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Abstract

Exploratory data analysis (EDA) is a frequently under-valued part of data analysis in biology. It

involves evaluating the characteristics of the data before proceeding to the definitive analysis in

relation to the scientific question at hand. For phylogenetic analyses, a useful tool for EDA is a

data-display network. This type of network is designed to display any character (or tree) conflict in

a dataset, without prior assumptions about the causes of those conflicts. The conflicts might be

caused by (a) methodological issues in data collection or analysis, (b) homoplasy, or (c) horizontal

gene flow of some sort. Here, I explore 13 published datasets using splits networks, as examples of

using data-display networks for EDA. In each case, I performed an original EDA on the data

provided, to highlight the aspects of the resulting network that will be important for an

interpretation of the phylogeny. In each case, there is at least one important point (possibly missed

by the original authors) that might affect the phylogenetic analysis. I conclude that EDA should

play a greater role in phylogenetic analyses than it has done.



3

Introduction

There has been considerable recent interest in the use of networks rather than trees as the

basis for phylogenetic analysis. The intention is to replace the Darwinian model of a bifurcating tree

by a “reticulating tree”, with the reticulations representing evolutionary processes other than lineal

descent with modification. Such process involve gene flow of some sort, including: hybridization,

introgression, recombination, horizontal / lateral gene transfer, genome fusion, ancestral

polymorphism / deep coalescence / incomplete lineage-sorting, and gene duplication–loss.

Unfortunately, this field is rather poorly developed at the moment (Morrison 2010; Nakhleh

2010). Networks that try explicitly to represent evolutionary history (called evolutionary networks)

all have serious restrictions on the types of patterns they can analyze, and on the allowed

complexity of those patterns. As noted by Huson et al. (2009): “there are many promising directions

to follow and rudimentary software implementations, [but] there is no tool currently available that

biologists could easily and routinely use on real data.”

What we have, instead, is a wide array of methods for displaying data conflict in phylogenetic

datasets (called data-display networks). That is, compatible data patterns are displayed as a tree,

while incompatibilities in the data are displayed as reticulations in the tree. The data may be either

raw character data (e.g. sequences, AFLP, microsatellites, SNPs) or they may be characters

summarized as a set of trees (e.g. gene trees). The importance of the distinction between these two

types of network has been re-iterated in the literature (Nakhleh et al. 2003; Bryant and Moulton

2004; Morrison 2005, 2010; Huson and Bryant 2006; Reeves and Richards 2007; Ayling and

Brown 2008), along with the possible role of data-display networks in exploratory data analysis.

The main issue here is that any data conflict can create reticulations in a data-display network,

irrespective of its source. In addition to the gene-flow processes listed above, incompatibilities can

arise from (Morrison 2010): (i) homoplasy due to analogous rather than homologous characters
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(e.g. parallelism, convergence, reversal); or (ii) methodological issues in data collection (e.g. taxon

sampling, character sampling, outgroups) or data analysis (e.g. model mis-specification, choice of

optimality criterion). These patterns may confound the search for (and display of) the gene-flow

processes being analyzed in an evolutionary network.

The detection of data conflicts, and the extent to which data conflicts will affect the data

analysis, then becomes an important first step in a phylogenetic analysis. Mathematically, this is

exploratory data analysis (EDA) or descriptive data analysis. EDA is often an undervalued tool in

biological studies (Ellison 2001; Behrens and Yu 2003), although see Grant and Kluge (2003) for a

contrary point of view. Instead, biologists frequently proceed directly to (statistical) hypothesis

testing (inferential or confirmatory data analysis) without considering the nature of their data or the

suitability of the test for those data. However, it is not prudent to rely on mathematical tests without

a detailed exploration of the data first (Bandelt 2005). The use of networks as a tool for EDA has

rarely been illustrated in the scientific literature.

My purpose in this paper is therefore to illustrate the valuable role of data-display networks in

EDA as part of a phylogenetic analysis. Data-display networks may reveal reticulation patterns that

are unsuspected in the data, and which may have an important bearing on subsequent analyses and

their interpretation. I do not consider the ways in which the reticulation patterns should be dealt

with in the subsequent parts of the phylogenetic analysis: my aim is simply to highlight methods by

which such patterns can be detected.

I do this using empirical examples of phylogenetic analyses from the literature. In each case, I

have performed an original EDA on the data provided, and I highlight the aspects of the resulting

network that will be important for an interpretation of the phylogeny. In each case, there is at least

one important point missed by the original authors, which might affect the phylogenetic analysis.

For convenience, I have restricted myself to data-display networks based on splits graphs (Huson

and Bryant 2006). I start with a consideration of EDA and splits graphs, and then proceed to the
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role of EDA in studying technical problems, reticulation processes, unresolved phylogenies, and

possible limitations of analyses.

Methods

Exploratory Data Analysis

EDA traditionally involves both graphical displays of the data and numerical summaries of

the data (Tukey 1977). The objective is not just to summarize the patterns in the data but to

visualize them in a way that is meaningful in a phylogenetic context. These ways should highlight

potential problems with any phylogenetic analysis of the dataset, and preferably do so in a way that

allows rapid interactive assessments of the data.

Here, I am concerned solely with graphical displays, in this case a reticulated tree.

Mathematically, a tree is an acyclic, leaf-labeled and connected line graph. For the purposes here,

the graph can additionally have undirected cycles (reticulations). The cycles are undirected because

there is no obligation to interpret the graph as an evolutionary diagram, and so the entire graph is

undirected (or unrooted, in biological parlance). I will refer to a labeled graph with possible

reticulations as a network. The network contains nodes linked by edges. The nodes do not

necessarily represent ancestors (as they would in a rooted tree), and the edges do not necessarily

represent biological character transformations (from ancestor to descendant). At least some of the

nodes may simply be serving a heuristic role in portraying data conflict, and the edges simply

represent apparent differences in data between the nodes (due to any cause). I will stress this by

using “edge” rather than “branch”.

The reason for emphasizing networks in EDA of phylogenetic data is that if sequences are

analyzed by fitting them to a tree then the output will be a tree, by definition, regardless of whether
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the data are tree-like or not. However, if these data are fitted to a network, then the output will be

somewhere between the two extremes of a binary tree and a completely reticulating network. If the

sites in the data are compatible with one another, then the output will be a tree. Alternatively, if

there is incompatibility among some (or all) of the sites, then the output will be a form of network.

For this reason alone it would be very wise to survey phylogenetic data using network methods

before attempting to infer phylogenetic trees.

The range of available techniques for constructing data-display networks has been surveyed

recently by a number of authors (Posada and Crandall 2001; Morrison 2005, 2010; Vriesendorp and

Bakker 2005; Huson and Bryant 2006; Makarenkov et al. 2006; Gemeinholzer 2008), and so I will

not enumerate them here. Data-display networks, of whatever type, are fast and relatively easy to

calculate, which makes them ideal as a tool for EDA.

There is no set protocol for EDA, unlike hypothesis testing where there is a strict need for an

a priori hypothesis and usually a formal mathematical procedure. In many ways, EDA is a “fishing

expedition”, where a number of lures are tried in order to detect the presence of something of

particular interest (e.g. a fish rather than an old boot). There may be a priori ideas about what

interesting things there are to be found (e.g. evidence of gene-flow processes), but there is also the

intention to catch whatever is available (i.e. other patterns of data conflict), and keep it if it is over

the pre-determined size limit (e.g. large patterns that may affect the subsequent interpretation of the

data). The metaphor is thus a good one.

For EDA in phylogenetic analysis, then, the idea is to try a few different network-construction

methods, and see what they produce. To this end, convenience is as valid a criterion as any for the

choice of methods, pending more detailed information about the relative merits of the available

algorithms. In what follows, I have simply used a range of splits-network methods available in the

program SplitsTree either v. 2.4 (Huson 1998) or 4.3 (Huson and Bryant 2006), and I display the

network(s) that seem to me to be most relevant to the particular points that I wish to make. This use
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of splits networks follows the work on EDA in phylogenetics by Holland et al. (2004, 2005) and

Wägele and Mayer (2007).

Splits Networks

There are many algorithms now available for generating splits networks (Huson and Bryant

2006; Morrison 2010), including: (a) median networks (Bandelt 1994; Bandelt et al. 2000), split

decomposition (Bandelt and Dress 199), parsimony splits (Bandelt and Dress 1993) and neighbor-

net (Bryant and Moulton 2002, 2004) for character or distance data; (b) consensus networks

(Holland and Moulton 2003; Holland et al. 2005, 2006) and super-networks (Huson et al. 2004,

2006) for data represented as multiple trees. Also, recombination networks (Huson and Kloepper

2005) and hybridization networks (Huson et al. 2005; Huson and Kloepper 2007) can be derived

from splits networks as meta-analyses for evolutionary networks. Here, I concentrate on group (a).

For some detailed examples of EDA using group (b) see Holland et al. (2004, 2005).

Note that my possibly arbitrary choice from among these method is unlikely to unduly

influence the interpretation of the EDA. For example, if there is a large amount of conflicting

character information in a dataset, then the median network will have a large complex set of cycles,

while the split decomposition and parsimony splits networks will be unresolved, and the neighbor-

net will be somewhere in between. These are all valid ways of representing the conflict, but in this

case the neighbor-net will be the one that is clearest to interpret.

As an introductory example of the use of a splits network, Fig. 1 shows a parsimony splits

analysis of Table 1, which contains data for 16 phenotypic characteristics that might be useful for

reconstructing the evolutionary history of 12 extant vertebrate groups. The network edges have a

simple 1:1 relationship to the character data, as they also would for a maximum-parsimony tree

(you can easily confirm this for yourself). There are 13 characters used in the network analysis



8

(invariant and non-binary characters are ignored), and 12 of these form a perfect series of nested

sets, which can be represented as a tree. However, character 15 (homeothermy) is incompatible with

characters 12–14, forming a single undirected cycle.

In a splits network, an undirected cycle consists of two sets of parallel edges. Each set of

edges represents a single bipartition (or split) of the samples. For example, the edges in Fig. 1

labeled with character 15 separate the partition {Birds, Mammals} from the remaining taxa; and the

edges labeled with characters 12–14 separate the partition {Birds, Crocodiles} from the remaining

taxa. Note that in this particular example all of the nodes represent extant taxa. This is unusual, as

usually there will be unlabeled nodes formed by the junctions of the sets of parallel edges — these

should not interpreted as unobserved “ancestors”.

Ideally, there would be a simple interpretation of a splits network, with tree-like structure

representing unconflicting character patterns, cycles representing conflicting patterns, and

unresolved structure representing lack of character information. Unfortunately, this simple

interpretation is often confounded by the fact that, if there are too many conflicting patterns to be

displayed, then this will also be shown as an unresolved structure.

Note that we should not interpret Fig. 1 as an evolutionary diagram. It might be tempting to

do so, perhaps rooting the network on the Lamprey-Shark edge (in a manner analogous to using an

outgroup to root a phylogenetic tree). The Birds might then be interpreted as “hybrids” between

Mammals and Crocodiles! However, all the network graph is doing in this case is highlighting the

character conflicts, which might be better interpreted here as homoplasy (i.e. parallel origin of

homeothermy in birds and mammals).
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Results and Discussion

Methodological Problems in Data Analysis

There is a seemingly endless list of known or potential methodological problems associated

with phylogenetic analysis, presumably arising from the fact that we are trying to reconstruct

historically unique events given only contemporary data. This may be the hardest sort of

mathematical analysis that a biologist can try. Here, I illustrate the use of data-display networks to

investigate three well-known issues.

It is standard procedure these days (other than for parsimony analysis) to decide on which

substitution model to use based on some formal procedure, in order to identify the “best fitting”

model, which is the one that will then be used. The rationale for this approach is that the best-fitting

model is the one that is least likely to introduce methodological problems.

This point is illustrated in Fig. 2. The left-hand network shows use of the WAG+G amino-

acid substitution matrix, which is the best-fitting one available for this example dataset, and the

right network shows the MtMAM+G matrix, which is the worst-fitting one, both as assessed by the

ProtTest program v. 1.3 (Abascal et al. 2005). While much of the structure of the two splits

networks is basically the same, the relative sizes of the splits change as the fit of the model worsens,

some new minor splits are added and one major one is deleted ({Plasmodium, Arabidopsis} versus

the rest). Thus, there is a clear difference in the assessed complexity of the character conflicts

between the two amino-acid models, with the best-fitting model being substantially “cleaner”. This

shows that choosing an inappropriate model can definitely make a phylogenetic analysis harder to

interpret than it needs to be.

It is worth mentioning that model mis-specification has long been recognized as a problem in

tree-building analyses, and there is no a priori reason to expect network analyses to be any more
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robust. Evolutionary analyses of molecular data require both a graph model to be specified and a

substitution model. Networks generalize the first type of model but do not necessarily influence the

second type. For example, compositional heterogeneity (Jermiin 2004) might create exactly the

same sorts of problems for network analyses as for trees.

Another perennial problem in a phylogenetic analysis is the stability of the junction between

the outgroup and the ingroup. Outgroups can be either too distant from or too close to the ingroup

to be effective determinants of the true root. Divergent outgroups will be affected by stochastic

variation (so that their location is almost random), while close outgroups may not be reciprocally

monophyletic with the ingroup (so that there is no single root location).

This point is illustrated in Fig. 3. The structure of the splits network from the ingroup alone

(top figure) is reflected in the network containing both the ingroup and outgroup (bottom figure),

but the intricacy of the network cycles is much greater when the outgroup is included. Indeed, there

is a 3-dimensional cycle, as well as several extra 2-dimensional ones. This indicates that the

outgroup has complex relationships to the ingroup, and the root of any phylogenetic tree is likely to

be unstable. It is perhaps unsurprising that the groups are not reciprocally monophyletic here, given

that the data have been sampled at the population level (8 worms from each of 8 farms).

One of the most notorious manifestations of the opposite rooting problem is long-branch

attraction (LBA) caused by distant outgroups (Bergsten 2005). The use of data-display networks as

part of an EDA in search of LBA has previously been explored by Kennedy et al. (2005) and

Wägele and Mayer (2007).

Fig. 4 shows an example based on trying to find the root of the angiosperms. The neighbor-

joining tree (Fig. 4a) shows a classic case of possible LBA, with the long edges leading to the

outgroup (the edge labeled b) and the grasses (edge a) being separated by a very short edge (e) from

the edges leading to the remaining monocotyledons (c) and the dicotyledons (d). The implication

here is that the root might be on the wrong edge, with the distant outgroup being attracted to the
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longest ingroup edge. If the tree is rooted on edge d, instead, then the monocots and dicots would

both be monophyletic. Alternatively, the most popular choice in the literature is that the root should

be somewhere in the group joined to edge c. The use of a median network (Fig. 4b) as an EDA

shows that the data actually support quite a number of possible roots. These are, in approximate

order of decreasing split support (as indicated by the edge lengths), the edges leading to: (1) the

grasses, (2) Amborella + Nymphaea, (3) Amborella, (4) Nymphaea, (5) Calycanthus, (6) the grasses

+ other monocots minus Acorus, (7) Amborella + Calycanthus, (8) Amborella + Calycanthus +

Nymphaea, and (9) Acorus + Amborella + Nymphaea. So, the best-supported root is the one shown

in the neighbor-joining tree, as expected, but rooting somewhere along edge c is also well

supported. Edge d, however, is firmly rejected by the data as a possible root (and the

monocotyledons must therefore be paraphyletic).

Holland et al. (2006) provide a somewhat different EDA of this dataset. They first constructed

a separate maximum-likelihood tree for each of the 61 genes, and then calculated the consensus

network of these trees, filtering out the least-supported bipartitions in the process. Their data-

display network shows support (in approximate order) for roots (2), (1), (3) and (4). This is a

somewhat slower route (i.e. more calculation-intensive) to roughly the same conclusion as I have

reached here.

Some other examples of methodological problems identified using data-display networks are

provided by Morrison (2010), including sequence variation between laboratories and sequence

misalignment, along with examples of homoplasy due to parallelism and reversal.

Detecting Reticulation Processes

In addition to homoplasy and methodological issues, it is also possible for EDA to be used to

identify possible gene-flow processes, which may or may not be the main focus of the phylogenetic
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study. However, it is best to remember that even under these circumstances the data-display

networks should not be interpreted as evolutionary networks, because the nodes do not necessarily

represent ancestors and the edges do not necessarily represent biological events. Data-display

networks are good for generating biological hypotheses but not for testing them. Here, I illustrate

the use of data-display networks to investigate recombination, hybridization, introgression and

incomplete lineage-sorting.

The splits network in Fig. 5 has a single “netted region” (a collection of cycles with shared

edges), apparently involving one of the Rana palmipes samples (labeled VenAMNHA118801).

This sample shares slightly more similarity with the other R. palmipes sample (EcuKU204425) than

it does with the R. spectabilis sample (JAC8622). Cross-checking with the original sequence data

shows that the first 3/5 of the alignment is shared between the two R. palmipes samples while the

final 2/5 is shared with R. spectabilis. If the idea of a sequencing error (e.g. in vitro recombination)

is rejected, then perhaps the most likely explanation here is recombination, even though these are

mitochondrial sequences collected quite some geographical distance apart. The original authors

noted that the VenAMNHA118801 sample was “considerably more divergent” but did not note the

specific pattern in the sequence. They did, however, suggest that there might be multiple species in

R. palmipes. Irrespective of its cause, this “recombination” pattern might confound any subsequent

tree-building analysis. In the authors’ maximum-likelihood tree, the two R. palmipes samples are

sisters but the VenAMNHA118801 sample has a very long terminal edge, while in the parsimony

analysis the latter sample is placed elsewhere in the tree.

The splits network in Fig. 6 has two cycles representing character conflict. The reticulation

involving Viburnum prunifolium is caused by conflict between the two genes, rather than by

conflict within the genes. This was identified by the original authors as resulting from a

hybridization of V. lentago and V. rufidulum, which is certainly consistent with the data-display

network. However, the involvement of V. elatum is also a possibility based on the diagram, due to
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the polychotomy, or even the ancestor of V. rufidulum and V. elatum. The other reticulation,

involving V. melanocarpum, is caused by conflict within the genes, which was not discussed by the

original authors. It is unlikely to be a hybridization event, because it would involve V. erosum and

the ancestor of V. erosum and V. japonicum, which would not be time-consistent (i.e. a descendant

would be hybridizing with its own ancestor). It is probably a straightforward case of homoplasy. It

does, however, cause lack of resolution in the authors’ tree-building analyses.

The next example involves an EDA of a potential case of introgression due to complex

sharing of mitochondrial and nuclear DNA patterns. The original author compared parsimony trees

from both nuclear and mitochondrial sequences, concluding from their conflict that there was

“introgression of Drosophila simulans III mtDNA into D. mauritania.” For the nuclear-DNA

analysis, the two D. mauritania samples were sisters in the parsimony consensus tree, as were

samples I and III from D. simulans, with 97% and 62% bootstrap support, respectively. These two

placements are crucial to the author’s argument. However, Fig. 7 shows that neither of these

placements is uncontradicted by the character data, as indicated by the conflicting bipartitions in the

parsimony splits network. More importantly, the support for the D. mauritania placement comes

almost entirely from the choice of a parsimony tree-building analysis. A split decomposition

analysis using the simplest model that corrects for multiple substitutions (the Jukes-Cantor model)

shows that most of the support for this sister-group relationship disappears, although the D.

simulans sister-group relationship remains (albeit with much character conflict). This greatly

weakens the strength of the author’s conclusions.

It is important to note that in this example the network patterns do not reflect the tree

bootstrap supports, and the strongest bootstrap support in the tree is associated with the weakest

pattern in the network. This independence of EDA information and bootstrapping has also been

noted by Wägele and Mayer (2007). EDA provides information prior to tree building whereas

bootstrapping provides it afterwards.
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Moving on, the splits network in Fig. 8 has two netted regions and two simple cycles

representing character conflict. All of the patterns shown here as reticulations were attributed by the

original authors to incomplete lineage-sorting (or ancestral polymorphism). This is because of the

sharing of haplotypes between the different Senecio species (notably S. glaucus) and the complex

linking of haplotypes between species (notably in S. leucanthemifolius, S. glaucus and S. rupestris).

This interpretation is certainly consistent with the data-display network. However, the authors reach

their conclusions based on a series of separate maximum-parsimony trees (one for each data type),

which is a much more complicated way of displaying the same data conflicts shown here.

Similarly, in Fig. 9 the pattern shown by the single netted region was attributed by the

original authors to incomplete lineage-sorting. However, they presented a very simplified

phylogenetic tree (of unclear origin), which does not make obvious the complex patterns of sharing

of haplotypes between the genera. A network seems to be a much superior display of the relevant

data here.

For the example in Fig. 10, the original authors were interested in the two rDNA forms that

they detected in Perkinsus andrewsi (labeled A and B). However, the EDA makes it clear that these

forms differ in four apparently independent ways, represented by the four numbered splits in Fig.

10a. These sequence differences are shared with sequences from the other three species, rather than

being within-species divergences. Furthermore, the character support for these splits is not

randomly distributed along the sequenced region, but occurs at distinct non-overlapping places

within the ITS1 and ITS2 genes (Fig. 10b). Of particular interest, in the sequences labeled “sp.2c”,

“sp.1c” and “sp.2a” the rDNA unit is apparently a mosaic, each one containing some but not all of

the differences apparent between the two P. andrewsi forms. Clearly, this situation has not arisen by

simple vertical inheritance. The original authors suggest in vitro recombination as a possible cause,

but it could be a gene duplication followed by parallel changes among the species, or some form of

introgression. Whatever the explanation, the circumstances are much more complex than could be
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resolved by a phylogenetic tree alone.

Unresolved Patterns

In this section I illustrate the use of data-display networks to provide an EDA of whether

there is, indeed, sufficient unconflicted information in a dataset for it to be worthwhile to perform a

phylogenetic analysis. A tree, after all, summarizes the majority data pattern in the characters, and if

there is no clear majority then a tree will not be a valid representation of that dataset. An EDA

seems to be an obvious step to take before starting any tree building, and yet there is almost no

indication in published papers that it is performed.

The splits network in Fig. 11 has a single cycle. The long internal edges indicate strong

support for the four main groups of Leishmania (subgenera Sauroleishmania and Viannia, and two

clades within subgenus Leishmania). However, the short central edges forming the cycle indicate

two conflicting signals, so that the relationships between the subgenera are not clear. There are

simply too few parsimony-informative characters to resolve the short edges and make an

unequivocal decision about the relationships of three of the groups (there are 6 versus 5 characters

supporting the two resolutions shown in the reticulation). This conflict is not represented in the

parsimony tree, as there is 80% bootstrap support for the clade Leishmania + Sauroleishmania. A

tree is probably valid here, but it should bear one notable unresolved polychotomy.

A more severe situation is where there are few data about relationships among many of the

samples. The example in Fig. 12 shows a splits network with apparent support for only three pairs

out of the 10 samples, and even then this support is not uncontradicted. Otherwise, there are simply

10 long terminal edges, with very little in the way of information about the inter-relationships. The

EDA shows that much of the sequence data (10 768 aligned nucleotides) are either invariant (5944

positions) or relate to autapomorphies (1524 positions), with only 31% of the data potentially



16

relating to shared relationships. Furthermore, these synapomorphic data are very contradictory, with

47 of the possible 255 bipartitions (for 10 taxa) having at least some data support. Tree building

will not be a reliable activity under these circumstances.

An even more extreme example is discussed by Wägele and Mayer (2007) (their Fig. 20).

Here, the synapomorphic data were almost completely contradictory, with all of the possible 127

bipartitions (for 8 taxa) having at least some data support. Not unexpectedly, the EDA network was

simply a spider web with 8 long edges sticking out of it. Notwithstanding this, the bootstrap

analysis of the original authors showed 91–100% support for 3 of the internal edges of their

phylogenetic tree. It is difficult to see what value a tree has in this situation.

In population datasets it is more common to encounter network analyses compared to datasets

dealing with species, but many such data sets are still analyzed by tree building alone. Fig. 13

shows both a tree analysis and a data-display network analysis of the same dataset. The neighbor-

net network is based on the neighbor-joining tree, and this is clearly reflected in the underlying

“skeleton” of the network graph. However, the true population complexity of character

relationships is obscured in the tree alone, which therefore gives a rather false visual impression of

the population patterns.

Failure of the Analysis

Here, I illustrate the use of data-display networks to investigate the failure of an evolutionary

network to analyze the data correctly, thus illustrating one of the inherent limitations of the current

algorithms.

One method for producing an evolutionary network is to “simplify” the cycles of a data-

display network, thereby possibly filtering the stochastic data conflicts from the biologically

relevant ones. Huson and Klöpper (2007) point out that a splits network has a set of independent
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reticulations that form “netted regions” while a “reticulate network” has a set of dependent

reticulations that form “tangles” (or galls). Tangles are simpler than netted regions but nevertheless

preserve relationships among the samples. So, a splits network (or any collection of bipartitions)

can be converted into a reticulate network by taking the unrooted graph and adding a root, and then

finding the minimum number of reticulation nodes needed to replace each netted region with a

tangle. The objective is to find compatible reticulations that can be pooled, reducing all of the data

incompatibilities to simpler reticulation events (McBreen and Lockhart 2006).

The example in Fig. 14 illustrates both the method and its limitation. The top graph shows a

“known” species tree with four speciation events, plus two horizontal gene transfers (HGTs)

affecting taxa C+A and B+F. In this example, each HGT involves one gene only, so there are two

resulting gene trees. These trees have no components (or non-trivial bipartitions) in common.

Nevertheless, if each gene tree is reconciled with the rooted species tree, using the program of

Addario-Berry et al. (2003), then the reticulate taxon is correctly identified in each case (i.e. taxa A

and F). Note that I am using the term “reticulate taxon” because there is assumed to be no a

posteriori knowledge about whether the gene-flow process is hybridization, recombination or HGT.

A consensus network (Holland et al. 2006) can also be constructed from these two gene trees,

which is a type of data-display network. This would be suitable for an EDA; and it indicates an

apparently complex set of inter-relationships among the taxa. Sadly, we know that this EDA is

misleading, since there are only two instances of gene flow that are independent of the normal

divergent process of vertical inheritance. This unfortunate situation occurs because neither of the

gene trees reflects the underlying species tree (i.e. the tree for the rest of the genome).

We could then also construct a reticulate network (Fig. 14 bottom) from the consensus

network, with taxon A providing the root. In this case, it would be a “hybridization network” since

the underlying mathematical model is based on the biological process of hybridization. This is now

an evolutionary network (rather than a data-display network), with each edge having a direction
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away from the root. It can be interpreted in terms of ancestors and descendants, with each edge

representing a biological event transforming an ancestor into one of its descendants. This network

identifies taxa D and E as the reticulate ones. Note that these are the only two taxa that are not

involved in the HGTs!

The issue with this artificial example is that there are no data relating directly to the tree-like

pattern of vertical inheritance. That is, I have not included a gene tree that is unaffected by HGT.

Clearly, reconstructing evolutionary networks in the absence of data relating directly to vertical

inheritance is impractical. This appears to be a fundamental limitation of any method for

constructing evolutionary networks, rather than something that is specific to the particular

algorithm used in my example.

Conclusion

In each of the 13 empirical datasets that I have examined here (plus one hypothetical

example), there is at least one important point (relating to conflicting data patterns) that will affect

the phylogenetic analysis. These effects will not always result in mis-interpretation of the results,

but they will certainly influence the perceived strength of the support for the final inferences.

I therefore conclude that EDA should play a greater role in phylogenetic analyses than it has

done to date. It should be seen as an essential first step in the analysis of any dataset that is to be

used for phylogenetic analysis. In particular, it is essential to remember that a tree-building analysis

fits the data to a tree irrespective of whether the data are tree-like or not. This fundamental

assumption should be assessed prior to any attempt to force the data into a tree.

Also, it is important to understand the difference between data-display networks, which are

useful for EDA, and evolutionary networks, which generalize phylogenetic trees. The challenge of

reconstructing networks that explicitly represent the evolution of taxa, rather than merely displaying
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data conflict, is being met by several research groups. Whether this is a practical goal for most

realistic data sets is an open question.
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Table 1

Phenotypic Data Matrix for Some Extant Vertebrates

_____________________________

Taxon Characters 1–16 a

_____________________________

Lampreys     1000000000000000

Sharks       1100000000000001

Teleosts     1110000000000002

Lungfishes   1111100000000002

Frogs        1111111000000003

Salamanders  1111111000000003

Turtles      1111110100000004

Lizards      1111110111100004

Snakes       1111110111100004

Crocodiles   1111110110011104

Birds        1111110110011115

Mammals      1111110120000016

_____________________________

a The data are from Morrison (1996).
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FIG. 1.—Parsimony splits analysis of the morphological data matrix in Table 1. The scale bar

represents the number of character-state changes (non-binary characters have been ignored by the

analysis). There are no autapomorphies, so most of the taxa appear as internal nodes; and two pairs

of the taxa are identical for the analyzed data and so are plotted at the same location.
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FIG. 2.—Comparison of two neighbor-net networks, based on different amino-acid substitution

models for 3579 aligned amino acids from 7 eukaryote taxa. The scale bar represents the split

support for the edges. The data are sequences of an unidentified gene named 6471 from Philip et al.

(2005). The left graph shows use of the WAG+G substitution matrix, while the right graph shows

use of the MtMAM+G matrix. The two analyses were otherwise identical, so that the difference in

network complexity is due entirely to the differing substitution models.
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1.0

Laboratory
strain

FIG. 3.—Comparison of two median networks, with and without an outgroup, for 1542 aligned

nucleotides from 64 farm samples of Dictyocaulus viviparus (Nematoda). The networks are based

on binary characters only; and there are many identical haplotypes (which are plotted at the same

location). The scale bar represents one character-state change. The data are mitochondrial protein,

rRNA and tRNA gene sequences from Höglund et al. (2006). The lower analysis differed from the

top one solely in the addition of 8 samples from a laboratory strain (as a potential outgroup).
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FIG. 4.—Comparison of (a) the neighbor-joining tree (based on the hamming distance) and (b) the

median network (filtered to a minimum support of 4) for 89 436 aligned nucleotides from 15 plant

species. The edge lengths represent (a) inferred evolutionary change and (b) split support for the
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edges. The five edges possibly involved in long-branch attraction are lettered. The data are 61

chloroplast gene sequences from Goremykin et al. (2005).

0.01

spectabilisJAC8622

palmipesVenAMNHA1188801

palmipesEcuKU204425

Sp_1_ecuadorQCAZZZ13219

bwanaQCAZ13964

FIG. 5.—Split decomposition analysis (based on the hamming distance) for 1976 aligned

nucleotides from 64 Rana samples (Amphibia). Most of the samples are unlabeled; and the scale

bar represents the split support for the edges. The data are mitochondrial rRNA and tRNA

sequences from Hillis and Wilcox (2005). The relative lengths of the edges in the netted region

show that there is slightly more support for the grouping of palmipesVenAMNHA118801 with

palmipesEcuKU204425 than with spectabilisJAC8622.
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V. lentago

V. prunifolium

V. elatum V. rufidulum

V. erosum

V. japonicum

V. melanocarpum

FIG. 6.—Split decomposition analysis (based on the hamming distance) for 1687 aligned

nucleotides from 45 Viburnum samples (Plantae). Most of the samples are unlabeled; and the scale

bar represents the split support for the edges. The data are chloroplast ITS and trnK sequences from

Donoghue et al. (2004). There are two undirected cycles.
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FIG. 7.—Comparison of parsimony splits (above) and split decomposition (below) analyses for 501

aligned nucleotides from 8 Drosophila samples (Insecta). The scale bar represents the number of

character-state changes (above) or the split support for the edges (below). The data are nuclear Adhr

sequences from Ballard (2000). The splits graphs differ in that the split decomposition used the JC-

corrected distance while the parsimony splits used the original characters.
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FIG. 8.—Split decomposition analysis (based on the hamming distance) for haplotypes from 21

Senecio samples (Plantae). Note that several of the species names appear multiple times

(representing different samples); and the scale bar represents the split support for the edges. The

data are 649 aligned nuclear ITS positions plus cpDNA RFLP haplotypes from Comes and Abbott

(2001). There are two netted regions and two simple cycles.
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Bathybates, Boulengerochromis,
      Trematocara  

Astatotilapia, Cyrtocara,
Haplochromis   

Petrochromis

Eretmodus, Perissodus
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Limnochromis

Cyathopharynx
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FIG. 9.—Median network for 20 SINEs from 13 cichlid taxa (Pisces). There are several identical

haplotypes (which are plotted at the same location); and the scale bar represents one character-state

change. The data are short interspersed nuclear element (SINE) loci from Takahashi et al. (2001).

There is a single netted region.



35

andrewsi A

sp.2 a

sp.2 c
chesapeaki

sp.1 c

andrewsi B; sp.1 a; sp.2 d

sp.1 b
sp.2 b

10

sp.1 d

1

2

4

3

4
3
2
1

0 100 755700600500400300200

ITS-1 ITS-25.8S

(a)

(b)

FIG. 10.—(a) Parsimony splits analysis of 755 aligned nucleotides from 11 samples for 4 Perkinsus

species (Alveolata). There are several identical haplotypes (which are plotted at the same location);

and the scale bar represents the number of character-state changes. Four of the 5 splits are

numbered (and discussed in the text). The data are nuclear rRNA sequences from Pecher et al.

(2004). (b) Schematic representation of the sequenced part of the rRNA locus, showing the parts of

the sequence that support the four splits numbered in part (a). Split 1 = 18 characters (positions

40–48, 378–450) + 1 not shared by sp.1_d (at position 130); Split 2 = 7 characters in one indel

(positions 488–494); Split 3 = 7 characters (positions 586–662); and Split 4 = 6 characters

(positions 545, 691–718).



36

L. panamensis

L. hertigi

L. major

L. tarentolae

L. amazonensis

L. herreri

L. adleri

L. donovani

L. deanei

Endotrypanum
monterogeii

L. braziliensis

L. hoogstraali

L. gymnodactyli

L. mexicana

L. tropica

20

Viannia

Sauroleishmania

Leishmania

Leishmania

Outgroup

FIG. 11.—Parsimony splits analysis of 2207 aligned nucleotides from 15 Leishmania species

(Kinetoplastida). The subgenera are labelled; and the scale bar represents the number of character-

state changes. The data are nuclear DNA and RNA polymerase sequences from Croan et al. (1997).

There is a single undirected cycle.



37

FIG. 12.—Neighbor-net analysis (based on the hamming distance) of 10 768 aligned nucleotides

from 10 species of ratites (Aves). The scale bar represents the split support for the edges. The data

are 12 mitochondrial protein-gene sequences from Cooper et al. (2001). There is a large netted

region of undirected cycles.
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FIG. 13.—Comparison of neighbor-joining tree (above) and neighbor-net network (below) for 411

aligned nucleotides from 94 samples of Haemonchus contortus (Nematoda). Both analyses are
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based on the hamming distance. The data are mitochondrial nad4 sequences from Troell et al.

(2006).
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FIG. 14.—Construction of an evolutionary network from a data-display network. The edge lengths
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are uninformative. The example species tree (and resulting gene trees) is from Philippe and Douady

(2003). The species tree (top) has six species (A–F), and involves two horizontal gene transfers,

labelled 1 and 2. Each HGT involves one gene only, producing the two gene trees shown (tree 1 for

HGT 1 and tree 2 for HGT 2). The consensus network from these two gene trees is rather

uninformative, with five undirected cycles. Resolving this consensus tree into a hybridization

network (bottom), rooted on taxon A, produces two tangles (highlighted with arrows), with D and E

identified as reticulate taxa. Here, each edge has a direction away from the root, although only four

of the edges are shown with arrows.


