie que la condition donnée dans le Théorème 2, lorsqu'elle est évaluée pour des périodes arbitrairement faibles, peut être remplacée, dans le cas où J est Schur, par l'inégalité de Stein.

B. Caractérisation des temps d'attente minimal et maximal

Nous développons dans cette section des conditions suffisantes pour la caractérisation de temps d'attente en utilisant l'approche basée fonctionnelle proposée.

Théorème 3 (Temps d'Attente Minimal) Supposons que pour un T > 0 donné, il existe des matrices 1) est asymptotiquement stable et nous avons I(P, A, J, θ) ≺ 0 pour tout θ ∈ [ T , +∞).

P, Z ∈ S n ++ , U, Q ∈ S n et R ∈ R n×n telles que Ψ(T ) ≺ 0, Φ(T ) ≺ 0 et C(P, A) ≺ 0 soient satisfaites. Alors, pour n'importe quelle séquence {t k } k∈N vérifiant t k+1 -t k ≥ T , le système (
Preuve : La résultat est conséquence du Lemme 1 et du Théorème 2.

Théorème 4 (Temps d'Attente Maximal) Supposons que pour un T > 0 donné, il existe des matrices P, Z ∈ S n ++ , U, Q ∈ S n et R ∈ R n×n telles que Ψ( T ) ≺ 0, Φ( T ) ≺ 0 et C(P, A) ≺ 0 soient satisfaites. Alors, pour n'importe quelle séquence {t k } k∈N vérifiant t k+1 -t k ≤ T , le système (1) est asymptotiquement stable et nous avons I(P, A, J, θ) ≺ 0 pour tout θ ∈ [ T , +∞).

Preuve : La preuve utilise le Lemme 2 et le Théorème 2.

C. Stabilité sur un intervalle -Temps d'attente minmax

Comme les résultats ci-dessus ne peuvent être appliqués seulement quand la matrice A est Hurwitz ou anti-Hurwitz, nous dérivons le résultat suivant qui s'applique a n'importe quel type de système. Une condition suffisante pour le temps d'attente minmax est donnée en termes de problème de faisabilité robuste convexe Preuve Comme les LMIs du Théorème 2 sont convexes en T , par un argument de convexité le résultat est obtenu.

I(P, A, J, θ) ≺ 0 (21) 
Il semble important de noter que ce résultat peut être appliqué à une grande classe de systèmes, notamment ceux dont ni A ni J ne sont stables. Tous les résultats actuels, par exemple [5, Théorèmé 1], concernant la stabilité des systèmes impulsifs nécessitent qu'une de deux matrices soit stable. Cela démontre l'intérêt de cette approche qui peut être étendue aux systèmes avec des entrées/sorties.

IV. Exemples

Exemple 1: Considérons le système (1) avec les matrices

A = 1 3 -1 2 , J = 0.5I 2 . ( 22 
)
La matrice A a deux valeurs propres instables situées à 1.5 ± 1.6583j, nous avons donc besoin d'un J stabilisant, c'est-à-dire J Schur. Il est aussi facile de voir que si les impulsions sont trop espacées, la stabilité ne peut pas tenir. En appliquant le Théorème 2 (impulsions périodiques) avec une approche par dichotomie pour trouver le maximal T > 0, nous obtenons T max = 0.4471. En utilisant un résultat basé sur le rayon spectral nous trouvons 0.4620. Cela montre que l'approche proposée est capable d'estimer de manière assez précise la période maximale pour cet exemple. En choisissant T = 0.3, nous obtenons les trajectoires des états et de la fonction de Lyapunov représentés sur les Figures 1 et 2. En posant J = σI 2 , nous pouvons calculer le maximal T max (σ) ; voir Figure 3. Exemple 2: Considérons maintenant le système (1) avec les matrices 

A = -1 0 1 -2 , J = 2 1 1 3 . ( 23 
En appliquant le Théorème 2, nous obtenons la période d'échantillonnage constante maximale T max = 1.7239 comme dans [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF][START_REF] Briat | Stability criteria for asynchronous sampled-data systems -a fragmentation approach[END_REF]. Pour comparaison, la condition basée sur le rayon spectral donne une valeur maximale de 1.7294. Dans le cas apériodique, le Théorème 5 donne la valeur T max = 1.7239 pour la valeur donnée T min = 10 -5 .

V. Conclusion

Une approche basée sur des fonctionnelles pour l'analyse de systèmes impulsifs a été proposée. Le principal avantage de cette méthode vient de la possibilité d'analyser la stabilité du système en temps-discret via une approche en temps-continu. Cette approche permet de considérer facilement des 'fonctions de Lyapunov' non monotones et d'analyser une plus grande classe de systèmes que les méthodes existantes. Elle conduit également à des critères linéaires de stabilité, soulignant donc la possible généralisation des résultats au cas incertain. Plusieurs exemples confirment son intérêt.

  Fig. 1. 'Fonction de Lyapunov' continue V (trait plein) pour le système (22) et les enveloppes à temps-discret (tirets) ; W coincide avec l'enveloppe inférieure qui décroit de manière monotone.

( 7 )

 7 où C, D et I respectivement signifiant 'continu', 'discret' et 'impulsif'.

  qui doit être satisfait pour un P = P T 0 et pour tout θ ∈ [T min , T max ]. Le théorème suivant expose une condition suffisante pour (21) dépourvue de termes exponentiels :Théorème 5: Le système impulsif (1) avecT k ∈ [T min , T max ], 0 < T min ≤ T max < ∞ est asymptotiquement stable s'il existe des matrices P, Z ∈ S n ++ , Q, U ∈ S n , R ∈ R n×n et N ∈ R n×2n telles que Ψ(T ) ≺ 0 et Φ(T ) ≺ 0soient satisfaites pour tout T ∈ {T min , T max }. Dans ce cas, l'inégalité I(P, A, J, θ) ≺ 0 est satisfaite pour tout θ ∈ [T min , T max ].

Fig. 2 . 3 .

 23 Fig. 2. Trajectoire des états du système (22) pour une période d'impulsions T = 0.3. Dans le cas apériodique, nous utilisons le Théorème 4 et nous trouvons T max = 0.4471, le système est donc pour n'importe quel T k ∈ [0, T max ]. Quand le Lemme 2 est plutôt considéré, nous obtenons 0.4620. Cela montre que le Théorème 4 fournit une approximation relativement précise du temps d'attente. Exemple 2: Considérons maintenant le système (1) avec les matrices
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TABLE I Table d

 Id 

	'application des résultats développés (TA signifie
	'Temps d'Attente' et tous : TA minimal, TA maximal et
	impulsions arbitraires)
	exponentiels et capables de considérer avec précision les
	sauts de l'état en autorisant la 'fonction de Lyapunov'
	à être localement croissante. En effet, si les sauts sont
	expansifs, la stabilité est préservée si l'état décroît suffi-
	samment entre les sauts. Inversement, l'état peut croître
	entre les sauts pourvu que les sauts soient contractants.
	Les conditions obtenues permettent de caractériser effica-
	cement les cas de sauts périodiques ou apériodiques. Dans
	le cas apériodique, quatre différents cas sont considérés :
	-le temps d'attente minimal (TAm)
	T k := t k+1 -t k ∈ [T min , +∞) ;
	-le temps d'attente maximal (TAM)
	T k ∈ [0, T max ],
	-le temps d'attente 'min/max' (TAmM)
	T k ∈ [T min , T max ],
	-le temps d'attente arbitraire (TAa)
	T k ∈ R +
	Les domaines d'applications de ces concepts sont ras-
	semblés dans la Table I. Il est important de noter que le
	cas (3,3) ne peut pas être analysé en utilisant les méthodes
	existantes car aucune des matrices n'est stable.
	Les notations sont relativement standards. Étant
	données deux matrices symétriques A, B, A ≺ B signifie
	que A -B est définie négative. Les ensembles des matrices
	symétriques et symétriques définies positives de dimension
	n sont respectivement notés S n et S n ++ . Le rayon spectral
	et l'opérateur de valeurs propres sont dénotés réelle par ρ(•)
	et λ(•) respectivement. Étant donnée une matrice carrée A,
	on définit He[A] = A + A T .

  ) Dans ce cas ci, A est Hurwitz et J est anti-Schur. Donc si T est trop faible, le système est instable. Le Théorème 2 est utilisé avec une approche par dichotomie pour trouver le minimal T > 0 préservant la stabilité et nous trouvons T min = 1.2323. La condition de rayon spectral conduit à la valeur 1.14053. Encore une fois la condition proposée conduit à des résultats assez précis. Dans le cas apériodique, on utilise le Théorème 3 et on trouve T min = 1.2322, le système est donc stable pour n'importe quels T k ∈ [T min , +∞). Quand le Lemme 2 est employé, on trouve 1.1405. Il est important de noter que ce type de systèmes ne peut pas être analysé avec les méthodes existantes [4, 5] car ni A ni J ne sont stables. Dans le cas périodique, le Théorème 2 est utilisé avec deux dichotomies. Il est déterminé que T min = 0.1824 et T max = 0.5760. L'analyse des valeurs propres donne les valeurs 0.1824 et 0.5776. Une fois encore, les résultats obtenus avec le Théorème 2 collent très bien avec les résultats théoriques par analyse de valeurs propres. Pour montrer que ce cas ne peut pas être considéré avec les méthodes existantes, prenons T = 0.3 et nous trouvons P = diag(2.3622, 1.4752) ainsi que Dans le cas apériodique, le Théorème 5 est utilisé et nous obtenons l'intervalle [0.1907, 0.5063], qui est inclus dans l'intervalle obtenu dans le cas périodique. Exemple 4: Considérons maintenant le système échantillonné suivant ẋ(t) = Ãx(t) + Bu(t) u(t) = Kx(t k ), t ∈ [t k , t k+1 ) (26) où t k+1 -t k = T , k ∈ N. Il est possible de reformuler le système ci-dessus en un système impulsif [8] :

						1	
						0.9	
						0.8	
						0.7	
						0.6	
					T (σ)	0.5	
						0.4	
						0.3	
						0.2	
						0.1	
	ż(t) z(t + k ) = =	Ã B 0 0 K 0 I n 0	z(t) z(t k )	(27)	0 0 Fig. 3. Evolution de la période d'impulsions maximale T par rapport 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 σ à σ dans l'exemple 1.
	où z(t) = col(x(t), u(t)). Choisissons les matrices [8, 11, 16]			
					Exemple 3: Soit le système (1) avec les matrices
						A =	-1 0.1 0 1.2	,	J =	1.2 0 0 0.5	.	(24)
					Dans ce cas-ci, la dynamique à temps-continu du premier
					état est stable tandis que celle du second est instable. En
					parallèle, la matrice J est instable pour le premier état
					et instable pour le deuxième. Ainsi, si la période est trop
					petite, une impulsion déstabilisante arrivera trop souvent.
					Inversement, si la période T est trop grande, l'impulsion
					stabilisante ne sera pas en mesure de stabiliser la dyna-
					mique à temps-continu instable. Il est donc escompté que
					la période admissible appartienne à un intervalle excluant
					0 et +∞. C(P, A) D(P, J)	-cP e -d P	(25)

où c = -2.4036 et d = -0.3646. Comme c et d sont simultanément négatifs, la méthode de

[START_REF] Hespanha | Lyapunov conditions for input-to-state stability of impulsive systems[END_REF] 

ne permet pas de conclure. Ce fait démontre l'intérêt de l'approche proposée.

Nous pourrions regarder la séquence {V (x(t + k ))} k∈N à la place. Le choix est purement arbitraire.
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