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Résumé :

Le présent travail propose une méthode pour traiter la singularité en coordonnées cylindriques qui se
pose dans le traitement des écoulements 3D confinés en rotation. La présente méthode consiste à
discrétiser sur tout le diamètre −R ≤ r ≤ R avec un nombre pair de noeuds dans la direction radiale.
Dans la direction azimutale, le chevauchement des points de collocation et l’utilisation de conditions de
parité sont évités en introduisant un décalage égal à π/2K (K, le nombre de points de maillage dans
cette direction) pour θ > π dans la transformée de Fourier. La convergence spectrale de la méthode
est illustrée sur les solutions analytiques stationnaires et instationnaires. La capacité de la méthode
numérique pour étudier les écoulements instationnaires complexes est illustrée sur deux configurations
pour lesquelles des résultats expérimentaux ou numériques fiables sont disponibles dans la littérature.

Abstract :

The present work proposes a novel method to treat the cylindrical coordinate singularity which arises
when dealing with three-dimensional confined rotating flows. In this work, we have developed a method
which consists in discretizing the whole diameter −R ≤ r ≤ R with an even number of radial Gauss-
Lobatto nodes. In the azimuthal direction, the overlap in the discretization and especially the use of
parity conditions are avoided by introducing a shift equal to π/2K (K the number of mesh points in
that direction) for θ > π in the Fourier transform. Spectral convergence of the method is illustrated on
steady and unsteady analytical solutions. The ability of our numerical method to investigate complex
unsteady flows is then illustrated for two rotating flow problems where other reliable experimental or
numerical results are available in the literature.

Keywords : Rotating disk flows ; cylindrical coordinate singularity ; pseudo-spectral

methods

1 Introduction

When simulating flows in cylindrical configurations such as pipe flows or rotating cavity flows, the
main difficulty arises from the singularity, which appears on the axis. More generally, the singularity
at the centerline of a cylindrical coordinate system is due to the presence of terms 1/rn (n = 1, 2)
in the Navier-Stokes equations governing the flow, where r is the radial distance. In the same time,
the flow field itself does not have any singularity on the axis. Several numerical methods have been
proposed in the literature [1] to overcome the singularities of the equations in cylindrical coordinates.
Apparently these approaches depend greatly on whether a pseudo-spectral, finite-volume or finite-
difference method is used, but in fact there are some similarities between them. Different methods
have been developed in the past to avoid this singularity.
Mercader et al. [2] proposed recently an efficient spectral code used to study the Rayleigh-Bénard
convection in a vertical stationary or rotating cylinder. To overcome the singularity on the axis they
considered radial expansions in the diameter of the cell in order to avoid clustering about the axis,
with a selected number of points to ensure that the origin is not a collocation point. Moreover, they
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imposed implicitly some regularity conditions at r = 0 by forcing the proper parity of the Fourier
expansions in the radial direction. This approach is named after Boyd [1] as unshifted Chebyshev
polynomials of appropriate parity. The main advantages of their method are that it forces the mini-
mal number of regularity conditions and that it reduces the size of the matrices.
In this paper, we present an efficient and accurate pseudospectral method to solve the time-dependent
three-dimensional Navier-Stokes equations for some rotating flow arrangements. The adopted ap-
proach is based on the previous work of Heinrichs [3], who proposed two spectral collocation schemes
to solve the Poisson problem on an unit disk. It consists first of mapping the domain [0, 2π] × [0, R]
into [0, 2π] × [−R,R] and using an even number of mesh points in the radial direction as also pre-
scribed by Mohseni and Colonius [4]. It ensures that no extra pole conditions have to be specified
at the axis. An angular shift equal to π/2K (K the number of mesh points in that direction) for
θ > π in the discretization of angular direction is made to avoid an overlap of points and especially
the use of parity conditions. To avoid the clustering of nodes around the rotation axis, a distribution
of Gauss-Lobatto points is used. The flow is indeed laminar close to the rotation axis in most of the
rotating flow applications, which does not require very thin meshes.
The paper is organized as follows: the numerical approach is presented in Section 2 together with the
validation of the method against analytical steady and unsteady solutions in Section 3. To show the
capability of the present method to simulate axisymmetric and non axisymmetric flows, it is applied
in Section 4 to the study of the vortex breakdown phenomenon in a cylindrical cavity considering
different configurations such as the first bifurcation in a rotor-stator cavity. Finally some concluding
remarks and future views are provided in Section 5.

2 Numerical approach

The motion is governed by the incompressible three dimensional Navier-Stokes equations written in
the velocity pressure formulation, together with the continuity equation and appropriate boundary
conditions. A cylindrical polar coordinate system (r, θ, z) is used. The components of the velocity
vector V are denoted u, v and w in the (r, θ, z) directions respectively and P is the pressure. The
scales for the dimensionless variables of space, time and velocity are h, Ω−1 and ΩR respectively, with
h the interdisk spacing, R the outer radius of the rotating disk and Ω its rotation rate. The momentum
equation, in dimensionless form, becomes:

∂V

∂t
+ (V.∇)V = −∇P +

1

Re
∆V + F in D (1)

where F represents a given body force. The continuity equation is given by ∇.V = 0 in D = D ∪ Γ.
The appropriate Dirichlet boundary conditions for the velocity vector write V = W on Γ = ∂D.

We have considered two geometrical configurations for which the main flow depends on two non-
dimensional parameters: the rotational Reynolds number Re and the aspect ratio G of the cavity
defined as Re = ΩR2/ν and G = D/H, where D and H are respectively the diameter and the height
of the cavity, Ω the rotation rate of the rotating disk and ν the kinematic viscosity of the fluid.
The singularity at the junction of the stationary cylinder with the rotor is treated appropriately
and the azimuthal velocity component has been regularized by employing a boundary layer function,
v = e±(z−1)/µ, with µ = 0.006 as described by Serre and Bontoux [5]. The numerical solution is
based on a pseudo-spectral method with collocation Chebyshev polynomials in the radial r and axial
z directions and Fourier collocation in the periodic azimuthal direction θ. The dimensionless space
variables (r, z) have been normalized on [−1, 1], a requisite for the use of Chebyshev polynomials. The
normalized variables (r, z) satisfy the following relations r = rG and z = z. The calculation domain is
defined as D = (r, θ, z) ∈ [−1, 1]× [0, 2π[×[−1, 1]. In the two non-periodic directions, a Gauss-Lobatto
distribution for the collocation points is used.

With respect to the azimuthal direction θ, the distribution of collocation points consists in the dis-
cretization of the whole diameter. To avoid an overlap of collocation points, in the azimuthal direction,
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and especially the use of parity conditions, a shift equal to π/2K for θ > π is introduced in the Fourier
transform. For the derivatives in the azimuthal direction θ, the Fourier basis writes:

The Navier-Stokes equations are discretized in time by using a semi-implicit scheme that combines
an implicit second order Euler scheme for the diffusive terms and an explicit Adam-Bashforth scheme
for the convective non-linear terms. The solution method is based on an efficient projection scheme
and is a modification of the projection method initially proposed by Goda as described in [6]. For
the computation of the non-linear terms, the derivatives in each space direction are calculated in
the spectral space and the products are performed in the physical one. The connection between the
two spaces is made through the use of a Fast Fourier Transform algorithm for the radial and axial
directions and through a matrix multiplication in the azimuthal direction. For the diffusion terms
the derivatives are performed in physical space using a simple matrix multiplication. Finally, all the
resulting Helmholtz and Poisson problems are solved using a full diagonalization technique for each
Fourier mode.

3 Validation against analytical solutions

The accuracy of the method is checked on the exact steady and time-dependent solutions defined in
D = [−1, 1]× [0, 2π[×[−1, 1]. The results presented here have been obtained for G = 10 and Re = 250.
The space accuracy of the method is evaluated by computing the discrete errors at the inner collocation
points Er, see [6] for more details. In the steady case, the time step used is δt = 5 × 10−3 and the
values of the error for the velocity component u and for the pressure P are represented in figures 1(a)
and 1(b) respectively. An exponential decay with the number of mesh points is obtained, which is
characteristic of spectral methods.
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Figure 1: Evolution of the error, log10(Er), for the velocity component u and for the pressure P versus
the polynomial degrees N = M = K (a,b) and Er versus time step (c).

Figure 1(c) represents the values of the error for the radial velocity component u and for the pression
P considering the time-dependent solution. The time step was decreased from δt = 5 × 10−3 to
δt = 5× 10−5 and the polynomial degrees are fixed to 40 for each space direction. The results are in
line with the results obtained by Raspo et al [6], showing that the code is second-order accurate in
time O(δt2) for the radial velocity component and for the pressure inside the computational domain.
The same temporal behavior was observed for the azimuthal and axial velocity components.

3
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4 Results

The results obtained are compared to other reliable data available in the literature in two cases:
the vortex breakdown phenomenon in a stationary cylinder driven by a rotating top disk considered
by Serre & Bontoux [5] using DNS for different aspect ratios and the non axisymmetric flow in a
rotor-stator cavity at a transitional Reynolds number [7, 8].

4.1 Vortex breakdown phenomenon in a cylinder with a rotating
top disk

Vortex breakdown and transition to time-dependent regimes are initially investigated in a stationary
cylinder with a rotating top disk. Two simulations are carried out. The first calculation for Re = 1850
and G = 1 is performed using a 126× 8× 126 mesh grid in the radial, azimuthal and axial directions
respectively with a time step equal to 10−2. The second simulation was done using the same time step
and grid arrangement but for G = 0.8 and Re = 2750.

In the first case, the base flow is laminar and axisymmetric. The iso-surface w = 0 of the axial
velocity is presented in figure 2(a), showing that the flow is clearly axisymmetric. It highlights also
the presence of an axisymmetric vortex breakdown along the rotation axis with two bubbles, which
confirm previous experimental and numerical results (Fig. 2(b)). The present results are found in
quite good agreement with the previous ones for the bubble characteristics defined in Fig. 2(c), even if
the method is not optimized to simulate flow phenomenon close to the axis, where the grid is coarser.

(a) (b)

e

l

s

Stator

(c)

Figure 2: Axial velocity w for Re = 1850 and G = 1: (a) iso-contours at different axial positions with
the iso-values w = 0; (b) comparison of the bubble characteristic lengths; (c) schematic representation
of the bubble characteristic lengths.

Concerning the case for Re = 2750 and G = 0.8, the flow gets unsteady as shown in Figure 3. The
bubble is stretched by the shear along the axis and then is splitted into two bubbles, which finally
merge, confirming the results described in [5]. We can deduce the time period of oscillations of the
two bubbles. In the present case, the dimensionless time period is 36.2Ω−1 to be compared to the
values 36Ω−1 of Stevens et al. [9] for Re < 3500 and 55.6Ω−1 obtained by Serre & Bontoux [5].

(a) t=2510 (b) t=2520 (c) t=2524 (d) t=2536

Figure 3: Iso-surfaces of w = 0 and iso-contours of w in a (r, z) plane for Re = 2750 and G = 0.8.

Finally with the aim to show the capability of the method to compute non axisymmetric flows was
made a third case for G = 0.5 and Re = 6500. A 126 × 48 × 65 mesh grid in the radial, azimuthal
and axial directions respectively has been used together with a time step equal to 10−2. The results
presented in Figure 4 confirms the expected three-dimensional nature of the flow. The surface identified
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as the breakdown zone (w = 0) (Fig. 4) has changed the bubble form having now a S-shaped form
corresponding to the regime defined by Escudier [10] as the precession regime of the lower breakdown
structure. This behavior is due to the interaction of the vortex-breakdown with the structures from
the vertical wall boundary layer as described in [11].

(a) (b) (c)

Figure 4: Iso-surface (w = 0) and iso-lines of the axial component of velocity w for G = 0.5 and
Re = 6500: (a) t = 2100 Ω−1, (b) t = 2292 Ω−1 and (c) t = 2484 Ω−1.

4.2 Batchelor rotor-stator flows at a transitional Reynolds number

Some computations have been also performed in a rotor-stator cavity of large aspect ratio G = 17.45
for two Reynolds numbers Re = 10000 and Re = 20900. For this set of parameters, the flow exhibits a
Batchelor flow structure with separated boundary layers [7, 8]. The results have been obtained using
126× 128× 33 collocation points in the radial, azimuthal and axial directions respectively with a time
step equal to 10−3. Some flow visualizations in the stator boundary layer are presented in Figure 5.

Figure 5: Axial velocity w: space-time diagram (z = −0.773 and r = 0.809); (r, θ) planes in the stator
boundary(z = −0.773) layer for G = 17.45: (t = 100 Ω−1, Re = 10000), (t = 110 Ω−1, Re = 20900),
(t = 200 Ω−1, Re = 20900).

Schouveiler et al. [8] have shown experimentally that the flow remains laminar until the appearance
of circular rolls (CR) in the stator boundary layers for Re ≥ 10500. These patterns coexist in the
experiments with spiral rolls, denoted SR1, for Re ≥ 20000. These spirals are located at the periphery
of the cavity, also along the stator side. Poncet et al. [7] performed DNS results in an annular cavity
and obtained only the spiral patterns for this range of parameters, the circular rolls being observed only
in a transient state. In the present case, the cavity is cylindrical and the results obtained are in perfect
agreement with Poncet et al. [7] and in good agreement with the experimental results of Schouveiler
et al. [8]. The circular rolls are here also observed only in a transient state with a dimensionless time
period of 2.1Ω−1 after increasing the Reynolds number from 10000 to 20900 at t = 100 Ω−1. The
mode K = 17 is then perturbed with an amplitude of 5% at t = 160 Ω−1 to accelerate the transition
to the spiral regime. 17 stationary spiral rolls are thus obtained with a dimensionless time period
of 3Ω−1. Schouveiler et al. [8] showed experimentally that the mode 18 is the most unstable. This
weak discrepancy on the number of spiral arms can be explained by the fact that this instability is an
Eckhaus instability. Thus, the number of arms is very sensitive to the time history of the flow and to
the perturbations, which have been introduced experimentally or numerically. The present 17 spiral
arms roll up in the sense of rotation of the rotor and form thus a positive angle with the tangential
direction equal to ε = 25◦, which fully matches with [7, 8].
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5 Conclusions

A novel method has been developed to take into account the axis singularity, which appears when using
cylindrical coordinates within a rotating cavity. This method ensures that no extra pole conditions
have to be specified at the axis. It has been first validated against analytical steady and unsteady
solutions, while preserving the spectral accuracy. Then two different configurations have been used
to test the method: the vortex breakdown phenomenon [5, 11] and the two first bifurcations in a
rotor-stator cavity [7, 8]. For these two cases, the main characteristics of the mean flow and the
instabilities have been favorably compared with the previous works, showing the capability of the
method to predict with accuracy both axisymmetric and non-axisymmetric, steady and unsteady
flows. The code has been recently extended for the simulation of turbulent flows using a “no-model”
LES approach (Séverac & Serre [12]). Some calculations are in progress in the rotor-stator cavity
considered by Craft et al. [13] to highlight the presence of 3D large scale vortices embedded in the
turbulent flow. It has been shown recently (private communication) that those patterns are very
sensitive to the presence or not of a hub rotating with the rotor. They have been indeed observed
only in the cylindrical case and not in the annular one. The new method is then absolutely necessary
and appears moreover particularly well adapted to simulate such flows as the patterns are located far
from the rotation axis, where the grid is coarser.
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