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Les écoulements confinés en rotation sont présents dans un grand nombre d'applications industrielles liées aux machines tournantes et mettent en jeu des comportements physiques présents également dans des systèmes ouverts de plus grande échelle (circulations océanique et atmosphérique) qui demeurent pertinents même au-delà des aspects spécifiques de rotation [START_REF] Launder | Laminar, transitional and turbulent rotor-stator flows[END_REF]. Les sujets majeurs abordés actuellement concernent les scénarios de transition à la turbulence et le contrôle ainsi que la modélisation des transferts de masse et de chaleur dans les écoulements turbulents. La précision des solutions requiert l'utilisation de méthodes d'ordre élevé qui assurent une très grande précision de la solution sur des temps de simulation longs avec une très faible dissipation et dispersion numérique. Ces études nécessitent des résolutions spatiales et temporelles fines afin de prendre en compte avec précision les structures de petite échelle très anisotropes qui se développent au voisinage des parois et qui sont responsables de la production de turbulence. Ces résolutions ne sont accessibles qu'aux travers d'algorithmes parallèles optimisés sur des supercalculateurs ou des fermes de PC. Différentes méthodes existent aujourd'hui dans la litérature depuis les éléments finis hp jusqu'aux éléments spectraux et qui satisfont les critères mentionnés ci-dessus (voir dans [START_REF] Kardianakis | Spectral/hp elements methods for computational fluid dynamics[END_REF]). Néanmoins, ces méthodes qui permettent de traiter des géométries extrêmement complexes sont difficiles à mettre en oeuvre et relativement couteuses en temps de calcul, ce qui ne les rend pas optimales pour l'étude d'écoulements en géométries simples ou semi-complexes comme celles qui nous intéressent dans ce travail. Dans la méthode proposée, les composantes de la vitesse aux interfaces artificielles entre sous-domaines sont calculées par une technique de matrice d'influence, construite à partir de bases respectant la contrainte d'incompressibilité. La matrice d'influence a été appliquée depuis plus de dix ans avec succés en géométrie cartésienne [START_REF] Sabbah | A Divergence-Free Multidomain Spectral Solver of the Navier-Stokes Equations in Geometries of High Aspect Ratio[END_REF] et cylindrique uniquement pour des écoulements axisymétriques décrits en formulation fonction de courant vorticité [START_REF] Raspo | A spectral multidomain technique for the computation of the Czochralski melt configuration[END_REF]. La méthode développée ici est de type collocation spectrale Chebychev (Chebychev-Fourier en 3D) et utilise des solveurs directs de l'équation de Helmholtz et du problème de Stokes généralisé.

Modélisation géométrique et mathématique

Une des difficultés dans la modélisation des écoulements en géométrie cylindrique est liée aux effets de courbure en 1/r. Une cavité annulaire composée de deux disques parallèles est définie par ses rayons intérieur R int et extérieur R ext ainsi que par son espacement interdisque H. Ces caractéristiques permettent de définir deux paramètres géométriques globaux caractérisant le rapport d'aspect et la courbure, soient respectivement :

R m = R ext + R int R ext -R int , L R = R ext -R int H (1) 
Le mouvement du fluide incompressible est gouvernée par les équations de Navier-Stokes écrites en variables primitives et en coordonnées cylindriques (r, θ, z) :

   ∂V ∂t + V.∇V = -∇p + ν∆V + F dans Ω V = W sur Γ = ∂Ω ∇.V = 0 sur Ω = Γ ∪ Ω (2) 
où V est le vecteur vitesse de composantes (u, v, w) respectivement dans les directions radiale, azimutale et verticale, p est la pression, ν la viscosité cinématique, F le terme force et ∆ l'opérateur Laplacien.

Modélisation numérique

La discrétisation des équations est basée sur le travail de Raspo et al. [START_REF] Raspo | Spectral projection methods for the simulation of complex three-dimensional rotating flows[END_REF]. La discrétisation spatiale est basée sur une méthode collocation-Chebychev (dans les directions non-homogènes (r, z)) et Galerkin-Fourier en azimut. La discrétisation temporelle est basée sur un schéma temporel semi-implicite d'ordre 2 avec une évaluation Adams-Bashforth explicite des termes convectifs, et d'un schéma d'Euler retardé pour les termes visqueux. Soit,

   3V n+1 -4V n +V n-1 2δt + 2V.∇V n -V.∇V n-1 = -∇p n+1 + ν∆V n+1 + F n+1 dans Ω V n+1 = W n+1 sur Γ ∇.V n+1 = 0 sur Ω (3) 
où δt est le pas de temps.

Le couplage vitesse-pression est résolu au moyen de l'algorithme de prédiction-correction. Un champ de vitesse prédit non-solénoïdal est tout d'abord calculé en utilisant un prédicteur de pression estimé à partir de l'équation de Poisson obtenue en prenant la divergence de l'équation de quantité de mouvement. Par la suite ce champ prédit est projeté sur un espace de champs à divergence nulle au moyen d'un correcteur de pression.

Cet algorithme se ramène à la résolution successive de problèmes d'Helmholtz bidimensionnels pour chaque mode de Fourier.

Matrice d'Influence de Continuité (MICO)

La technique est présentée ici pour une découpage en domaines dans la direction radiale uniquement (Figure 1) mais pourrait s'étendre à la direction verticale sans aucune difficulté conceptuelle. La géométrie cylindrique nécessite la définition de rapports de courbure (R mi ) et d'allongements (L Ri ) locaux dans chacun des sous-domaines compatibles avec les paramètres globaux définis précédemment. Ces paramètres permettent de transformer localement le domaine géométrique couvert par le domaine dans l'intervalle [-1, 1] de l'approximation Chebyshev. 

Résolution d'un problème d'Helmholtz

Dans un souci de simplicité de notation, considérons un domaine en 2 dimensions (r et z) divisé en 2 sous-domaines afin d'établir les étapes de ce schéma de projection multidomaine. Le raisonnement serait parfaitement identique pour un nombre plus élevé de domaines. 

   ∆ i φi -σ i φi = Ŝi dans Ω i A i φi = b i sur Γ i ∩ Γ φ1 = φ2 = φ sur Γ i ∩ Ω = ξ (4)
avec A i = Id pour les composantes de vitesse et A i = ∂ ∂n pour la pression. (n représente la dérivée normale à la frontière où la condition limite est définie).

Bien entendu, on ne connaît pas la valeur de φ à imposer sur l'interface ξ. Cette valeur est déterminée au moyen de la matrice d'influence en recherchant la solution φi sous la somme de la solution φi d'un problème à conditions de Dirichlet homogène à l'interface et de la solution d'un problème stationnaire φi calculé en préprocessing. A chaque itération temporelle on doit résoudre le problème "homogène" suivant :

   ∆ i φi -σ i φi = S i dans Ω i A i φi = b i sur Γ i ∩ Γ φ1 = φ2 = 0 sur ξ (5)
dont la solution φ1 ∪ φ2 sur le domaine global est continue à travers ξ (car φ1 (z ∈ ξ) = φ2 (z ∈ ξ) = 0) mais qui présente un saut de dérivée normale à travers la frontière noté H(z ∈ ξ). Ce saut de dérivé est alors corrigé au moyen de la matrice d'influence M calculée à partir de dérivées des solutions φik des problèmes d'Helmholtz élémentaires stationnaires définis sur le sous-domaine i par :

∀k ∈ [2, N P Z -1]    ∆ i φik -σ i φik = 0 dans Ω i A i φik = 0 sur Γ i ∩ Γ φik (z l ∈ ξ) = δ kl sur ξ (6) 
où N P Z est le nombre de points sur la frontière (Figure 2). La matrice d'influence M est l'endomorphisme qui à la valeur de la solution recherchée φ = λ sur ξ associe le saut de dérivée H de la solution homogène. La contrainte imposée pour développer cet endomorphisme est qu'on veut ajouter à la solution homogène (C 0 mais pas C 1 ) une combinaison linéaire de coefficients λ des solutions élémentaires définies plus haut qui conduit à une solution finale C 0 et C 1 à travers la frontière. Par inversion de cette matrice d'influence on pourra alors retrouver par multiplication matricielle la valeur de λ à imposer sur la frontière pour obtenir φ(ξ), à partir du saut de dérivée H de la solution homogène φ à travers la frontière. ∀θ ∈ [1, N P A], les solutions sont obtenues au moyen de la résolution du système linéaire suivant :

λ = M -1 H (7)
Ainsi, pour un problème à 3 dimensions, on résoudra le problème aux frontières précédent autant de fois qu'on a de modes de Fourier dans le problème. Dans un calcul à valeurs propres réelles, cela se traduit par l'utilisation de N P A/2 matrices d'influence. Dans le cas où les valeurs propres sont complexes, on utilisera N P A matrices d'influence.

Remarque 1 -Pour la pression et la pseudo-pression, les solutions sont définies à une constante additive près, ce qui se traduit par un opérateur Laplacien non inversible. En monodomaine on filtre ce mode. Cependant on ne retrouve pas cette singularité en multidomaine, car on implémente des conditions-limites de type Dirichlet sur certaines frontières. Cependant ce problème se retrouve sur la matrice d'influence du mode 0 qui n'est à son tour pas inversible. L'équivalent du filtrage effectué en monodomaine est alors assuré par une technique de diagonalisation sur la matrice d'influence du mode 0 : on identifie l'indice de la valeur propre nulle de la matrice d'influence, et on annule la composante correspondante (dans la base de diagonalisation) dans le saut de dérivée.
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Remarque 2 -Dans le cas considéré précédemment (2 sous-domaines, problème plan), M est diagonale par bloc. Dans le cas d'un nombre plus élevé de sous-domaines, elle devient tridiagonale par blocs. En effet, la correction des sauts de dérivées sera aussi influencée par les solutions élémentaires définies sur les frontières situées de l'autre côté du sous-domaine considéré.

Précision de la méthode

La précision du nouveau schéma multidomaine a été vérifiée à partir de tests de consistence utilisant les champs de vitesse et de pression stationnaires suivants :

      
U ana (r, z, θ) = 1 2π sin(πr) 2 sin(2πz)cos(θ) V ana (r, z, θ) = -1 2π sin(πr) 2 sin(2πz)sin(θ) W ana (r, z, θ) = 1 2πG sin(πz) 2 sin(2πr)cos(θ) P ana (r, z, θ) = [cos(πz) + cos(πr)]cos(θ) L'erreur en norme L 2 est tracée pour différents maillages dans la direction radiale et nombres de sousdomaines. Une cavité de rapport de forme L R = 1 et de rayon de courbure R M = 2 est considérée. Le nombre de Reynolds est fixé à 500 et le pas de temps à 10 -1 Ω -1 . Le nombre de points dans la direction azimutale est fixé à 8. Dans une premier temps, le nombre de points dans les directions radiale et axiale varie de de 11 à 35 dans chacun des deux sous domaines. Puis, le nombre de points par sous domaine est fixé à 25 dans la direction radiale et à 9 dans la direction axiale et c'est le nombre de sous domaine NSD qui varie de 2 à 9. Dans la première situation, on retrouve une convergence exponentielle de l'erreur caractéristique de la précision spectrale. Lorsque le nombre de degré de liberté est accru par le nombre de sous-domaine la convergence de l'erreur de troncature est seulement algébrique. Ce résultat est attendu dans le sens où la régularité de la solution globale étant uniquement C 1 aux interfaces, lorsque celles-ci deviennent trop nombreuses la convergence spectrale de la solution globale est perdue.

Finalement, une simulation 3D en cavité rotor-stator à Re = 25000 montre la capacité de la méthode pour obtenir des solutions non laminaires (Figure 4). Un mode 3D d'instabilité est observé sur la couche du stator comme attendu par l'expérience et les analyses de stabilité. Ce qui est intéressant est de voir que ces pertubations sous forme de rouleaux traversent la frontière entre les domaines sans être altérées. 

Remarques de conclusion

Nous avons présenté une méthode multidomaine pseudospectrale qui résoud les équations de Navier-Stokes en géométrie cylindrique pour un fluide incompressible. Cette méthode est "divergence-free" et conserve la précision spectrale de l'algorithme, à savoir la convergence exponenetielle de l'erreur de troncature lorsque le nombre de sous-domaines restent raisonnable par rapport à l'extension géoémétrique. L'utilisation d'une technique de matrice d'influence conserve le caractère direct (non itératif) de l'algorithme de projection ce qui le rend particulièrement efficace en terme de coût de calcul. Des calculs préliminaires en configuration rotor-stator ont montré son aptitude à simuler des écoulements 3D instationnaires en accord avec les résultats de la littérature. La parallèlisation MPI de notre algorithme est en cours ce qui permettra très prochainement d'accroître la résolution afin de simuler des nombres de Reynolds pertinents avec l'application industrielle.
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Figure 1 -

 1 Figure 1 -Maillage et cavité annulaire (à gauche). Exemple de décomposition multidomaine dans la direction radiale (à droite).

Figure 2 -

 2 Figure 2 -Illustration d'un cas à 2 sous domaines.

Figure 3 -

 3 Figure 3 -Evolution de l'erreur de troncature L 2 avec le nombre de points (gauche) et le nombre de de sous-domaines (droite).

Figure 4 -

 4 Figure 4 -Solution 3D en cavité rotor-stator à Re = 25000, R M = 1.8, L R = 6.26. Rouleaux dans la couche limite du stator (à gauche) se développant en structures spiralées (à droite).