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Abstract Considering two independent Poisson processes, we ad-
dress the question of testing equality of their respective intensities.
We construct multiple testing procedures from the aggregation of sin-
gle tests whose testing statistics come from model selection, thresh-
olding and/or kernel estimation methods. The corresponding critical
values are computed through a non-asymptotic wild bootstrap ap-
proach. The obtained tests are proved to be exactly of level α, and
to satisfy non-asymptotic oracle type inequalities. From these oracle
type inequalities, we deduce that our tests are adaptive in the mini-
max sense over a large variety of classes of alternatives based on clas-
sical and weak Besov bodies in the univariate case, but also Sobolev
and anisotropic Nikol’skii-Besov balls in the multivariate case. A sim-
ulation study furthermore shows that they strongly perform in prac-
tice.

1. Introduction. We consider the two-sample problem for general Pois-
son processes. Let N1 and N−1 be two independent Poisson processes ob-
served on a measurable space X, whose intensities with respect to some
non-atomic σ-finite measure µ on X are denoted by f and g. Given the
observation of N1 and N−1, we address the question of testing the null
hypothesis (H0) ”f = g” against the alternative (H1) ”f 6= g”.

Many papers deal with the two-sample problem for homogeneous Poisson
processes such as, among others, the historical ones of [47], [13], [23], or
[54], whose applications were mainly turned to biology and medicine, and
less frequently to reliability. More recent papers like [39], [44], [12], and [11]
give interesting numerical comparisons of various testing procedures. As for
non-homogeneous Poisson processes, though we can find a lot of references
on the problem of testing proportionality of the hazard rates of the processes
(see [17] for instance for references), we found very few papers devoted to a
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2 M. FROMONT ET AL.

comparison of the intensities themselves. Bovett and Saw [8] and Deshpande
et al. [18] respectively proposed conditional and unconditional procedures to
test the null hypothesis ”f/g is constant” against ”it is increasing”. Desh-
pande et al. [18] considered their test from a usual asymptotic point of view,
proving that it is consistent against several large classes of alternatives.

We propose in this paper to construct testing procedures of (H0) against
(H1) which satisfy specific non-asymptotic performance properties.

More precisely, given some fixed α and β in (0, 1), we prove that our
tests are exactly of level α and that they have a probability of second kind
error at most equal to β under ”optimal” conditions for various classes of
alternatives. In order to specify what is the meaning of ”optimal” conditions
for a class Sδ of alternatives (f, g) for which (f−g) is smooth with parameter
δ, we introduce for any level α test Φα with values in {0, 1} (rejecting (H0)
when Φα = 1) its uniform separation rate ρ(Φα,Sδ, β) over Sδ defined by

ρ(Φα,Sδ , β) = inf

{
ρ > 0, sup

(f,g)∈Sδ ,‖f−g‖>ρ
Pf,g(Φα = 0) ≤ β

}
.(1.1)

Pf,g here denotes the joint distribution of (N1, N−1), and ‖.‖ is a L2-norm
which will be defined more precisely later in the paper. Considering some
classes of alternatives based on classical Besov bodies, weak Besov bodies
as in [21] in the univariate case, but also Sobolev and anisotropic Nikol’skii-
Besov balls in the multivariate case, we prove that the uniform separation
rates of our testing procedures achieve their best possible values over many
of such classes simultaneously. In other words, we prove that our level α
tests Φα have a uniform separation rate over Sδ of the same order (up to a
possible unavoidable small loss) as

(1.2) ρ(Sδ, α, β) = inf
Φα

ρ(Φα,Sδ, β),

where the infimum is taken over all level α tests Φα and where Sδ is a class
of alternatives (f, g) for which (f − g) belongs to a classical or weak Besov
body, a Sobolev or an anisotropic Nikol’skii-Besov ball with smoothness
parameter δ, for many δ simultaneously. Such tests are said to be adaptive
in a minimax sense.

Note that the quantity ρ(Sδ, α, β) introduced by Baraud [4] as the (α, β)-
minimax rate of testing over Sδ or the minimax separation rate over Sδ

is a stronger version of the - asymptotic - minimax rate of testing usually
considered. In order to deduce from our results recognizable asymptotic rates
of testing, we assume that the measure µ on X satisfies dµ = ndν, where
n can be seen as a growing number whereas the measure ν is held fixed.
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Typically, n is an integer and the above assumption amounts to considering
the Poisson processes N1 and N−1 as n pooled i.i.d. Poisson processes with
respective intensity f and g w.r.t. ν. In the most general case, one can always
assume that n is just a positive real number and not necessarily an integer.
The reader may also assume for sake of simplicity that ν is the Lebesgue
measure when X is a measurable subset of Rd, but it is not required at this
stage: ν may be any positive measure on X.

Many papers are devoted to the computation of asymptotic minimax rates
of testing in various classical statistical models, hence we obviously do not
give an exhaustive bibliography on this topic. We can cite for instance the
key references that are the series of papers due to Ingster [31], and the paper
by Spokoiny [56] who first proved that adaptive testing without a small loss
of efficiency is impossible when considering classical Besov balls as classes
of alternatives in the Gaussian white noise model.

In the one-sample Poisson process model, Ingster and Kutoyants [33]
proved that for the goodness-of-fit testing problem, the minimax rate of

testing over a Sobolev or a Besov ball B(δ)
2,q(R) (with 1 ≤ q < +∞ and

smoothness parameter δ > 0) for the Sobolev or Besov norm or semi-norm
is of order n−2δ/(4δ+1). For the problem of testing that the intensity is con-
stant, we obtained in [21] new lower bounds for the (α, β)-minimax rates of
testing over classical and weak Besov bodies. These lower bounds are similar
to Ingster and Kutoyants’ones for classical Besov bodies, but for weak Besov
bodies, the bounds are somewhat surprising: they are so large that they co-
incide with the minimax estimation rates and that there is no additional
loss of efficiency due to adaptivity.

In the present two-sample problem for Poisson processes, no previous
minimax results are available to our knowledge. However, we prove in Section
4.3.1 that some lower bounds can be deduced from the ones in the one-
sample Poisson process model. Hence, our lower bounds in [21] also hold in
the present problem. We can also refer to some known results in the classical
i.i.d. two-sample problem, which is closely related to the present problem.
We thus cite for instance the results obtained in [30], and [10]. Ingster [30]
propose adaptive procedures whose testing statistics are related to a model
selection estimation approach, while Butucea and Tribouley [10] propose
an adaptive procedure whose testing statistic is based on a thresholding
approach.

We consider in this paper a rather large variety of classes of alternatives,
on univariate but also on multivariate spaces. Hence, in order to construct
some general testing procedures, which are adaptive in the minimax sense
over several of these classes simultaneously, we call for various approaches,
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including model selection, thresholding, and kernel ones. Our testing proce-
dures actually consist in multiple testing procedures obtained from the ag-
gregation of model selection, thresholding, and/or kernel based single tests.
The aggregation of model selection and thresholding based tests was al-
ready proposed in different statistical models in [56], [57], [5] and [21] where
the considered classes of alternatives were univariate Besov bodies or balls.
Our choice of introducing additional kernel based tests allows us to obtain
minimax results for classes of alternatives based on multivariate Sobolev or
anisotropic Nikol’skii-Besov balls. Notice that by kernel, we mean either a
classical approximation kernel or a Mercer kernel (also called learning ker-
nel), more usual in statistical learning theory. Approximation kernels were
used for instance in [28] for the Gaussian white noise testing problem, while
Mercer kernels were used for instance in [27] for the multivariate i.i.d. two-
sample testing problem.

As far as here, we only mentioned the fact that our tests are proved to be
exactly of level α, but we did not explain how we ensure that. In the classical
i.i.d. two-sample problem, the question of the choice for the critical values
in testing procedures is a well-known crucial question. Indeed, the asymp-
totic distributions of many testing statistics are not free from the common
unknown density under the null hypothesis. In such cases, general bootstrap
methods are often used to build data driven critical values. Except in the
cases where the permutation bootstrap method is used, authors generally
prove that the obtained tests are (only) asymptotically of level α.

In this work, we adopt one of these general bootstrap approach, but from
the non-asymptotic point of view: the critical values of our tests are con-
structed from a wild bootstrap method, that can be viewed as an adapted
version of the permutation bootstrap method in a Poisson framework. We
prove that the corresponding tests are actually exactly of level α, and then
we also address the question of the loss due to the Monte Carlo approxima-
tion of the wild bootstrapped critical values.

Section 2 is entirely devoted to bootstrap approaches, with general con-
siderations first, and with a detailed description of our own wild bootstrap
approach in the present two-sample problem for Poisson processes then.
The rest of the paper is organized as follows. In Section 3, we introduce
single tests, whose statistics are each based on one so-called kernel function
defined from either an orthonormal basis of a subspace of L2(X), or an ap-
proximation kernel, or a Mercer kernel. The corresponding critical values
are constructed from the wild bootstrap approach described in Section 2,
leading to exact level α single tests. We then give conditions such that these
single tests also have a probability of second kind error at most equal to β,
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and finally we study the cost due to the Monte Carlo approximation of the
wild bootstrapped critical values. In Section 4, we construct exact level α
multiple tests by aggregating several of the single tests introduced in Section
3. The advantage of such multiple tests is that they satisfy non-asymptotic
oracle type inequalities, hence we can prove that they are also adaptive
in the minimax sense over various classes of alternatives based on classical
and weak Besov bodies in the univariate case, or Sobolev and anistropic
Nikol’skii-Besov balls in the multivariate case. Then, a simulation study is
proposed in Section 5. The proofs of our theoretical results are finally post-
poned to Section 6.

Let us now introduce some notations that will be used all along the pa-
per. For any measurable function h, we denote by ||h||∞ = supx∈X |h(x)|,
||h||µ = (

∫
X
h(x)2dµx)

1/2, ||h||1,µ =
∫
X
|h(x)|dµx, and ||h|| = (

∫
X
h(x)2dνx)

1/2,
||h||1 =

∫
X
|h(x)|dνx when they exist. We denote by 〈., .〉µ the scalar prod-

uct associated with ||.||µ and 〈., .〉 the scalar product associated with ||.||. We
denote by dN1 and dN−1 the point measures associated with N1 and N−1

respectively, and to suit for the notation Pf,g of the joint distribution of
(N1, N−1), we denote by Ef,g the corresponding expectation. We set for any
event A based on (N1, N−1), P(H0)(A) = sup{(f,g), f=g} Pf,g(A).

Furthermore, we introduce all along the paper some constants, that we do
not intend to evaluate here, and that are denoted by C(α, β, . . .) meaning
that they may depend on α, β, . . .. Though they are denoted in the same
way, they may vary from one line to another line.

Finally, let us make the two following assumptions, which together imply
that f and g belong to L2(X, dµ), and which will be satisfied all along the
paper, except when specified.

Assumption 1. ‖f‖1,µ < +∞ and ‖g‖1,µ < +∞.

Assumption 2. ||f ||∞ < +∞ and ||g||∞ < +∞.

2. A wild bootstrap approach for marked Poisson processes.

2.1. General considerations on bootstrap methods. Bootstrap methods
were introduced first by Efron [19] whose aim was to generalize and improve
the ideas of the jacknife from Quenouille [48] and Tukey [59]. These meth-
ods were originally developed for an i.i.d. sample X = (X1, . . . ,Xn) from a
distribution P , and a root Rn = Rn(X;P ), defined as a functional of the
sample X and the common distribution P , whose probabilistic characteris-
tics having a particular interest from a statistical point of view (distribution,
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or expectation, variance, quantiles, etc.) are unknown, and have to be es-
timated. Denoting by Pn the empirical measure associated with X defined
by Pn = 1

n

∑n
i=1 δXi , Efron’s original idea was to replace in the expres-

sion of Rn(X;P ), P by Pn, and X by an i.i.d. sample from Pn denoted by
X∗

n = (X∗
n,1, . . . ,X

∗
n,n) and called a bootstrap sample from X. The condi-

tional distribution of the resulting ”bootstrapped” root R∗
n = Rn(X

∗
n;Pn)

given X is then proposed as an estimator of the distribution of Rn.
This intuitive estimation method was justified theoretically by asymptotic

arguments that were first specific to the considered root and its probabilistic
characteristics of interest (see [19] and for instance many papers on the
bootstrap of the mean, and linear or related statistics like [55], [7], [3], [24]
among others). These arguments generally rely on a result of consistency
such as:

L(R∗
n|X) ≃ L(Rn),

meaning that the conditional distribution of R∗
n given X converges in prob-

ability or almost surely to the asymptotic distribution of Rn. Then, consid-
ering the empirical process Gn =

√
n(Pn − P ), some general results on the

consistency of the bootstrapped empirical process G∗
n =

√
n(P∗

n−Pn) where
P ∗
n = 1

n

∑n
i=1 δX∗

n,i
, were obtained in [7], [25], or [38].

From a practical point of view, taking advantage from the fact that a real-
ization of the bootstrap sample X∗

n given (X1, . . . ,Xn) = (x1, . . . , xn) can be
simulated by simply taking n values with replacement in the set {x1, . . . , xn},
statisticians often do not strive to compute exactly the probabilistic char-
acteristics of the bootstrapped root R∗

n, but rather approximate them by
Monte Carlo procedures. This explains the frequent confusion between the
term of bootstrap and the one of resampling, which is more related to the
mechanism at stake in the Monte Carlo procedures following the bootstrap
estimation. If we introduce for every i = 1 . . . n, the random variable Mn,i

defined as the number of times that Xi appears in the bootstrap sample X∗
n,

it is easy to see that the bootstrapped empirical process satisfies:

G∗
n =

√
n(P∗

n − Pn) =
1√
n

n∑

i=1

(Mn,i − 1)δXi ,

and that any linear root R∗
n can be expressed as a function of X and the

Mn,i’s only. The random vector (Mn,1, . . . ,Mn,n) which has a multinomial
distribution with parameters (n, n−1, . . . , n−1) is viewed as a resampling
plan, and the M ′

n,is as the resampling weights of the bootstrap method.
Starting from this observation, many authors proposed to study other

types of resampling weights, and to replace (Mn,1, . . . ,Mn,n) by any ex-
changeable random (or not) vector (Wn,1, . . . ,Wn,n). This allowed to see



TWO-SAMPLE PROBLEM FOR POISSON PROCESSES 7

some well-known methods such as Fisher’s permutation ones or cross valida-
tion ones as some bootstrap methods (see [51], [45], and [2] for more details).
This also led to various new types of bootstrap methods such as the m out
of n bootstrap introduced by Bretagnolle [9], the Bayesian bootstrap of Ru-
bin [52] and Lo [41], whose resampling weights have a Dirichlet distribution,
Weng’s [61] bootstrap, and the wild bootstrap whose weights are i.i.d. vari-
ables with expectation and variance equal to 1, and which is detailed in [42].
Præstgaard and Wellner [46] proved an analogue of Giné and Zinn’s theo-
rem from [25] for the general exchangeable weighted bootstrapped empirical
process under appropriate conditions on the weights (Wn,1, . . . ,Wn,n).

It is now admitted that these new types of bootstrap methods are very
useful in many situations, and particularly when the root Rn is a degenerate
U -statistic, and/or a testing statistic in the i.i.d. two-sample problem.

2.2. Bootstrap methods turned towards degenerate U -statistics. Let us
recall that a U -statistic of order p (1 ≤ p ≤ n) can be defined by

Up,n(h) =

(
n
2

)−1 ∑

1≤i1<...<ip≤n

h(Xi1 , . . . ,Xip)

for some symmetric measurable function h. Up,n(h) is said to be degenerate
when h ∈ L1(dP ) and

∫
h(x1, . . . , xp)dP (xi) = 0 for every i ∈ {1, . . . , p}.

Bootstrap methods were widely investigated for U -statistics since they of-
ten appear in general statistical questions. In particular, for non-degenerate
U -statistics of order 2, the consistency of Efron’s bootstrap is proved in
[7]. This becomes more complicated for degenerated U -statistics. Bretag-
nolle [9] actually proved that a naive use of Efron’s bootstrap for Rn(X;P ) =
n(Up,n(h)−E[h(Xi1 , . . . ,Xip)]) fails in this case. This can be briefly explained
by the fact that the distribution of Rn(X;P ) is not a uniformly continu-
ous function of P , so that replacing naively P by Pn in the expression of
Rn(X;P ) results in losing the degeneracy property. Bretagnolle solved the
problem by reducing the size of the bootstrap sample and introducing the
so-called m out of n bootstrap. Arcones and Giné [1] gave another solution
which consists in forcing in some sense the bootstrapped root to keep the
degeneracy property. For instance, when p = 2, it consists in taking R̄∗

n
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instead of R∗
n where

R̄∗
n =n

(
n
2

)−1∑

1≤i<j≤n

[
h(X∗

n,i,X
∗
n,j)−

1

n

n∑

k=1

h(Xk,X
∗
n,j)

− 1

n

n∑

l=1

h(X∗
n,i,Xl) +

1

n2

n∑

k,l=1

h(Xk,Xl)

]
.

Noticing that

R̄∗
n = n

(
n
2

)−1 n∑

k,l=1

(Mn,k − 1)(Mn,l − 1)h(Xk,Xl),

this naturally led to generalizations of Arcones and Giné’s results to other
kinds of bootstrapped U -statistics, in particular Bayesian and wild boot-
strapped U -statistics (see [29], [16], and [35]).

A simple wild bootstrap method consists for instance in replacing the
resampling weights (Mn,1, . . . ,Mn,n) by (Wn,1, . . . ,Wn,n) = 2(B1, . . . , Bn),
where the B′

ks are i.i.d. random variables from the Bernoulli distribution
with parameter 1/2. Then the wild bootstrapped root can be written as

(2.1) R̄ε
n = n

(
n
2

)−1 n∑

k,l=1

εkεlh(Xk,Xl),

where (ε1, . . . , εn) = (2B1 − 1, . . . , 2Bn − 1) is an i.i.d. sample from the
Rademacher distribution.

2.3. Bootstrap methods turned towards the i.i.d. two-sample problem. Re-
cently, Janssen and Pauls [36] gave a complete study on the use of various
bootstrap methods in statistical testing contexts.

Given a prescribed level α ∈ (0, 1), following the Neyman and Pearson
principle, a test has at least to be exactly or asymptotically of level α. For
instance, when the test rejects the null hypothesis if Rn > cα,n, Rn has to
be a relevant statistic allowing to distinguish between the null and alter-
native hypotheses, and cα,n is a critical value which has to guarantee that
the test is actually exactly or asymptotically of level α. In the easiest cases,
the distribution of Rn under the null hypothesis is exactly or asymptotically
known, so that its quantiles or its asymptotic quantiles are also known or
at least easily approximated by classical Monte Carlo methods. The (1−α)
quantile is then chosen as the critical value cα,n. When the distribution of Rn

under the null hypothesis depends on the unknown underlying distribution,
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one has however to turn to alternative approaches, such as bootstrap ones.
A usual practice is to estimate the quantiles or asymptotic quantiles of Rn

under the null hypothesis by the conditional quantiles of R∗
n given the ob-

served variables and to approximate them by a Monte Carlo method. In the
i.i.d. two-sample problem, one considers X = (X1

1 , . . . ,X
1
n1
,X−1

1 , . . . ,X−1
n−1

)

where X1 = (X1
1 , . . . ,X

1
n1
) and X−1 = (X−1

1 , . . . ,X−1
n−1

) are two indepen-

dent i.i.d. samples from respective unknown distributions P 1 and P−1, and
one aims at testing (H0) ”P 1 = P−1” against (H1) ”P 1 6= P−1”. In this
case, it is frequent that the distribution or the asymptotic distribution of
the testing statistic under (H0) is not free from the common distribution
P 1 = P−1. For instance, Kolmogorov-Smirnov statistics whose distributions
or asymptotic distributions under (H0) are free from P 1 = P−1 under con-
tinuity hypotheses when the data are univariate, however fail to be distri-
bution free under (H0) when the data are multivariate. Bootstrap methods
are now commonly used to overcome this difficulty (see [6] for the precursor
permutation approach, [50], [51], [20] chapters 15 and 16, [45], and more
recently [36] for interesting and helpful discussions). For instance, let us
consider as in [45] the general two-sample Kolmogorov-Smirnov statistic in-
dexed by a class Fn1+n−1 contained in a Donsker class under P 1 and P−1,
and denoted by Rn1,n−1 . Let R

∗
n1,n−1

be the corresponding permutation or
Efron’s bootstrapped statistic and c∗n1,n−1

(1 − α) be the (1 − α) quantile
of the conditional distribution of R∗

n1,n−1
given X. Præstgaard proved that

under (H0) and appropriate conditions on Fn1+n−1 , when n1, n−1 → ∞ with
n1/(n1 + n−1) → λ ∈ (0, 1),

(2.2) L(R∗
n1,n−1

|X) ≃ L(Rn1,n−1)

in probability and that c∗n1,n−1
(1−α) converges to the (1−α) quantile of the

asymptotic distribution in probability. It follows that the test rejecting (H0)
when Rn1,n−1 > c∗n1,n−1

(1 − α) is asymptotically of level α. With similar
arguments, Præstgaard also proved that the test is consistent against any
alternative.

2.4. Bootstrap methods turned towards our two-sample problem for Pois-
son processes. Let us come back to the present two-sample problem for
Poisson processes, and recall that we aim at testing (H0) ”f = g” against
(H1) ”f 6= g”, from the observation of two independent Poisson processes
N1 and N−1 with respective intensities f and g. The single testing statistics
that we consider in this paper are degenerate U -statistics of order 2. In or-
der to construct adequate critical values, we have chosen to use the simple
wild bootstrap approach described in (2.1). Of course, we are not in an i.i.d.
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one-sample framework here, but we can easily imagine to generalize (2.1) to
the case where X is replaced by (N1, N−1), and P by Pf,g.

More precisely, one of the single testing statistics considered in this paper
is defined by

(2.3) T̂ =
∑

λ∈Λ

∑

x 6=x′∈N
ψλ(x)ψλ(x

′)ε0xε
0
x′ ,

where N is the pooled Poisson process such that dN = dN1+ dN−1, ε0x = 1
if x belongs to N1 and ε0x = −1 if x belongs to N−1, and {ψλ, λ ∈ Λ} is
an orthonormal basis of a finite dimensional subspace S of L2(X, dµ). We
introduce

(2.4) T̂ ε =
∑

λ∈Λ

∑

i 6=i′∈{1,...,Nn}
ψλ(Xi)ψλ(Xi′)εiεi′ ,

whereNn denotes the size of the pooled processN , theXi’s denote the points
of N , and (εi)i∈N is a sequence of i.i.d. Rademacher variables independent of
N . Under (H0), T̂

ε has the same distribution as the true wild bootstrapped
version

∑
λ∈Λ

∑
i 6=i′∈{1,...,Nn} ψλ(Xi)ψλ(Xi′)ε

0
Xi
ε0Xi′

εiεi′ of T̂ .

We then introduce the (1 − α) quantile of T̂ ε conditionally to N that we

denote by q
(N)
1−α. Finally, we decide to reject (H0) when T̂ > q

(N)
1−α, where the

conditional quantile q
(N)
1−α is in fact approximated by a classical Monte Carlo

method.
Notice that this test is very close to Wellner’s [60] permutation test in

an i.i.d. two-sample framework, and we can see it as an adapted version
of Wellner’s test to our Poisson process framework. However, one of the
particularities of our work, as compared to Wellner’s and most of previ-
ous authors’ ones, is that we control the probabilities of first and second
kind errors of our tests from a non-asymptotic point of view. Whereas, for
instance, Præstgaard [45] proves a strong result like (2.2) and the conver-
gence of c∗n1,n−1

(1−α) to the (1−α) asymptotic quantile in probability, we

prove that under (H0), conditionally to N , T̂ and T̂ ε exactly have the same

distribution. Hence, under (H0), P
(
T̂ > q

(N)
1−α|N

)
≤ α, as a consequence

P(H0)

(
T̂ > q

(N)
1−α

)
≤ α,

which means that our test is exactly of level α. In the same way, whereas
many authors prove that their bootstrapped tests are consistent against
some or all alternatives, we give precise conditions on the alternatives which
guarantee that our test has a prescribed probability of second kind error.
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Such non-asymptotic results derive from the following proposition, which
can be deduced from a general result of [14], but whose quite easy and
complete proof is given in Section 6 for sake of understanding.

Proposition 1.
(i) Let N1 and N−1 be two independent Poisson processes on a metric

space X with intensities f and g with respect to some measure µ on X and
such that Assumption 1 is satisfied. Then the pooled process N whose point
measure is given by dN = dN1 + dN−1 is a Poisson process on X with
intensity f + g with respect to µ. Let

(
ε0x
)
x∈N be defined by ε0x = 1 if x

belongs to N1 and ε0x = −1 if x belongs to N−1. Then conditionally to N ,
the variables

(
ε0x
)
x∈N are i.i.d. and

(2.5)

∀ x ∈ N, P
(
ε0x = 1|N

)
=

f (x)

f (x) + g (x)
, P

(
ε0x = −1|N

)
=

g (x)

f (x) + g (x)
,

with the convention that 0/0 = 1/2.
(ii) Respectively, let N be a Poisson process on X with intensity f+g with

respect to some measure µ. Let (εx)x∈N be a family of random variables with
values in {−1, 1} such that, conditionally to N , the variables (εx)x∈N are
i.i.d. and

∀ x ∈ N, P (εx = 1|N) =
f (x)

f (x) + g (x)
, P (εx = −1|N) =

g (x)

f (x) + g (x)
,

with the convention that 0/0 = 1/2. Then the point processes N1 and N−1,
respectively defined by the point measures dN1

x = 1εx=1dNx and dN−1
x =

1εx=−1dNx are two independent Poisson processes with respective intensities
f and g with respect to µ on X.

Proposition 1 allows us to exactly validate the wild bootstrap approach
in our context.

Of course, looking at the performance of our test and the validity of the
wild bootstrap approach from a non-asymptotic point of view poses the
additional question of the exact loss due to the Monte Carlo approximation

of q
(N)
1−α. We address this question in Section 3.3.

3. Single testing procedures based on a general kernel function.

3.1. Description of the single testing procedures. Assuming that f and g
belong to L2(X, dµ) (which in particular occurs when Assumptions 1 and 2
are satisfied), a natural idea to test (H0) ”f = g” against (H1) ”f 6= g”
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is to use an estimator of ‖f − g‖2µ as testing statistic. We consider a finite
dimensional subspace S of L2(X, dµ), an orthonormal basis {ψλ, λ ∈ Λ} of
S for 〈., .〉µ, and the random variable T̂ defined by (2.3). T̂ can be rewritten
as

T̂ =
∑

λ∈Λ

((∫

X

ψλdN
1 −

∫

X

ψλdN
−1

)2

−
∫

X

ψ2
λdN

)
.

Since E
[(∫

ψλdN
1
)2]

=
(∫
ψλ(x)f(x)dµx

)2
+
∫
ψ2
λ(x)f(x)dµx, and similarly

for E
[(∫

ψλdN
−1
)2]

, it is easy to see that

Ef,g[T̂ ] = ||ΠS(f − g)||2µ,

where ΠS is the orthogonal projection onto S for 〈., .〉µ. Hence T̂ is an
unbiased estimator of ||ΠS(f − g)||2µ, and the choice of T̂ as testing statistic
may be relevant.

From Proposition 1, we deduce that under (H0) and conditionally to N ,
T̂ and T̂ε defined by (2.4) have the same distribution. Hence, as we have

seen in Section 2.4, given a prescribed level α in (0, 1), if q
(N)
1−α is the (1−α)

quantile of T̂ε conditionally to N , the test which rejects (H0) when T̂ > q
(N)
1−α

is exactly of level α.

We want to generalize this test, starting from the remark that T̂ can also
be expressed as

T̂ =
∑

x 6=x′∈N
K(x, x′)ε0xε

0
x′ ,

where K(x, x′) =
∑

λ∈Λ ψλ(x)ψλ(x
′).

Let now K be any symmetric kernel function: X × X → R satisfying the
following assumption.

Assumption 3.
∫
X2 K

2(x, x′)(f + g)(x)(f + g)(x′)dµxdµx′ < +∞.

Denoting by X[2] the set {(x, x′) ∈ X2, x 6= x′}, we introduce the statistic

(3.1) T̂K =
∑

x 6=x′∈N
K(x, x′)ε0xε

0
x′ =

∫

X[2]

K(x, x′)ε0xε
0
x′dNxdNx′ .

In the following, we use the notation ⋄µ for the operator defined by:

(3.2) K ⋄µ p(x′) =
∫

X

K(x, x′)p(x)dµx,
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and by analogy

(3.3) K ⋄ p(x′) =
∫

X

K(x, x′)p(x)dνx.

Let us now introduce the quantity

EK = 〈K ⋄µ (f − g), f − g〉µ,

which is well-defined thanks to Assumptions 1 and 3.
Since for every x in N , E[ε0x|N ] = (f(x)− g(x))/(f(x) + g(x)),

Ef,g[T̂K ] = Ef,g

[
E

[∫

X[2]

K(x, x′)ε0xε
0
x′dNxdNx′

∣∣∣N
]]
,

= Ef,g

[∫

X[2]

K(x, x′)
f(x)− g(x)

f(x) + g(x)

f(x′)− g(x′)
f(x′) + g(x′)

dNxdNx′

]

=

∫

X2

K(x, x′)(f − g)(x)(f − g)(x′)dµxdµx′

= EK .

Hence, the statistic T̂K is an unbiased estimator of EK .

We have chosen to consider and study in this paper three possible exam-
ples of symmetric kernel function K. For each example, by giving a simple
expression of EK , we explain here why T̂K may be a relevant statistic for the
problem of testing (H0) ”f = g” against (H1) ”f 6= g”.

1. Our first choice for K is a symmetric kernel function based on an
orthonormal family {ψλ, λ ∈ Λ} for 〈., .〉µ:

K(x, x′) =
∑

λ∈Λ
ψλ(x)ψλ(x

′).

When the cardinality of Λ is finite, T̂K corresponds to our first natural
testing statistic T̂ . When the cardinality of Λ is infinite, we assume that

sup
x,x′∈X

∑

λ∈Λ
|ψλ(x)ψλ(x

′)| < +∞,

which ensures thatK(x, x′) is defined for all x, x′ in X and that Assumption 3
holds. Typically, if X = Rd and if the functions {ψλ, λ ∈ Λ} correspond to
indicator functions with disjoint supports, this condition will be satisfied.
We check in these cases that

EK = ||ΠS(f − g)||2µ,
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where ΠS denotes the orthogonal projection onto the subspace S generated
by {ψλ, λ ∈ Λ}, that is T̂K is an unbiased estimator of ||ΠS(f − g)||2µ. Hence,
when {ψλ, λ ∈ Λ} is well-chosen, T̂K can be viewed as a relevant estimator
of ||f − g||2µ.

It may also be interesting to consider an orthonormal family {ϕλ, λ ∈ Λ}
for 〈., .〉 and

K(x, x′) =
∑

λ∈Λ
ϕλ(x)ϕλ(x

′).

Recalling that µ = nν, it is easy to pass from this case to the previous one
by setting ψλ = ϕλ/

√
n: the new T̂K computed with the ϕλ’s is just n times

the previous T̂K computed with the ψλ’s, as well as EK .

2. When X = Rd and ν is the Lebesgue measure, our second choice for
K is a kernel function based on an approximation kernel k in L2(Rd), and
such that k(−x) = k(x): for x = (x1, . . . , xd), x

′ = (x′1, . . . , x
′
d) in X,

K(x, x′) =
1

∏d
i=1 hi

k

(
x1 − x′1
h1

, . . . ,
xd − x′d
hd

)
,

where h = (h1, . . . , hd) is a vector of d positive bandwiths. Notice that
the assumption that k ∈ L2(Rd) together with Assumption 2 ensure that
Assumption 3 holds. Then, in this case,

EK = 〈kh ∗µ (f − g), f − g〉µ,

where kh(u1, . . . , ud) =
1

∏d
i=1 hi

k
(
u1
h1
, . . . , ud

hd

)
and ∗µ is the usual convolution

operator with respect to the measure µ.

3. Our third choice for K is a general Mercer or learning kernel (see [53])
such that

K(x, x′) = 〈θ(x), θ(x′)〉HK
,

where θ and HK are a representation function and a RKHS associated with
K. Here, 〈., .〉HK

denotes the scalar product of HK . We also choose K such
that it satisfies Assumption 3. This choice leads to a testing statistic close
to the one in [27] for the classical i.i.d. two-sample problem when the sizes
of the i.i.d. samples are equal. We will however see that the statistic is not
used here exactly in the same way as in [27], since the critical value of
our test is not chosen in the same way. While Gretton et al. [27] choose
their critical values from either concentration inequalities, or asymptotic
arguments or an asymptotic Efron’s bootstrap approach, we will choose our
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critical value from the exact wild bootstrap approach described above, and
which is precisely justified by Proposition 1.
In this case, it is easy to see that

EK =

∥∥∥∥
∫

X

θ(x)(f − g)(x)dµx

∥∥∥∥
2

HK

.

From Lemma 4 in [27], we know that this quantity corresponds to the
squared Maximum Mean Discrepancy on the unit ball in the RKHS HK :

EK =

(
sup

‖r‖HK
≤1

∫
r(x)(f − g)(x)dµx

)2

.

Moreover, when K is a universal kernel, such as the Gaussian and the Lapla-
cian kernels, EK = 0 if and only if f = g. Note that in the density case (i.e.
when

∫
X
f(x)dµx =

∫
X
g(x)dµx = 1) this is sufficient to say that the kernel

is characteristic in the sense of [22].

Thus, for each of the three above choices for K, we have seen that it is
actually pertinent to take T̂K as testing statistic and to reject (H0) when
T̂K is larger than a critical value to be defined.

The critical value that we define here is constructed from the same wild
bootstrap approach as above. Hence, we introduce

(3.4) T̂ ε
K =

∑

i 6=i′∈{1,...,Nn}
K(Xi,Xi′)εiεi′ ,

where (εi)i∈N is a sequence of i.i.d. Rademacher variables independent of N ,

and we denote by q
(N)
K,1−α the (1−α) quantile of T̂ ε

K conditionally to N . We

finally consider the test that rejects (H0) when T̂K > q
(N)
K,1−α, whose test

function is defined by

(3.5) ΦK,α = 1
T̂K>q

(N)
K,1−α

.

3.2. Probabilities of first and second kind errors. In this section we study
the properties of the above single test ΦK,α defined by (3.5), through its
probabilities of first and second kind errors.

Firstly, from Proposition 1, we deduce that under (H0), T̂
ε
K and T̂K have

exactly the same distribution conditionally to N . As a result, given α in
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(0, 1), under (H0), q
(N)
K,1−α is also the (1−α) quantile of T̂K conditionally to

N and under (H0),

P

(
T̂K > q

(N)
K,1−α

∣∣∣N
)
≤ α.

By taking the expectation over N , we obtain that

P(H0)(ΦK,α = 1) ≤ α.

Secondly, given β in (0, 1), we here want to bring out an exact condition
on the alternative (f, g) which will guarantee that

Pf,g(ΦK,α = 0) ≤ β.

Let us introduce the 1−β/2 quantile of the conditional quantile q
(N)
K,1−α that

we denote by qα1−β/2. Then for any (f, g),

Pf,g(ΦK,α = 0) ≤ Pf,g(T̂K ≤ qα1−β/2) + β/2,

and a condition which guarantees Pf,g(T̂K ≤ qα1−β/2) ≤ β/2 will be enough

to ensure that Pf,g(ΦK,α = 0) ≤ β. The following proposition gives such a
condition. It is crucial in the proofs and understanding of the results of the
paper.

Proposition 2. Let α, β be fixed levels in (0, 1). For any symmetric
kernel function K satisfying Assumption 3, we recall that

Ef,g[T̂K ] = EK = 〈K ⋄µ (f − g), f − g〉µ,

with ⋄µ defined by (3.2), and we introduce

AK =

∫

X

(K ⋄µ (f − g)(x))2 (f + g)(x)dµx,

BK =

∫

X2

K2(x, x′)(f + g)(x)(f + g)(x′)dµxdµx′ .

If

(3.6) EK > 2

√
2AK +BK

β
+ qα1−β/2,

then Pf,g(T̂K ≤ qα1−β/2) ≤ β/2, so that

Pf,g(ΦK,α = 0) ≤ β.
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Moreover, there exists some positive constant κ such that, for every K,

(3.7) qα1−β/2 ≤ κ ln(2/α)

√
2BK

β
.

To prove the first part of this result, we simply use classical Markov
inequalities since obtaining precise constants and dependency in β is not
crucial here (see Section 6). The control of qα1−β/2 is obtained from a property

of Rademacher chaos combined with an exponential inequality (see [15] and
[40]).

Note than in the Mercer kernel case, we are taking here the work of [27]
further by giving, in the Poissonian context, a non-asymptotic condition to
guarantee a certain power and this condition non surprisingly is about the
squared Maximum Mean Discrepancy EK being large enough.

Furthermore, considering the asymptotic setting, i.e. where dµ = ndν,
allows to better understand Proposition 2 and to deduce from it recognizable
properties in terms of uniform separation rates. Considering each of our
three choices for the kernel K, and evaluating AK and BK in these cases,
we actually obtain the following theorem.

Theorem 3.1. Let α, β be fixed levels in (0, 1). Let κ > 0 be the constant
of Proposition 2. Let ΦK,α be the test function defined by (3.5), where K is
a symmetric kernel function chosen as in one of the three following different
cases.

1. Let {ϕλ, λ ∈ Λ} be an orthonormal basis of a linear subspace S of
L2(X, dν). We assume either that the dimension of S is finite, equal to D,
or that the two following conditions hold

sup
x,x′∈X

∑

λ∈Λ
|ϕλ(x)ϕλ(x

′)| = D < +∞(3.8)

∫

X2

(∑

λ∈Λ
|ϕλ(x)ϕλ(x

′)|
)2

(f + g)(x′)dνxdνx′ < +∞.(3.9)

In both cases, we define K(x, x′) =
∑

λ∈Λ ϕλ(x)ϕλ(x
′), and we assume that

(3.10)

||f−g||2 ≥ ||(f−g)−ΠS(f−g)||2+
(4 + 2

√
2κ ln(2/α))

n
√
β

M(f, g)
√
D+

8||f + g||∞
βn

,

with M(f, g) = ||f + g||∞ if the dimension of S is finite and M(f, g) =√
||f + g||∞||f + g||1 if the dimension of S is infinite.
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2. Let X = Rd and ν be the Lebesgue measure on X. Let k be an approx-
imation kernel in L2(Rd), such that k(x) = k(−x), h = (h1, . . . , hd) with
hi > 0 for every i = 1 . . . d, and K(x, x′) = kh(x−x′), with kh(u1, . . . , ud) =

1
∏d

i=1 hi
k
(
u1
h1
, . . . , ud

hd

)
. We assume that

||f − g||2 ≥ ||(f − g)− kh ∗ (f − g)||2

+
4 + 2

√
2κ ln(2/α)

n
√
β

√
||f + g||∞||f + g||1||k||2∏d

i=1 hi
+

8||f + g||∞
βn

.

3. Let K be a Mercer kernel associated with a representation function θ
and a RKHS HK such that Assumption 3 holds.
We define CK =

∫
X2 K

2(x, x′)(f + g)(x)(f + g)(x′)dνxdνx′ , and we assume
that

||f − g||2 ≥ inf
r>0

[ ∥∥(f − g)− r−1K ⋄ (f − g)
∥∥2

+
4 + 2

√
2κ ln(2/α)

nr
√
β

√
CK

]
+

8||f + g||∞
βn

.

Then in all these three cases, one can guarantee that

Pf,g(ΦK,α = 0) ≤ β.

Comments.
1. In the first case, we can see that the right hand side of (3.10) reproduces

a bias-variance decomposition close to the bias-variance decomposition for
projection estimators, with a variance term of order

√
D/n instead of D/n.

This is quite usual for this kind of test (see [4] for instance), and we know
that this leads to sharp upper bounds for the uniform separation rates over
particular classes of alternatives.

2. The second case also reproduces a bias-variance decomposition when
k ∈ L1(Rd) and

∫
Rd k(x)dνx = 1: the bias is here ||(f − g) − kh ∗ (f − g)||.

When h1 = . . . = hd, the variance term is of order h
−d/2
1 /n. As usual in the

approximation kernel estimation theory, this coincides with what is found
in the first case through the equivalence h−d

1 ∼ D (see [58] for instance for
more details).

3. The third case is unusual, since the term ||(f − g)− r−1K ⋄ (f − g)|| can
not always be viewed as a bias term. Indeed, Mercer kernels are frequently
used in statistical learning, but their approximation capacity is not necessar-
ily considered. In particular when we consider the first case where the family
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{ϕλ, λ ∈ Λ} is orthonormal w.r.t. 〈., .〉 or the second case with k ∈ L1(Rd)
and

∫
Rd k(x)dνx = 1, these conditions give a link between the measure ν and

the statistics leading to potentially fruitful approximation properties. When
Mercer kernels are involved, the only usual normalization consists in ensur-
ing that K(x, x) = 1. This normalization corresponds to a normalization of
the vector θ(x) in the RKHS. However since the RKHS has in general no link
with the underlying measure ν, there is in general no classical normalization
for our present problem. That is the reason why we forced such a normaliza-
tion via the factor r. Note that performing the procedure with K or r−1K
exactly leads to the same test. Thus, there are special cases for which one
can go a bit further, and recover the results given in the first and second
cases. Let us consider K(x, x′) = c〈ϕ(x), ϕ(x′)〉RΛ with ϕ(x) = (ϕλ(x))λ∈Λ
and c > 0. K is a Mercer kernel usually known as a projection kernel with
HK = RΛ and θ(x) =

√
cϕ(x). It is not mandatory in statistical learning

for instance that the family (ϕλ(x))λ∈Λ is orthonormal for 〈., .〉. However,
when we add this assumption, taking r = c exactly leads to the result given
in the first case. Let us now consider X = R and ν the Lebesgue measure
on R. Let K(x, x′) = exp(−(x−x′)2/(2h2)) be the classical one-dimensional
Gaussian Mercer kernel with variance h2. Let us denote by k the density of
the standard Gaussian distribution and let kh = (1/h)k(./h). Then we have
K(x, x′) = h

√
2πkh(x−x′). Applying the result stated in the third case with

r = h
√
2π also leads to the result stated in the second case.

When we are not in these special cases, though we can not really give a
statistical interpretation of our result, we however think that the introduc-
tion of Mercer kernels may help if the space X is unusual or pretty large
with respect to the (mean) number of observations and/or if the measure
ν is not well specified or easy to deal with. In such situations, the use of
Mercer kernels may be the only possible way to compute a meaningful test
(see [27] where such kernels are used for microarrays data and graphs).

3.3. Performances of the Monte Carlo procedure.

3.3.1. Probability of first kind error. In practice, a Monte Carlo proce-

dure will be used to estimate the conditional quantiles q
(N)
K,1−α. It is therefore

natural to address the following question: what can we say about the proba-
bilities of first and second kind errors of the test built with these Monte Carlo
approximations? Recall that we consider the test ΦK,α rejecting (H0) when

T̂K > q
(N)
K,1−α, where T̂K is defined by (3.1), and q

(N)
K,1−α is the (1−α) quantile

of T̂ ε
K defined by (3.4) conditionally to N . q

(N)
K,1−α is estimated by q̂

(N)
K,1−α via

the Monte Carlo method as follows. Conditionally to N , we consider a set of
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B independent sequences {εb, 1 ≤ b ≤ B}, where εb = (εbx)x∈N is a sequence
of i.i.d. Rademacher random variables. We define for 1 ≤ b ≤ B:

T̂ εb

K =
∑

x 6=x′∈N
K(x, x′)εbxε

b
x′ .

Under (H0), conditionally to N , the variables T̂ εb
K have the same distribution

function as T̂K , which is denoted by FK . We denote by FK,B the empirical

distribution function (conditionally to N) of the sample (T̂ εb
K , 1 ≤ b ≤ B):

∀x ∈ R, FK,B(x) =
1

B

B∑

b=1

1
T̂ εb
K ≤x

.

Then, q̂
(N)
K,1−α is defined by

q̂
(N)
K,1−α = F−1

K,B(1− α) = inf {t ∈ R, FK,B(t) ≥ 1− α} .
We finally consider the test given by

(3.11) Φ̂K,α = 1
T̂K>q̂

(N)
K,1−α

.

The following proposition gives an upper bound for the level of Φ̂K,α.

Proposition 3. Let Φ̂K,α be the test defined by (3.11). Under the null
hypothesis (H0) ”f = g”,

Pf,g

(
Φ̂K,α = 1

∣∣∣N
)
≤ α+ inf

λ>0

(
λ√
B

+ 2e−2λ2

)
.

For example, if we take α = 0.05 and B = 200000, the level of the test
Φ̂K,α is controlled by 5.5%.

3.3.2. Probability of second kind error.

Proposition 4. Let α and β be some fixed levels in (0, 1) such that
α >

√
lnB/4B and β > 4/

√
B. Let Φ̂K,α be the test defined by (3.11). Let

EK , AK and BK be defined as in Proposition 2. There exists some constant
κ > 0 such that if

(3.12) EK > 2

√
2AK +BK

β
+ κ ln


 2

α−
√
lnB

2
√
B



√

BK

β
2 − 2√

B

,

then
Pf,g(Φ̂K,α = 0) ≤ β.
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When comparing the condition (3.12) with (3.6) and (3.7) in Proposi-
tion 2, we can notice that they asymptotically coincide when B → +∞.
Moreover, when α = β = 0.05 and B ≥ 6400, the multiplicative factor of
κ
√
BK is multiplied by a factor of order 2 in (3.12) compared with (3.6). If

even B = 200000, this factor passes from 23.4 in (3.6) to 26.4 in (3.12).

4. Multiple testing procedures. In the previous section, we have
considered testing procedures based on a single kernel function K. Using
such single tests however leads to the natural question of the choice of the
kernel, and/or its parameters: the orthonormal family when the kernel K
is based on such an orthonormal family, the bandwidth h when K is based
on an approximation kernel, the parameters of K when it is a Mercer ker-
nel. Authors often choose particular parameters regarding the performance
properties that they target for their tests, or use a data driven method to
choose these parameters which is not always justified. For instance, in [27],
the parameter of the kernel is chosen from a heuristic method.

In order to avoid choosing particular kernels or parameters, we propose
in this section to consider some collections of kernel functions instead of
a single one, and to define multiple testing procedures by aggregating the
corresponding single tests. We propose an adapted choice for the critical
value. Then, we prove that these multiple procedures have strong statistical
performances since they satisfy oracle type inequalities and are adaptive on
several classes of alternatives simultaneously.

4.1. Description of the multiple testing procedures. Let us introduce a
finite collection {Km,m ∈ M} of symmetric kernel functions: X × X → R

satisfying Assumption 3. For everym inM, let T̂Km and T̂ ε
Km

be respectively
defined by (3.1) and (3.4) with K = Km, and let {wm,m ∈ M} be a
collection of positive numbers such that

∑
m∈M e−wm ≤ 1. For u ∈ (0, 1),

we denote by q
(N)
m,1−u the (1−u) quantile of T̂ ε

Km
conditionally to the pooled

process N . Given α ∈ (0, 1), we consider the test which rejects (H0) when
there exists at least one m in M such that

T̂Km > q
(N)

m,1−u
(N)
α e−wm

,

where u
(N)
α is defined by

(4.1) u(N)
α = sup

{
u > 0,P

(
sup
m∈M

(
T̂ ε
Km

− q
(N)
m,1−ue−wm

)
> 0

∣∣∣∣∣ N
)

≤ α

}
.
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Let Φα be the corresponding test function defined by

(4.2) Φα = 1
supm∈M

(

T̂Km−q
(N)

m,1−u
(N)
α e−wm

)

>0
.

Note that given the observation of the pooled process N , u
(N)
α and the

quantile q
(N)

m,1−u
(N)
α e−wm

can be estimated by a Monte Carlo procedure (see

Section 5).
It is quite straightforward to see that this test is of level α and that one

can guarantee a probability of second kind error at most equal to β ∈ (0, 1)
if one can guarantee it for one of the single tests rejecting (H0) when T̂Km >

q
(N)

m,1−u
(N)
α e−wm

. We can thus combine the results of Theorem 3.1.

Even if the multiple testing procedure may be performed for collections
of kernel functions mixing the three possible choices of kernel functions in
Theorem 3.1, we have decided to focus on the first two choices, where we
know that the performance of the corresponding tests is already optimal if
the space S or the approximation kernel k is well-chosen. This enables us to
go a little bit further in the interpretation of the results as oracle inequalities.

4.2. Oracle type inequalities for the probability of second kind error.

4.2.1. Multiple testing procedures based on orthonormal families.

Theorem 4.1. Let α, β be fixed levels in (0, 1). Let {Sm,m ∈ M} be
a finite collection of linear subspaces of L2(X, dν) and for all m in M, let
{ϕλ, λ ∈ Λm} be an orthonormal basis of Sm for 〈., .〉. We assume either that
Sm has finite dimension Dm or that conditions (3.8) and (3.9) hold for Λ =
Λm and D = Dm. We set, for all m ∈ M, Km(x, x′) =

∑
λ∈Λm

ϕλ(x)ϕλ(x
′).

Let Φα be the test function defined by (4.2) with the collection of kernels
{Km,m ∈ M} and a collection {wm,m ∈ M} of positive numbers such that∑

m∈M e−wm ≤ 1.
Then the test Φα is a level α test. Moreover, there exists some positive

constant κ such that if

(4.3) ||f − g||2 ≥ inf
m∈M

{
||(f − g)−ΠSm(f − g)||2

+
4 + 2

√
2κ(ln(2/α) + wm)

n
√
β

M ′(f, g)
√
Dm

}
+

8||f + g||∞
βn

,
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with M ′(f, g) = max
(
||f + g||∞,

√
||f + g||∞||f + g||1

)
, then

Pf,g (Φα = 0) ≤ β.

Comparing this result with the one obtained in Theorem 3.1 for the sin-
gle test based on an orthonormal family, one can see that considering the
multiple testing procedure allows to obtain the infimum over all m in M
in the right hand side of (4.3) at the price of the additional term wm. This
result can be viewed as an oracle type inequality: indeed, without knowing
(f − g), we know that the uniform separation rate of the aggregated test is
of the same order as the smallest uniform separation rate in the collection of
single tests, up to the factor wm. It will be used to prove that our multiple
testing procedures are adaptive over various classes of alternatives.

We focus here on three particular examples. The first example involves
a nested collection of linear subspaces of L2([0, 1]), as in model selection
estimation approaches. In the second example, we consider a collection of
one dimensional linear subspaces of L2([0, 1]), and our testing procedure is
hence related to a thresholding estimation approach. In the third example,
we introduce a collection of infinite dimensional linear subspaces of L2(R).

Example 1. Let X = [0, 1] and ν be the Lebesgue measure on [0, 1]. Let
{ϕ0, ϕ(j,k), j ∈ N, k ∈ {0, . . . , 2j − 1}} be the Haar basis of L2(X, dν) with

(4.4) ϕ0(x) = 1[0,1](x) and ϕ(j,k)(x) = 2j/2ψ(2jx− k),

where ψ(x) = 1[0,1/2)(x) − 1[1/2,1)(x). The collection of linear subspaces
{Sm,m ∈ M} is chosen as a collection of nested subspaces generated by
subsets of the Haar basis. More precisely, we denote by S0 the subspace of
L2([0, 1]) generated by ϕ0, and we define K0(x, x

′) = ϕ0(x)ϕ0(x
′). We also

consider for J ≥ 1 the subspaces SJ generated by {ϕλ, λ ∈ {0} ∪ ΛJ} with
ΛJ = {(j, k), j ∈ {0, . . . , J − 1}, k ∈ {0, . . . , 2j − 1}}, and KJ(x, x

′) =∑
λ∈{0}∪ΛJ

ϕλ(x)ϕλ(x
′). Let for some J̄ ≥ 1,

MJ̄ = {J, 0 ≤ J ≤ J̄},

and for every J in MJ̄ , wJ = 2
(
ln(J + 1) + ln(π/

√
6)
)
. Let Φ

(1)
α be the test

function defined by (4.2) with the collection of kernel functions {KJ , J ∈
MJ̄} and with {wJ , J ∈ MJ̄}. We obtain from Theorem 4.1 that there
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exists some constant C (α, β, ||f ||∞, ||g||∞) > 0 such that if

(4.5) ‖f − g‖2 ≥ C (α, β, ||f ||∞, ||g||∞) inf
J∈MJ̄

{
‖(f − g)−ΠSJ

(f − g)‖2

+ (ln(J + 2))
2J/2

n

}
,

then Pf,g

(
Φ
(1)
α = 0

)
≤ β.

Example 2. Let X = [0, 1] and ν be the Lebesgue measure on [0, 1]. Let
{ϕ0, ϕ(j,k), j ∈ N, k ∈ {0, . . . , 2j − 1}} still be the Haar basis of L2(X, dν)

defined by (4.4). Let for some J̃ ≥ 1,

ΛJ̃ = {(j, k), j ∈ {0, . . . , J̃ − 1}, k ∈ {0, . . . , 2j − 1}}.

For any λ in {0} ∪ ΛJ̃ , we consider the subspace S̃λ of L2([0, 1]) generated

by ϕλ, and Kλ(x, x
′) = ϕλ(x)ϕλ(x

′). Let Φ
(2)
α be the test defined by (4.2)

with the collection of kernel functions {Kλ, λ ∈ {0} ∪ΛJ̃}, with w0 = ln(2),
and w(j,k) = ln(2j) + 2

(
ln(j + 1) + ln(π/

√
3)
)
for j ∈ N, k ∈ {0, . . . , 2j − 1}.

We obtain from Theorem 4.1 and Pythagore’s theorem that there is some
constant C (α, β, ||f ||∞, ||g||∞) > 0 such that if there exists λ in {0} ∪ΛJ̃ for
which

‖ΠS̃λ
(f − g)‖2 ≥ C (α, β, ||f ||∞, ||g||∞)

wλ

n
,

then Pf,g

(
Φ
(2)
α = 0

)
≤ β. Notice that if MJ̃ = {m,m ⊂ {0} ∪ ΛJ̃}, the

above condition is equivalent to saying that there exists m in MJ̃ such that

‖ΠSm(f − g)‖2 ≥ C (α, β, ||f ||∞, ||g||∞)

∑
λ∈m wλ

n
,

where Sm is the linear subspace generated by {ϕλ, λ ∈ m}. Hence, we obtain
that there exists some constant C (α, β, ||f ||∞, ||g||∞) > 0 such that if

(4.6) ‖f − g‖2 ≥ C (α, β, ||f ||∞, ||g||∞) inf
m∈M

{
‖(f − g) −ΠSm(f − g)‖2

+

∑
λ∈m wλ

n

}
,

then Pf,g

(
Φ
(2)
α = 0

)
≤ β.



TWO-SAMPLE PROBLEM FOR POISSON PROCESSES 25

Example 3. Let X = R and ν be the Lebesgue measure on R. We define, for
all j in N and k in Z, ϕj,k = 2j/21[ k

2j
, k+1

2j

). For every j in N, we denote by

Sj the linear subspace of L2(R) generated by {ϕj,k, k ∈ Z} and Kj(x, x
′) =∑

k∈Z ϕj,k(x)ϕj,k(x
′). Then (3.8) holds and

∑

k∈Z
|ϕj,k(x)ϕj,k(x

′)| = 2j1
x∈

[

k(x′)
2j

,
k(x′)+1

2j

)

where k(x′) is the integer defined by x′ ∈
[
k(x′)
2j

, k(x
′)+1
2j

)
. This ensures that

(3.9) holds:

∫

R2

(∑

k∈Z
|ϕj,k(x)ϕj,k(x

′)|
)2

(f + g)(x′)dνxdνx′

= 22j
∫

R

(∫

R

1
x∈

[

k(x′)
2j

,
k(x′)+1

2j

)dνx

)
(f + g)(x′)dνx′

= 2j
∫

R

(f + g)(x′)dνx′ < +∞.

Let for some j̄ ≥ 1, Mj̄ = {j, 0 ≤ j ≤ j̄}, and for every j in Mj̄, wj =

2
(
ln(j + 1) + ln(π/

√
6)
)
. Let Φ

(3)
α be defined by (4.2) with the collections

{Kj , j ∈ Mj̄} and {wj , j ∈ Mj̄}. We obtain from Theorem 4.1 that there
exists some positive constant C (α, β, ||f + g||∞, ||f + g||1) such that if

‖f − g‖2 ≥ C (α, β, ||f + g||∞, ||f + g||1) inf
j∈Mj̄

{
‖(f − g) −ΠSj(f − g)‖2

+ ln(j + 2)
2j/2

n

}
,

then Pf,g

(
Φ
(3)
α = 0

)
≤ β. Note that this example allows us to consider two

independent Poisson processes that are defined on the whole real line, as
well as the two examples presented in the next section.

4.2.2. Multiple testing procedures based on approximation kernels.

Theorem 4.2. Let α, β be fixed levels in (0, 1), X = Rd and let ν be
the Lebesgue measure on Rd. Let {km1 ,m1 ∈ M1} be a collection of approx-
imation kernels such that

∫
X
k2m1

(x)dνx < +∞, km1(x) = km1(−x), and a
collection {hm2 ,m2 ∈ M2}, where each hm2 is a vector of d positive numbers
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(hm2,1, . . . , hm2,d). We set M = M1×M2, and for all m = (m1,m2) in M,
x = (x1, . . . , xd), x

′ = (x′1, . . . , x
′
d) in Rd,

Km(x, x′) = km1,hm2
(x− x′) =

1
∏d

i=1 hm2,i

km1

(
x1 − x′1
hm2,1

, . . . ,
xd − x′d
hm2,d

)
.

Let Φα be the test defined by (4.2) with {Km,m ∈ M} and a collection
{wm,m ∈ M} of positive numbers such that

∑
m∈M e−wm ≤ 1. Then Φα is

a level α test. Moreover, there exists κ > 0 such that if

||f − g||2≥ inf
(m1,m2)∈M

{
||(f − g)−km1,hm2

∗ (f − g)||2+

4 + 2
√
2κ(ln(2/α) + wm)

n
√
β

√
||f + g||∞||f + g||1||km1 ||2∏d

i=1 hm2,i

}
+

8||f + g||∞
βn

,

then
Pf,g (Φα = 0) ≤ β.

We focus here on two particular examples. The first example involves a
collection of non necessarily integrable approximation kernels with a collec-
tion of bandwidths vectors whose components are the same in every direc-
tion. The second example involves a single integrable approximation kernel,
but with a collection of bandwidths vectors whose components may differ
according to every direction.

Example 4. Let X = Rd and ν be the Lebesgue measure on Rd. We set
M1 = N \ {0} and M2 = N. For m1 in M1, let km1 be a kernel such
that

∫
k2m1

(x)dνx < +∞ and km1(x) = km1(−x), non necessarily integrable,

whose Fourier transform is defined when km1 ∈ L1(Rd)∩L2(Rd) by k̂m1(u) =∫
Rd km1(x)e

i〈x,u〉dνx and is extended to km1 ∈ L2(Rd) in the Plancherel sense.

We assume that for every m1 in M1, ||k̂m1 ||∞ < +∞, and

(4.7) Ess supu∈Rd\{0}
|1− k̂m1(u)|

||u||m1
d

≤ C,

for some C > 0, where ||u||d denotes the euclidean norm of u. Note that
the sinc kernel, the spline type kernel and Pinsker’s kernel given in [58] for
instance satisfy this condition which can be viewed as an extension of the
integrability condition (see [58] p. 26-27 for more details). For m2 in M2,
let hm2 = (2−m2 , . . . , 2−m2) and for m = (m1,m2) in M = M1 ×M2, let

Km(x, x′) = km1,hm2
(x− x′) =

1

2−dm2
km1

(
x1 − x′1
2−m2

, . . . ,
xd − x′d
2−m2

)
.
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We take w(m1,m2) = 2
(
ln(m1(m2 + 1)) + ln(π2/6)

)
, so

∑
m∈M e−wm ≤ 1.

Let Φ
(4)
α be the test function defined by (4.2) with the collection of kernel

functions {Km,m ∈ M} and {wm,m ∈ M}. We obtain from Theorem 4.2
that there exists some positive constant C(α, β) such that if

||f − g||2 ≥ C(α, β)

(
inf

(m1,m2)∈M

{
||(f − g)− km1,hm2

∗ (f − g)||2

+
w(m1,m2)

n

√
||f + g||∞||f + g||1||km1 ||2

2−dm2

}
+

||f + g||∞
n

)
,

then Pf,g

(
Φ
(4)
α = 0

)
≤ β.

Example 5. Let X = Rd and ν be the Lebesgue measure on Rd. Let M1 =
{1} and M2 = Nd. For x = (x1, . . . , xd) in Rd, let k1(x) =

∏d
i=1 k1,i(xi)

where the k1,i’s are real valued kernels such that k1,i ∈ L1(R) ∩ L2(R),
k1,i(xi) = k1,i(−xi), and

∫
R
k1,i(xi)dxi = 1. For m2 = (m2,1, . . . ,m2,d) in

M2, hm2,i = 2−m2,i and for m = (m1,m2) in M = M1 ×M2,

Km(x, x′) = km1,hm2
(x− x′) =

d∏

i=1

1

hm2,i
k1,i

(
xi − x′i
hm2,i

)
.

We also set w(1,m2) = 2
∑d

i=1

(
ln(m2,i + 1) + ln(π/

√
6)
)
, so that

∑
m∈M1×M2

e−wm = 1. Let Φ
(5)
α be the test function defined by (4.2) with

the collections {Km,m ∈ M} and {wm,m ∈ M}. We deduce from Theo-
rem 4.2 that there exists some positive constant C(α, β) such that if

||f − g||2 ≥ C(α, β)

(
inf

m2∈M2

{
||(f − g)− k1,hm2

∗ (f − g)||2

+
w(1,m2)

n

√
||f + g||∞||f + g||1||k1||2∏d

i=1 hm2,i

}
+

||f + g||∞
n

)
,

then Pf,g

(
Φ
(5)
α = 0

)
≤ β.

4.3. Uniform separation rates over various classes of alternatives. We
here evaluate the uniform separation rates, defined by (1.1) with the norm
‖.‖ of L2(X, dν), of the multiple testing procedures introduced above over
several classes of alternatives based on Besov and weak Besov bodies when
X ⊂ R, or Sobolev and anisotropic Besov-Nikol’skii balls when X = Rd.
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4.3.1. Uniform separation rates for Besov and weak Besov bodies. Let

Φ
(1)
α and Φ

(2)
α be the tests defined in Example 1 and Example 2 in Sec-

tion 4.2.1.
Recall that these tests are constructed from the Haar basis {ϕ0, ϕ(j,k), j ∈
N, k ∈ {0, . . . , 2j − 1}} of L2(X, dν) defined by (4.4). Let

Ψα = max(Φ
(1)
α/2,Φ

(2)
α/2).

Like in [21], we define for δ > 0, R > 0 the Besov body Bδ
2,∞(R) as follows :

(4.8) Bδ
2,∞(R) =

{
s ∈ L2([0, 1]), s = α0ϕ0 +

∑

j∈N

2j−1∑

k=0

α(j,k)ϕ(j,k),

α2
0 ≤ R2 and ∀j ∈ N,

2j−1∑

k=0

α2
(j,k) ≤ R22−2jδ

}
,

We also consider weak Besov bodies given for γ > 0, R′ > 0 by

(4.9) Wγ(R
′) =

{
s ∈ L2([0, 1]), s = α0ϕ0 +

∑

j∈N

2j−1∑

k=0

α(j,k)ϕ(j,k),

∀t > 0, α2
01α2

0≤t +
∑

j∈N

2j−1∑

k=0

α2
(j,k)1α2

(j,k)
≤t ≤ R′2t

2γ
1+2γ

}
.

Let us introduce

Bδ,γ,∞(R,R′, R′′) =
{
(f, g), (f − g) ∈ Bδ

2,∞(R) ∩Wγ(R
′),

max(||f ||∞, ||g||∞) ≤ R′′}.

Corollary 1. Assume that ln lnn ≥ 1, 2J̄ ≥ n2, and J̃ = +∞. Then,
for any δ > 0, γ > 0, R,R′, R′′ > 0,
(i) if δ ≥ γ/2

ρ(Ψα,Bδ,γ,∞(R,R′, R′′), β) ≤ C(δ, γ,R,R′, R′′, α, β)

(
ln lnn

n

) 2δ
4δ+1

,

(ii) if δ < γ/2

ρ(Ψα,Bδ,γ,∞(R,R′, R′′), β) ≤ C(δ, γ,R,R′, R′′, α, β)

(
lnn

n

) γ
2γ+1

.
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Comments. Notice that our classes of alternatives are not defined in the
same way as in [10] in the classical i.i.d. two-sample problem, since the
classes of alternatives (f, g) of [10] are such that f and g both belong to a
Besov ball. Here the smoothness condition is only required on the difference
(f − g). Our classes are consequently larger than those of [10]. In particular,
the functions f and g might be very irregular but as long as their difference
is smooth, the test will be powerful.

Let us now see why the above upper bounds are nearly optimal in the
minimax sense. Recall that the optimal value for the uniform separation
rate of a level α test over a class of alternatives Sδ is given by the minimax
separation rate ρ(Sδ, α, β) over Sδ defined by (1.2).

We deduce from the results given in [21] the following lower bounds.

Proposition 5. Assume that R > 0, R′ > 0, and R′′ ≥ 2, and fix some
levels α and β in (0, 1) such that α+ β ≤ 0.59.
(i) When δ ≥ max (γ/2, γ/(1 + 2γ)), then

lim inf
n→+∞

n
2δ

1+4δ ρ(Bδ,γ,∞(R,R′, R′′), α, β) > 0.

(ii) When δ < γ/2 and γ > 1/2, then

lim inf
n→+∞

( n

lnn

) γ
1+2γ

ρ(Bδ,γ,∞(R,R′, R′′), α, β) > 0.

(iii) When δ < γ/(1 + 2γ) and γ ≤ 1/2, then

lim inf
n→+∞

(
n

1
4 ∧ n

2γ
(1+4δ)(1+2γ)

)
ρ(Bδ,γ,∞(R,R′, R′′), α, β) > 0.

Hence the test Ψα is adaptive in the minimax sense over Bδ,γ,∞(R,R′, R′′),
up to a ln lnn factor in the case (i) and exactly in the case (ii). The exact
rate is however unknown in the case (iii).

Comment. For sake of simplicity we only considered the Haar basis, but
any wavelet basis may be considered. The proofs of the results could easily
be extended to compactly supported wavelets.

4.3.2. Uniform separation rates for Sobolev and anisotropic Nikol’skii-
Besov balls.
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Sobolev balls. Let us introduce for δ > 0 the Sobolev ball Sδ
d(R) defined by

Sδ
d(R) =

{
s : Rd → R, s ∈ L1(Rd)∩L2(Rd),

∫

Rd

||u||2δd |ŝ(u)|2du ≤ (2π)dR2

}
,

where ||u||d denotes the euclidean norm of u and ŝ denotes the Fourier trans-
form of s: ŝ(u) =

∫
Rd s(x)e

i〈x,u〉dx.

We here evaluate the uniform separation rate of Φ
(4)
α defined in Example 4

of Section 4.2.2 over the classes

Sδ
d(R,R

′, R′′) = {(f, g), (f − g) ∈ Sδ
d(R),

max(||f ||1, ||g||1) ≤ R′,max(||f ||∞, ||g||∞) ≤ R′′},

for every δ > 0, and R,R′, R′′ > 0.

Corollary 2. Assume that ln lnn ≥ 1. For any δ > 0, R,R′, R′′ > 0,

ρ(Φ(4)
α ,Sδ

d(R,R
′, R′′), β) ≤ C(δ, α, β,R,R′, R′′, d)

(
ln lnn

n

) 2δ
d+4δ

.

Comments. From [49], we know that, in the density model, the minimax

adaptive estimation rate over Sδ
d(R) is of order n

− δ
d+2δ when δ > d/2. Rigol-

let and Tsybakov construct some aggregated density estimators, based on
Pinsker’s kernel, that achieve this rate with exact constants. In the same

way, the test Φ
(4)
α consists in an aggregation of some tests based on a collec-

tion of kernels, that may be for instance a collection of Pinsker’s kernels. It

achieves over Sδ
d(R,R

′, R′′) a uniform separation rate of order n−
2δ

d+4δ up to
a ln lnn factor. This rate is now known to be the optimal adaptive minimax
rate of testing when d = 1 in several models (see [56] in a Gaussian model
or [32] in the density model for instance). From the results of [28], we can
conjecture that our rates are also optimal when d > 1.

Nikol’skii-Besov anisotropic balls. Let δ = (δ1, . . . , δd) with δi > 0 for every
i = 1 . . . d and R > 0. For all t in R, we denote by ⌊t⌋ the integer such that
t − ⌊t⌋ ∈ (0, 1]. We consider the anisotropic Nikol’skii-Besov ball N δ

2,d(R)
defined by:

(4.10) N δ
2,d(R) =

{
s : Rd → R, s has continuous partial derivatives D

⌊δi⌋
i

of order ⌊δi⌋ w.r.t ui, and ||D⌊δi⌋
i s(u1, . . . , ui+v, . . . , ud)−D⌊δi⌋

i s(u1, . . . , ud)||2
≤ R|v|δi−⌊δi⌋, ∀i = 1 . . . d, u1, . . . , ud, v ∈ R

}
.
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Let Φ
(5)
α be the test defined in Example 5 in Section 4.2.2. Assume further-

more that
∫
R
|k1,i(xi)||xi|δidxi < +∞, and

∫
R
k1,i(xi)x

j
idxi = 0 for every

i = 1 . . . d and j = 1 . . . ⌊δi⌋. We here evaluate the uniform separation rate

of Φ
(5)
α over the classes

N δ
2,d(R,R

′, R′′) = {(f, g), (f − g) ∈ N δ
2,d(R),

max(||f ||1, ||g||1) ≤ R′,max(||f ||∞, ||g||∞) ≤ R′′},

for every δ ∈]0,+∞[d and R,R′, R′′ > 0.

Corollary 3. Assume that ln lnn ≥ 1. For any δi > 0, i = 1 . . . d, and
R,R′, R′′ > 0, setting 1/δ̄ =

∑d
i=1 1/δi,

ρ(Φ(5)
α ,N δ

2,d(R,R
′, R′′), β) ≤ C(δ, α, β,R,R′, R′′, d)

(
ln lnn

n

) 2δ̄
1+4δ̄

.

Comments. When d = 1, from [32], we know that in the density model,
the adaptive minimax rate of testing over a Nikol’skii class with smoothness
parameter δ is of order (ln lnn/n)2δ/(1+4δ). We find here an upper bound
similar to this univariate rate, but where δ is replaced by δ̄. Such results
were obtained in a multivariate density estimation context in [26] where the
adaptive minimax estimation rates over the anisotropic Nikol’skii classes
are proved to be of order n−δ̄/(1+2δ̄), and where adaptive kernel density
estimators are proposed. Moreover, the minimax rates of testing obtained
recently in [34] over anisotropic periodic Sobolev balls, but in the Gaussian
white noise model, are of the same order as the upper bounds obtained here.

5. Simulation study.

5.1. Presentation of the simulation study. In this section, we study our
testing procedures from a practical point of view. We consider X = [0, 1] or
X = R, n = 100 and ν the Lebesgue measure on X. N1 and N−1 denote two
independent Poisson processes with intensities f and g on X with respect to
µ with dµ = 100dν. We focus on several couples of intensities (f, g) defined
on X and such that

∫
X
f(x)dνx =

∫
X
g(x)dνx = 1. We choose α = 0.05.

Conditionally to the number of points of both processes N1 and N−1, the
points of N1 and N−1 form two independent samples of i.i.d. variables with
densities f and g with respect to ν. Hence, conditionally to the number of
points of N1 and N−1, any test for the classical i.i.d. two-sample problem
can be used here. We compare our tests to the conditional Kolmogorov-
Smirnov test. Thus we consider five testing procedures, that we respectively
denote by KS, Ne, Th, G, E.
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KS corresponds to the conditional Kolmogorov-Smirnov test.

The tests Ne and Th respectively correspond to the test functions Φ
(1)
α

and Φ
(2)
α defined in Example 1 and Example 2 in Section 4.2.1 with J̄ = 7

and J̃ = 6.
The tests G and E are similar to the test defined by Φ

(5)
α in Example 5

in Section 4.2.2. For the test G, we consider the standard Gaussian approx-
imation kernel defined by k(x) = (2π)−1/2 exp(−x2/2) for all x ∈ R and for
the test E, we consider the Epanechnikov approximation kernel defined by
k(x) = (3/4)(1 − x2)1|x|≤1. For both tests, we consider {hm,m ∈ M} =
{1/24, 1/16, 1/12, 1/8, 1/4, 1/2} and the associated collection of kernel func-

tions {Km,m ∈ M} given for all m in M by Km(x, x′) = 1
hm
k
(
x−x′

hm

)
. We

take for both tests wm = 1/|M| = 1/6.
Let us recall that our tests reject (H0) when there exists m in M such

that
T̂Km > q

(N)

m,1−u
(N)
α e−wm

where N is the pooled process obtained from N1 and N−1, and u
(N)
α is

defined by (4.1). Hence, for each observation of the process N whose number

of points is denoted by Nn, we have to estimate u
(N)
α and the quantiles

q
(N)

m,1−u
(N)
α e−wm

. These estimations are done by classical Monte Carlo methods

based on the simulation of 400000 independent samples of size Nn of i.i.d.
Rademacher variables (see Section 3.3 for the theoretical study of these
Monte Carlo methods when only one test is considered). Half of the samples
is used to estimate the distribution of each T̂ ε

Km
. The other half is used to

approximate the conditional probabilities occurring in (4.1). The point u
(N)
α

is obtained by dichotomy, such that the estimated conditional probability
occurring in (4.1) is less than α, but as close as possible to α. By monotony
arguments, this is equivalent to make u varying on a regular grid of [0, 1]

with bandwidth 2−16, and to choose u
(N)
α as the largest value of the u’s on

the grid such that the estimated conditional probabilities in (4.1) are less
than α.

5.2. Simulation results. We use 5000 simulations to estimate the level of
significance, and 1000 to estimate the powers of each tests.

For the estimation of the levels, we consider three common intensities.
The first one is the uniform density on [0, 1], the second one is the Beta
density with parameters (2, 5), and the third one is a Laplace density with
parameter 7.
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Let

f1(x) = 1[0,1](x),

f2,2,5(x) =
x(1− x)4∫ 1

0 x(1− x)4dx
1[0,1](x)

f3,7(x) =
7

2
e−7|x−1/2|.

Taking f as one of these three fonctions, we realize 5000 simulations of two
independent Poisson processes N1 and N−1 both with intensity f w.r.t. to
µ. For each simulation, we determine the conclusions of the tests Ks, Ne,
Th, G and E, where the quantiles of our four last tests are estimated by the
Monte Carlo methods described above. The levels of the tests are estimated
by the number of rejections for these tests divided by 5000. The results are
given in the following table:

f KS Ne Th G E

f1 0.053 0.049 0.045 0.053 0.053

f2,2,5 0.053 0.047 0.043 0.051 0.050

f3,7 0.0422 0.0492 0.0438 0.054 0.055

In order to evaluate the power of the tests, we first consider couples of
intensities (f, g) such that f = f1 and g is successively equal to intensities
that are classical examples in wavelet settings, and are defined by

g1,a,ε(x) = (1 + ε)1[0,a)(x) + (1− ε)1[a,2a)(x) + 1[2a,1)(x)

g2,η(x) =


1 + η

∑

j

hj
2
(1 + sgn(x− pj))


 1[0,1](x)

C2(η)
,

g3,ε(x) = (1− ε)1[0,1](x) + ε


∑

j

gj

(
1 +

|x− pj|
wj

)−4

 1[0,1](x)

0.284
,

where p, h, g, w, ε are defined as in [21] 1, 0 < ε ≤ 1, 0 < a < 1/2, η > 0 and
C2(η) is such that

∫ 1
0 g2,η(x)dx = 1.

1

p= ( 0.1 0.13 0.15 0.23 0.25 0.4 0.44 0.65 0.76 0.78 0.81 )
h= ( 4 -4 3 -3 5 -5 2 4 -4 2 -3 )
g= ( 4 5 3 4 5 4.2 2.1 4.3 3.1 5.1 4.2 )
w= ( 0.005 0.005 0.006 0.01 0.01 0.03 0.01 0.01 0.005 0.008 0.005 )
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We then consider couples of intensities (f, g) such that f is equal to the
above Laplace density f3,7 with parameter 7, or to the Laplace density f3,10
with parameter 10:

f3,10(x) = 5e−10|x−1/2|,

and g = g4,1/2,1/4 is the density of a Gaussian variable with expectation 1/2
and standard deviation 1/4.

For each couple (f, g), we realize 1000 simulations of two independent
Poisson processes N1 and N−1 with respective intensities f and g w.r.t. µ.
For each simulation, we determine the conclusions of the tests Ks, Ne, Th, G
and E, where the quantiles of our four last tests are estimated by the Monte
Carlo methods described above. The powers of the tests are estimated by
the number of rejections for these tests divided by 1000. The results are
summarized in Figures 1 and 2 where in each column, the estimated power
is represented as a dot for every test. The triangles represent the upper and
lower bounds of an asymptotic confidence interval with confidence level 99%,
with variance estimation.

KS Ne Th G E KS Ne Th G E KS Ne Th G E KS Ne Th G E
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

KS Ne Th G E KS Ne Th G E KS Ne Th G E
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1. Left: (f, g) = (f1, g1,a,ε). Each column corresponds respectively to (a, ε) =
(1/4, 0.7), (1/4, 0.9), (1/4, 1) and (1/8, 1). Right: (f, g) = (f1, g2,η). Each column corre-
sponds respectively to η = 4, 8 and 15.
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KS Ne Th G E KS Ne Th G E
0

0.1

0.2

0.3
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0.9

1

KS Ne Th G E KS Ne Th G E
0

0.1

0.2

0.3

0.4
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0.6

0.7

0.8

0.9

1

Figure 2. Left: (f, g) = (f1, g3,ε). The two columns correspond respectively to ε = 0.5 and
1. Right: (f, g) = (f3,λ, g4,1/2,1/4). The two columns correspond respectively to λ = 7 and
λ = 10.

In all cases, the tests G and E based on the approximation kernels are more
powerful (sometimes even about 4 times more powerful) than the KS test.
This is also the case for the test Ne, except for the last example. The test Th
is more powerful than the KS test for the couples (f, g) = (f1, g1,a,ε), but it
fails to improve the KS test for the other alternatives. We conjecture that the
test Th consists in the aggregation of too many single tests. We can finally
notice that the test E strongly performs for every considered alternative,
except in a sparse case, where the test E is less powerful than the test Th
(see Figure 1). Our conclusion is that the test E is a good practical choice,
except maybe when sparse processes are involved. Aggregating the tests E
and Th in such cases would probably be a good compromise.

6. Proofs.

6.1. Proof of Proposition 1. All along the proof,
∫

denotes
∫
X
. One of

the key arguments of the proof is that the marked point processes are char-
acterized by their Laplace functional (see for instance [14]).

To obtain the first point of the result, this key argument makes sufficient
to compute E

[
exp

(∫
hdN

)]
for a bounded measurable function h on X. By

independency,

E

[
exp

(∫
hdN

)]
= E

[
exp

(∫
hdN1

)]
E

[
exp

(∫
hdN−1

)]
.

Since the Laplace functional of N1 is given by

E

[
exp

(∫
hdN1

)]
= exp

(∫ (
eh − 1

)
fdµ

)
,
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and the Laplace functional of N−1 has the same form, replacing f by g,

E

[
exp

(∫
hdN

)]
= exp

(∫ (
eh − 1

)
(f + g) dµ

)
,

which is the Laplace functional of Poisson process with intensity (f + g)
w.r.t. µ.
Let us now prove (2.5). The distribution of (ε0x)x∈N conditionally to N is
characterized by the function

t = (tx)x∈N 7→ Φ(t,N) = E

[
exp

(∑

x∈N
txε

0
x

)∣∣∣∣∣N
]
.

Let λ be a bounded measurable function defined on X, and define

Eλ = E

[
exp

(∫
λdN

)
exp

(∑

x∈N
txε

0
x

)]
.

Since N1 and N−1 are independent,

Eλ = E

[
exp

(∫
(λ(x) + tx)dN

1
x

)
exp

(∫
(λ(x)− tx)dN

−1
x

)]

= E

[
exp

(∫
(λ(x) + tx)dN

1
x

)]
E

[
exp

(∫
(λ(x)− tx)dN

−1
x

)]
.

Then,

Eλ = exp

[∫
(e(λ(x)+tx) − 1)f(x) + (e(λ(x)−tx) − 1)g(x)

]
dµx

= exp

∫
(eh(x) − 1)(f + g)(x)dµx

= E

[
exp

(∫
hdN

)]

where

h(x) = λ(x) + ln

(
etxf(x) + e−txg(x)

(f + g)(x)

)
.

Hence, for every bounded measurable function λ defined on X,

E

[
exp

(∫
λdN

)
exp

(∑

x∈N
txε

0
x

)]
=

E

[
exp

(∫
λdN

) ∏

x∈N

(
etx

f(x)

(f + g)(x)
+ e−tx g(x)

(f + g)(x)

)]
.
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Recalling that the marked point processes are characterized by their Laplace
functional, this implies that

Φ(t,N) = E

[
exp

(∑

x∈N
txε

0
x

)∣∣∣∣∣N
]
=
∏

x∈N

(
etx

f(x)

(f + g)(x)
+ e−tx g(x)

(f + g)(x)

)
,

which concludes the proof of (2.5).
To prove the second point of the result, let h1 and h−1 be two bounded

measurable functions on X.

E

[
exp

(∫
h1dN

1 +

∫
h−1dN

−1

)]

= E

[
E

[
exp

(∫
h1dN

1 +

∫
h−1dN

−1

) ∣∣∣∣∣N
]]

= E

[
E

[∏

x∈N
exp (h1 (x)1εx=1 + h−1 (x) 1εx=−1)

∣∣∣∣∣N
]]

.

Remark that there is almost surely a finite number of points in N and that
if x belongs to N , then f (x) + g (x) > 0. Moreover

E [exp (h1 (x) 1εx=1 + h−1 (x)1εx=−1)] = eh1(x) f (x)

f (x) + g (x)

+ eh−1(x) g (x)

f (x) + g (x)
.

Then using the expression of the Laplace functional of N , with the function

h = ln

(
eh1(x) f (x)

f (x) + g (x)
+ eh−1(x) g (x)

f (x) + g (x)

)
,

leads to

E

[
exp

(∫
h1dN

1 +

∫
h−1dN

−1

)]

= exp

(∫ (
eh1(x) f (x)

f (x) + g (x)
+ eh−1(x) g (x)

f (x) + g (x)
− 1

)
(f + g)(x)dµx

)
.

Finally we have that

E

[
exp

(∫
h1dN

1 +

∫
h−1dN

−1

)]
=

exp

(∫ (
eh1 − 1

)
fdµ

)
exp

(∫ (
eh−1 − 1

)
gdµ

)
.
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We here recognize the product of the Laplace functionals of two Poisson
processes with respective intensities f and g. This gives the independence
and concludes the proof.

6.2. Proof of Proposition 2. Let us prove the first part of Proposition 2.

Recall that qα1−β/2 denotes the 1−β/2 quantile of q
(N)
K,1−α, which is the (1−α)

quantile of T̂ ε
K conditionally to N .

We here want to find a condition on T̂K , or more precisely on EK =
Ef,g[T̂K ], ensuring that Pf,g(T̂K ≤ qα1−β/2) ≤ β/2.
From Markov’s inequality, we have that for any x > 0,

Pf,g

(∣∣∣−T̂K + EK
∣∣∣ ≥ x

)
≤ Var(T̂K)

x2
.

Let us compute Var(T̂K) = Ef,g[T̂
2
K ] − E2

K . Let X[3] and X[4] be the sets
{(x, y, u) ∈ X3, x, y, u all different} and {(x, y, u, v) ∈ X4, x, y, u, v all different}
respectively. Since

Ef,g[T̂
2
K ] = Ef,g

[
E

[(∫

X[2]

K(x, x′)ε0xε
0
x′dNxdNx′

)2
∣∣∣∣∣N
]]

,

by using (2.5),

Ef,g[T̂
2
K ] = Ef,g

[ ∫

X[4]

K(x, y)K(u, v)
f − g

f + g
(x)

f − g

f + g
(y)

f − g

f + g
(u)

f − g

f + g
(v)dNxdNydNudNv

]

+4Ef,g

[∫

X[3]

K(x, y)K(x, u)
f − g

f + g
(y)

f − g

f + g
(u)dNxdNydNu

]

+2Ef,g

[∫

X[2]

K2(x, y)dNxdNy

]
.

Now, from Lemma 5.4 III in [14] on factorial moments measures applied to
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Poisson processes, we deduce that

Ef,g[T̂
2
K ] =

∫

X4

(
K(x, y)K(u, v)(f − g)(x)(f − g)(y)

(f − g)(u)(f − g)(v)

)
dµxdµydµudµv

+4

∫

X3

K(x, y)K(x, u)(f + g)(x)(f − g)(y)(f − g)(u)dµxdµydµu

+2

∫

X2

K2(x, y)(f + g)(x)(f + g)(y)dµxdµy

In order to apply this lemma, we have to verify that the three integrals
appearing in the above expression are finite. This follows easily from As-
sumptions 1, 2 et 3. We finally obtain that

Ef,g[T̂
2
K ] = E2

K + 4AK + 2BK .

Hence, we obtain that for any x > 0,

Pf,g

(∣∣∣−T̂K + EK
∣∣∣ ≥ x

)
≤ 4AK + 2BK

x2
.

Taking x =
√
(8AK + 4BK)/β in the above inequality leads to

(6.1) Pf,g

(∣∣∣−T̂K + EK
∣∣∣ ≥

√
8AK + 4BK

β

)
≤ β

2
.

Therefore, if EK >
√

8AK+4BK
β + qα1−β/2, then Pf,g(T̂K ≤ qα1−β/2) ≤ β/2, so

Pf,g(ΦK,α = 0) ≤ β.

Let us now give a sharp upper bound for qα1−β/2.

Reasoning conditionally toN , we recognize in T̂ ε
K a homogeneous Rademacher

chaos as defined by de la Peña and Giné [15]: it is of the form

X =
∑

i 6=i′

xi,i′εiεi′ ,

where the xi,i′ ’s are some real deterministic numbers and (εi)i∈N is a se-
quence of i.i.d. Rademacher variables. Corollary 3.2.6 of [15] states that
there exists some absolute constant κ > 0 such that

(6.2) E

(
exp

[ |X|
κσ

])
≤ 2,
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where σ2 = E[X2] =
∑

i 6=i′ x
2
i,i′ .

Hence by Markov’s inequality again, for all positive ξ,

P(|X| ≥ ξ) ≤ 2e−
ξ
κσ ,

which implies that P(|X| ≥ κσ ln(2/α)) ≤ α, (see also [40] for more precise
constants). Applying this result to T̂ ε

K with σ2 =
∑

x 6=x′∈N K
2(x, x′) leads

to

(6.3) q
(N)
K,1−α ≤ κ ln(2/α)

√∫

X[2]
K2(x, y)dNxdNy.

Hence qα1−β/2 is upper bounded by the (1− β/2) quantile of

κ ln(2/α)
√∫

X[2] K2(x, y)dNxdNy.

Using Markov’s inequality again and Lemma 5.4 III in [14], we obtain
that for any positive ξ,

Pf,g

(∫

X[2]

K2(x, y)dNxdNy ≥ ξ

)
≤ BK

ξ
.

By taking ξ = 2BK/β, we can finally see that

(6.4) qα1−β/2 ≤ κ ln

(
2

α

)√
2BK

β
.

6.3. Proof of Theorem 3.1. We here want to apply the result of Propo-
sition 2 to the three possible choices of the kernel function K.

First, notice that for all r > 0

EK = n2〈K ⋄ (f − g), f − g〉 = n2r〈r−1K ⋄ (f − g), f − g〉,

=
n2r

2

(
||f − g||2 + r−2||K ⋄ (f − g)||2 − ||(f − g)− r−1K ⋄ (f − g)||2

)
.

Then,

AK = n3
∫

X

(K ⋄ (f − g)(x))2 (f + g)(x)dνx

≤ n3||K ⋄ (f − g)||2||f + g||∞,
and BK = n2CK , where CK =

∫
X2 K

2(x, x′)(f + g)(x)(f + g)(x′)dνxdνx′ .
From Proposition 2, we deduce that if

||f − g||2 + r−2||K ⋄ (f − g)||2 − ||(f − g)− r−1K ⋄ (f − g)||2

≥ 4

√
2||f + g||∞

nβ

||K ⋄ (f − g)||
r

+
2

nr
√
β

(
2 + κ

√
2 ln

(
2

α

))√
CK ,
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then
Pf,g (ΦK,α = 0) ≤ β.

By using the elementary inequality 2ab ≤ a2+b2 with a = ||K⋄(f−g)||/r and
b = 2

√
2
√

||f + g||∞/(nβ) in the right hand side of the previous inequality,
we obtain that if

||f − g||2 ≥ ||(f − g)− r−1K ⋄ (f − g)||2 + 8||f + g||∞
nβ

+
2

nr
√
β

(
2 + κ

√
2 ln

(
2

α

))√
CK ,

then
Pf,g (ΦK,α = 0) ≤ β.

Since this holds for all r > 0, one can take the infimum. This exactly leads
to the result in the third case, that is in the case of a kernel function based
on a Mercer kernel. Let us now take r = 1 and control CK in the two other
cases.

The case of a kernel function based on an orthonormal family. We consider
an orthonormal basis {ϕλ, λ ∈ Λ} of a subspace S of L2(X, dν) and

K(x, x′) =
∑

λ∈Λ
ϕλ(x)ϕλ(x

′).

In this case,

K ⋄ (f − g) =
∑

λ∈Λ

(∫

X

ϕλ(x)(f − g)(x)dνx

)
ϕλ = ΠS(f − g).

Moreover, when the dimension of S is finite, equal to D,

CK ≤ ||f + g||2∞
∫

X

(∑

λ∈Λ
ϕλ(x)ϕλ(x

′)

)2

dνxdνx′

≤ ||f + g||2∞D.
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When the dimension of S is infinite,

CK =

∫

X2

(∑

λ∈Λ
ϕλ(x)ϕλ(x

′)

)2

(f + g)(x)(f + g)(x′)dνxdνx′

≤ ||f + g||∞
∫

X2

(∑

λ∈Λ
ϕλ(x)ϕλ(x

′)

)2

(f + g)(x′)dνxdνx′

≤ ||f + g||∞
∫

X2


 ∑

λ,λ′∈Λ
ϕλ(x)ϕλ(x

′)ϕλ′(x)ϕλ′(x′)


 (f + g)(x′)dνxdνx′

≤ ||f + g||∞
∑

λ,λ′∈Λ

∫

X

(ϕλ(x)ϕλ′(x)dνx)

∫

X

ϕλ(x
′)ϕλ′(x′)(f + g)(x′)dνx′ ,

where we have used the assumption

∫

X2

(∑

λ∈Λ
|ϕλ(x)ϕλ(x

′)|
)2

(f + g)(x′)dνxdνx′ < +∞

to invert the sum and the integral. Hence we have, by orthogonality, and
since

∑
λ∈Λ ϕ

2
λ(x) ≤ D,

CK ≤ ||f + g||∞
∑

λ∈Λ

∫

X

ϕ2
λ(x

′)(f + g)(x′)dνx′

≤ D||f + g||∞||f + g||1.

Hence we have
CK ≤M2(f, g)D.

This concludes the proof in the first case.

The case of a kernel based on an approximation kernel. Assume now that
X = Rd and introduce an approximation kernel such that

∫
k2(x)dνx < +∞

and k(−x) = k(x), h = (h1, . . . , hd), with hi > 0 for every i, and K(x, x′) =

kh(x− x′), with kh(x1, . . . , xd) =
1

∏d
i=1 hi

k
(
x1
h1
, . . . , xd

hd

)
. In this case,

K ⋄ (f − g) = kh ∗ (f − g),
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and

CK =

∫

X

k2h(x− x′)(f + g)(x)(f + g)(x′)dνxdνx′

≤ ||f + g||∞
∫

X

k2h(x− x′)(f + g)(x)dνxdνx′ ,

≤ ||f + g||∞||f + g||1||k||2∏d
i=1 hi

.

This ends the proof in the second case.

6.4. Proof of Proposition 3. Assume that (H0) ”f = g” is satisfied. Con-

ditionally to N , T̂K and q̂
(N)
K,1−α are independent. This leads lo

P

(
Φ̂K,α = 1

∣∣∣N
)

= E

[
1
T̂K>q̂

(N)
K,1−α

∣∣∣N
]

= E

[
E

[
1
T̂K>q̂

(N)
K,1−α

∣∣∣N, ε1, . . . , εB
] ∣∣∣N

]

= E

[
1− FK(q̂

(N)
K,1−α)

∣∣∣N
]

where FK denotes the distribution function of T̂K under the null hypothesis,
given N . We introduce the event

(6.5) Ωλ =

{
sup
t∈R

|FK,B(t)− FK(t)| ≤ λ√
B

}
.

We deduce from the Dvoretzky-Kiefer-Wolfowitz inequality (see [43]) that

∀λ > 0,P
(
ΩC
λ |N

)
≤ 2 exp(−2λ2).

Hence,

P

(
Φ̂K,α = 1|N

)
= E

[(
1− FK(q̂

(N)
K,1−α)

)
1Ωλ

+
(
1− FK(q̂

(N)
K,1−α)

)
1ΩC

λ
|N
]

≤ E

[
(1− FK,B(q̂

(N)
K,1−α) +

λ√
B
)1Ωλ

]
+ P(ΩC

λ |N).

By definition of q̂
(N)
K,1−α, we have 1 − FK,B(q̂

(N)
K,1−α) ≤ α, hence, we obtain

that for all λ > 0,

P

(
Φ̂K,α = 1|N

)
≤ α+

λ√
B

+ 2e−2λ2
.

This concludes the proof of Proposition 3.
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6.5. Proof of Proposition 4. We set αB = α−
√
lnB/4B.

As in Section 3.2, we introduce the 1 − (β2 − 2√
B
) quantile of the boot-

strapped quantile q
(N)
K,1−αB

that we denote by qαB

1−(β
2
− 2√

B
)
.

We set for a moment t = qαB

1−(β
2
− 2√

B
)
. Recall that q̂

(N)
K,1−α = F−1

K,B(1 − α),

and that q
(N)
K,1−u denotes the (1− u) quantile of T̂ ε

K conditionnaly to N . We
have

P(q̂
(N)
K,1−α > t) = P(FK,B(t) < 1− α).

Let us introduce the event Ωλ defined by (6.5), with λ =
√
lnB/2. We then

have

P(FK,B(t) < 1− α|N) ≤ P({FK,B(t) < 1− α} ∩ Ωλ|N) + P(ΩC
λ |N)

≤ P(FK(t) < 1− α+ λ/
√
B|N) + 2e−2λ2

≤ P(q
(N)

K,1−α+λ/
√
B
> t|N) + 2e−2λ2

≤ P(q
(N)
K,1−αB

> t|N) +
2√
B

by definition of λ. Now, the definition of t implies that

P

(
q
(N)
K,1−αB

> t
)
≤ β

2
− 2√

B
,

hence
P(q̂

(N)
K,1−α > t) ≤ β/2.

Let us now control the probability of second kind error of the test Φ̂K,α.

P

(
T̂K ≤ q̂

(N)
K,1−α

)
≤ P

(
{T̂K ≤ q̂

(N)
K,1−α} ∩ {q̂(N)

K,1−α ≤ t}
)
+ P

(
q̂
(N)
K,1−α > t

)

≤ P

(
T̂K ≤ t

)
+ β/2.

We finally deduce from (6.1) that if EK >
√

8AK+4BK
β + qαB

1−(β
2
− 2√

B
)
, then

Pf,g(T̂K ≤ qαB

1−(β
2
− 2√

B
)
) ≤ β/2.

An upper bound for qαB

1−(β
2
− 2√

B
)
is obtained in Section 6.2. This concludes

the proof of Proposition 4.
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6.6. Proof of Theorem 4.1 and Theorem 4.2. The proof is similar for
both theorems.
It is clear from the definition of u

(N)
α that the test defined by Φα is of level

α. Obviously, by Bonferonni’s inequality, u
(N)
α ≥ α, hence, setting αm =

αe−wm , we have

Pf,g

(
∃m ∈ M, T̂Km > q

(N)

Km,1−e−wmu
(N)
α

)

≥ Pf,g

(
∃m ∈ M, T̂Km > q

(N)
Km,1−αm

)

≥ 1− Pf,g

(
∀m ∈ M, T̂Km ≤ q

(N)
Km,1−αm

)

≥ 1− inf
m∈M

Pf,g

(
T̂Km ≤ q

(N)
Km,1−αm

)

≥ 1− β,

as soon as there exists m in M such that Pf,g

(
T̂Km ≤ q

(N)
Km,1−αm

)
≤ β.

We can now apply Theorem 3.1, replacing ln(2/α) by (ln(2/α) + wm), to
conclude the proof.

6.7. Proof of Corollary 1. It is well known (see [21] for instance) that
with the notations of Example 1

||(f − g) −ΠSJ
(f − g)||2 ≤ C(δ)R22−2Jδ,

when (f − g) belongs to Bδ
2,∞(R). Hence the upper bound of (4.5) with

J̄ =

⌊
log2

(( n

ln lnn

) 2
4δ+1

)⌋

leads to

ρ(Φ(1)
α ,Bδ,γ,∞(R,R′, R′′), β) ≤ C(δ, α, β,R,R′′)

( n

ln lnn

)− 2δ
4δ+1

.

Of course a similar upper bound applies to Ψα.
Let J be an integer that will be chosen later. As in [21], for any m ⊂ ΛJ =
{(j, k), j ∈ {0, . . . , J − 1}, k ∈ {0, . . . , 2j − 1}}, one can write

||(f−g)−ΠSm(f−g)||2 = ||(f−g)−ΠSJ
(f−g)||2+||ΠSm(f−g)−ΠSJ

(f−g)||2.

But for m such that {αλ, λ ∈ m} is the set of the D largest coefficients
among {αλ, λ ∈ {0} ∪ ΛJ},

||ΠSm(f − g) −ΠSJ
(f − g)||2 ≤ C(γ)R′2+4γD−2γ ,
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see for instance [21] p.36. Taking

J = ⌊log2 nǫ⌋+ 1

for some ǫ > 0, the right hand side of (4.6) is upper bounded by

C(δ, γ, α, β,R,R′, R′′)

[
n−2ǫδ +D−2γ +

ǫD lnn

n

]
.

Taking D = ⌊(n/ ln n)1/(2γ+1)⌋, and ǫ > γ/(δ(2γ + 1)), one obtains that
when δ < γ/2, D ≤ 2J , and

ρ(Φ(2)
α ,Bδ,γ,∞(R,R′, R′′), β) ≤ C(δ, γ, α, β,R,R′ , R′′)

( n

lnn

)− γ
1+2γ

.

Since this upper bound also applies to Ψα, one has

ρ(Ψα,Bδ,γ,∞(R,R′, R′′), β)

≤ C(δ, γ, α, β,R,R′, R′′) inf

{( n

ln lnn

)− 2δ
4δ+1

,
( n

lnn

)− γ
1+2γ

}
.

6.8. Proof of Proposition 5. As usual, we introduce a finite subset C of
Bδ,γ,∞(R,R′, R′′), composed of couples of intensities which are particularly
difficult to distinguish. Here one can use the finite subset of possible inten-
sities SM,D,r that has been defined in [21] Equation (6.4), and define

C = {(f, g), f = ρ1[0,1] and g ∈ SM,D,r},

for some fixed positive ρ. Next the computations of the lower bounds of [21]
can be completely reproduced once we remark that the likelihood ratio

dPρ1[0,1],g

dPρ1[0,1],ρ1[0,1]

(N1, N−1) =
dPρ1[0,1]

dPρ1[0,1]

(N1)× dPg

dPρ1[0,1]

(N−1),

where on the left hand side Pf,g represents the joint distribution of two
independent Poisson processes N1 and N−1, with respective intensities f
and g, and on the right hand side Pf represents the distribution of one
Poisson process N with intensity f . This means that the likelihood ratios
that have been considered in [21] are exactly the ones we need here to
compute the lower bound. The results are consequently identical.
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6.9. Proof of Corollary 2. Considering Theorem 4.2 applied to Exam-
ple 4, we mainly have to find a sharp upper bound for

inf
(m1,m2)∈M

{
||(f − g)− km1,hm2

∗ (f − g)||2

+
w(m1,m2)

n

√
||f + g||∞||f + g||1||km1 ||2

2−dm2

}
,

when (f, g) belongs to Sδ
d(R,R

′, R′′).
Let us first control the bias term ||(f − g)− km1,hm2

∗ (f − g)||2. Plancherel’s
theorem gives that when (f − g) ∈ L1(Rd) ∩ L2(Rd),

(2π)d||(f − g) − km1,hm2
∗ (f − g)||2

= || ̂(f − g)− ̂km1,hm2
∗ (f − g)||2

= || ̂(f − g)− ̂km1,hm2

̂(f − g)||2

= ||(1− ̂km1,hm2
) ̂(f − g)||2

=

∫

Rd

(
1− ̂km1,hm2

)2
(u)(f̂ − g)2(u)dνu

=

∫

Rd

∣∣∣1− k̂m1(2
−m2u)

∣∣∣
2
(u)(f̂ − g)2(u)dνu.

Assume now that (f, g) ∈ Sδ
d(R,R

′, R′′), and takem∗
1 = min{m1 ∈ M1,m1 ≥

δ}. Note that since ||k̂m∗
1
||∞ < +∞ and k̂m∗

1
satisfies the condition (4.7), there

also exists some constant C(δ) > 0 such that

Ess supu∈Rd\{0}
|1− k̂m∗

1
(u)|

||u||δd
≤ C(δ).

Then

||(f − g) − km∗
1,hm2

∗ (f − g)||2 ≤ C(δ)

(2π)d

∫

Rd

||2−m2u||2δd (f̂ − g)2(u)dνu,

and since (f − g) ∈ Sδ
d(R),

||(f − g)− km∗
1 ,hm2

∗ (f − g)||2 ≤ 2−2δm2C(δ)R2.
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Furthermore, ||km∗
1
||2 ≤ C(δ), so

inf
(m1,m2)∈M

{
||(f − g)− km1,hm2

∗ (f − g)||2

+
w(m1,m2)

n

√
||f + g||∞||f + g||1||km1 ||2

2−dm2

}

≤ C(δ, α, β,R) inf
m2∈M2

{
2−2δm2 +

w(m∗
1 ,m2)

n

√
||f + g||∞||f + g||1

2−dm2

}
.

Choosing

m∗
2 =

⌊
log2

(( n

ln lnn

) 2
d+4δ

)⌋

leads to

2−2δm∗
2 ≤ 22δ

(
ln lnn

n

) 4δ
d+4δ

,

and since w(m∗
1 ,m

∗
2)

≤ C(δ, d) ln lnn,

w(m∗
1 ,m

∗
2)

n

√
||f + g||∞||f + g||1

2−dm∗
2

≤ C(δ, d)
√

||f + g||∞||f + g||1
(
ln lnn

n

) 4δ
d+4δ

.

Noticing that

1

n
≤
(
ln lnn

n

) 4δ
d+4δ

,

when (f, g) ∈ Sδ
d(R,R

′, R′′),

C(α, β)

(
inf

(m1,m2)∈M

{
||(f − g)− km1,hm2

∗ (f − g)||2

+
w(m1,m2)

n

√
||f + g||∞||f + g||1||km1 ||2

2−dm2

}
+

||f + g||∞
n

)

≤ C(δ, α, β,R,R′, R′′, d)

(
ln lnn

n

) 4δ
d+4δ

.

This concludes the proof of Corollary 2.
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6.10. Proof of Corollary 3. As in the previous section, considering The-
orem 4.2 applied to Example 5, we here have to find a sharp upper bound
for

inf
m2∈M2

{
||(f − g) − k1,hm2

∗ (f − g)||2 +
w(1,m2)

n

√
||f + g||∞||f + g||1||k1||2∏d

i=1 hm2,i

}
.

Let us first evaluate ||(f − g)− k1,h ∗ (f − g)||2 when (f − g) ∈ N δ
2,d(R), and

h = (h1, . . . , hd).
For x = (x1, . . . , xd) ∈ Rd, let b(x) = k1,h ∗ (f − g)(x) − (f − g)(x). Then

b(x) =

∫

Rd

k1(u1, . . . , ud)(f−g)(x1+u1h1, . . . , xd+udhd)du1 . . . dud−(f−g)(x),

and since
∫
Rd k1(u1, . . . , ud)du1 . . . dud = 1,

b(x) =

∫

Rd

k1(u1, . . . , ud)
[
(f − g)(x1 + u1h1, . . . , xd + udhd)

−(f − g)(x1, . . . , xd)
]
du1 . . . dud

=
d∑

i=1

bi(x),

where for i = 1 . . . d,

bi(x) =

∫

Rd

k1(u1, . . . , ud)
[
(f − g)(x1 + u1h1, . . . , xi + uihi, xi+1, . . . , xd)

− (f − g)(x1 + u1h1, . . . , xi, xi+1, . . . , xd)
]
du1 . . . dud,

As in the proof of Proposition 1.5 p. 13 of [58], using the Taylor expansion
of (f − g) in the ith direction and the fact that

∫
R
k1,i(ui)u

j
idui = 0 for

j = 1 . . . ⌊δi⌋, we obtain that
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bi(x) =

∫

Rd

k1(u)
(uihi)

⌊δi⌋

(⌊δi⌋−1)!

[∫ 1

0
(1− τ)⌊δi⌋−1

D
⌊δi⌋
i (f − g)(x1 + u1h1, . . . , xi + τuihi, xi+1, . . . , xd)dτ

]
du

=

∫

Rd

k1(u)
(uihi)

⌊δi⌋

(⌊δi⌋−1)!

[∫ 1

0
(1− τ)⌊δi⌋−1

(
D

⌊δi⌋
i (f − g)(x1 + u1h1, . . . , xi + τuihi, xi+1, . . . , xd)

−D⌊δi⌋
i (f − g)(x1 + u1h1, . . . , xi, . . . , xd)

)
dτ

]
du.

Hence, by using twice Lemma 1.1 p. 13 of [58] extended to the spaces Rd×R

and Rd × Rd,

||bi||22 ≤
∫

Rd

(∫

Rd

|k1(u)|
|uihi|⌊δi⌋
(⌊δi⌋−1)!

[∫ 1

0
(1− τ)⌊δi⌋−1

∣∣∣D⌊δi⌋
i (f − g)(x1 + u1h1, . . . , xi + τuihi, xi+1, . . . , xd)

−D⌊δi⌋
i (f − g)(x1 + u1h1, . . . , xi . . . , xd)

∣∣∣dτ
]
du

)2

dx

≤
[ ∫

Rd

|k1(u)|
|uihi|⌊δi⌋
(⌊δi⌋−1)!

(∫

Rd

[ ∫ 1

0
(1− τ)⌊δi⌋−1

∣∣∣D⌊δi⌋
i (f − g)(x1 + u1h1, . . . , xi + τuihi, xi+1, . . . , xd)

−D⌊δi⌋
i (f − g)(x1 + u1h1, . . . , xi . . . , xd)

∣∣∣dτ
]2
dx

)1/2

du

]2

and

||bi||22 ≤
[∫

Rd

|k1(u)|
|uihi|⌊δi⌋
(⌊δi⌋−1)!

(∫ 1

0
(1− τ)⌊δi⌋−1

( ∫

Rd

∣∣∣D⌊δi⌋
i (f − g)(x1 + u1h1, . . . , xi + τuihi, xi+1, . . . , xd)

−D⌊δi⌋
i (f − g)(x1 + u1h1, . . . , xi . . . , xd)

∣∣∣
2
dx
)1/2

dτ

)
du

]2
.
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Since (f − g) ∈ N δ
2,d(R),

||bi||2 ≤ C(δi)R

∫

Rd

|k1(u)||uihi|δidu ≤ C(δi)

(∫

Rd

|k1(u)||ui|δidu
)
Rhδii .

So,

||k1,h ∗ (f − g)− (f − g)|| ≤ C(δ)R
d∑

i=1

hδii .

Let us now find some m2 in M2 giving a sharp upper bound for

inf
m2∈M2

{
||(f − g) − k1,hm2

∗ (f − g)||2 +
w(1,m2)

n

√
||f + g||∞||f + g||1||k1||2∏d

i=1 hm2,i

}
.

Let 1/δ̄ =
∑d

i=1 1/δi, and choose m∗
2 = (m∗

2,1, . . . ,m
∗
2,d) in M2, with

m∗
2,i =

⌊
log2

(( n

ln lnn

) 2δ̄
δi(1+4δ̄)

)⌋
,

for every i = 1 . . . d. Since hm∗
2
= (2−m∗

2,1 , . . . , 2−m∗
2,d),

||(f − g)− k1,hm∗
2
∗ (f − g)|| ≤ C(δ,R)

d∑

i=1

2−m∗
2,iδi ,

so

||(f − g)− k1,hm∗
2
∗ (f − g)||2 ≤ C(δ,R)d2

(
ln lnn

n

) 4δ̄
1+4δ̄

.

Moreover, it is easy to see that w(1,m∗
2)

≤ C(δ, d) ln lnn, and hence

w(1,m∗
2)

n

√
||f + g||∞||f + g||1||k1||2∏d

i=1 2
−m∗

2,i

≤ C(δ, α, β,R′, R′′, d)
ln lnn

n

( n

ln lnn

)∑d
i=1

δ̄
(1+4δ̄)δi

≤ C(δ, α, β,R′, R′′, d)

(
ln lnn

n

) 4δ̄
1+4δ̄

.

Noticing that when ln lnn ≥ 1,

1

n
≤
(
ln lnn

n

) 4δ̄
1+4δ̄

,
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this ends the proof of Corollary 3.
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