B Sahoo 
  
S Poncet 
  
  
Effets des conditions de glissement sur l'écoulement de Bödewadt d'un fluide de type Reiner-Rivlin
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L'écoulement stationnaire d'un fluide de Reiner-Rivlin en rotation au-dessus d'un disque fixe est étendu au cas où la surface du disque admet un glissement partiel. Les équations de quantité de mouvement se réduisent à un système d'équations fortement non-linéaires résolues par la méthode des différences finies. Les effets des conditions de glissement et des propriétés du fluide sur les caractéristiques de la couche limite sont discutés en détails. Le paramètre de glissement a un effet dominant sur le champ de vitesse, alors que le caractère non-newtonien influe sur le coefficient de moment.

Introduction

Les écoulements de fluides non-newtoniens engendrés par la rotation d'un disque ont été largement étudiés durant les dernières décennies [START_REF] Attia | Numerical study of flow and heat transfer of a non-Newtonian fluid on a rotating porous disk[END_REF] pour les nombreuses applications industrielles qui en découlent : des disques durs d'ordinateur, au design des générateurs de puissance ou de manière plus évidente dans le domaine de la rhéologie. Dans de précédents travaux [START_REF] Sahoo | Effects of partial slip, viscous dissipation, Joule heating on Von Kármán flow and heat transfer of an electrically conducting non-Newtonian fluid[END_REF], nous nous sommes intéressés à l'écoulement de Von Kármán [START_REF] Von Kármán | Über laminare und turbulente Reibung[END_REF] engendré par la rotation d'un disque infini dans un milieu fluide au repos et aux transferts de chaleur associés dans le cas d'un fluide conducteur de type Reiner-Rivlin avec des conditions de glissement partiel. Ces précédents résultats sont étendus ici au cas de l'écoulement d'un fluide en rotation uniforme au-dessus d'un disque infini au repos.

Ce problème a été largement considéré dans la littérature pour des fluides incompressibles newtoniens. Il a été étudié pour la première fois par Bödewadt [START_REF] Bödewadt | Die Drehströmung über festem Grund[END_REF] par des approximations de couche limite. La solution de Bödewadt montre que les effets de couche limite s'étendent jusqu'à ζ = 8, où ζ est la distance adimensionnée mesurée le long de l'axe de rotation du disque. Cette solution a ensuite été corrigée par Browning (non publié), qui nota une couche limite plus épaisse que pour l'écoulement de Von Kármán. Batchelor [START_REF] Batchelor | Note on a class of solutions of the Navier-Stokes equations representing steady non rotationally symmetric flow[END_REF] généralisa ces analyses au cas où le disque de rayon infini tourne à une vitesse angulaire ω constante dans un fluide tournant à une vitesse Ω différente, ce qui a été étudié plus tard numériquement par Rogers et Lance [START_REF] Rogers | The boundary layer on a disk of finite radius in a rotating fluid[END_REF]. Pour ω = 0, on retrouve le problème considéré par Bödewadt [START_REF] Bödewadt | Die Drehströmung über festem Grund[END_REF]. Nydahl [START_REF] Nydahl | Heat transfer for the Bödewadt problem[END_REF] a étendu le problème de Bödewadt pour introduire des transferts de chaleur. Ses résultats confirment ceux de Bödewadt alors que Rogers et Lance [START_REF] Rogers | The boundary layer on a disk of finite radius in a rotating fluid[END_REF] obtiennent une valeur de H ∞ = 1.3494 (valeur de la vitesse axiale loin du disque) très supérieure à celle précédemment obtenue. Le lecteur peut se référer au livre d'Owen et Rogers [START_REF] Owen | Flow and heat transfer in rotating disk systems[END_REF] pour une revue extensive des travaux sur l'écoulement de Bödewadt jusqu'en 1989. Si la littérature est très fournie sur le problème de Von Kármán dans le cas non-newtonien (voir [START_REF] Sahoo | Effects of partial slip, viscous dissipation, Joule heating on Von Kármán flow and heat transfer of an electrically conducting non-Newtonian fluid[END_REF]), elle l'est beaucoup moins pour l'écoulement de Bödewadt. On peut citer néanmoins les travaux de Kitchens et Chang [START_REF] Kitchens | Newtonian and non-Newtonian liquids rotating adjacent to a stationary surface[END_REF], qui ont étudié l'écoulement de Bödewadt pour un fluide non-newtonien du second ordre. La présente étude est une tentative pour combler ce manque en essayant notamment de quantifier les influences des paramètres non-newtonien et de glissement sur la structure de la couche limite de Bödewadt.

Méthode numérique 2.1 Modèle mathématique

On considère un fluide non-newtonien de type Reiner-Rivlin, pour lequel le tenseur des contraintes τ ij est relié au tenseur des déformations e ij [START_REF] Attia | Numerical study of flow and heat transfer of a non-Newtonian fluid on a rotating porous disk[END_REF] par :

τ ij = -pδ ij + 2µe ij + 2µ c e ik e kj
(1)

e jj = 0 (2) 
où p représente la pression, µ le coefficient de viscosité et µ c le coefficient de viscosité croisée.

Le fluide occupe l'espace z > 0 au-dessus d'un disque fixe de dimension infinie situé en z = 0. L'écoulement est dû à la rotation solide du fluide à une vitesse angulaire constante Ω loin du disque. Le problème est écrit en coordonnées cylindriques (r, ϕ, z) avec une hypothèse d'axisymmétrie de l'écoulement : ∂ ∂ϕ ≡ 0. Les conditions aux limites de non-glissement pour le champ de vitesse s'écrivent :

z = 0, u = 0, v = 0, w = 0, z → ∞, u → 0, v → rΩ, p → p ∞ .
(

On introduit alors les transformations de Von Kármán [START_REF] Von Kármán | Über laminare und turbulente Reibung[END_REF] :

u = rΩF (ζ), v = rΩG(ζ), w = √ ΩνH(ζ), z = √ ν Ω ζ, p -p ∞ = -ρνΩP (4)
où u, v, w sont les composantes radiale, tangentielle et axiale de la vitesse et z la distance au disque fixe. Ces transformations permettent de réduire les équations de Navier-Stokes pour un fluide newtonien à un système d'équations différentielles ordinaires. La même démarche est ici adoptée dans le cas nonnewtonien. On définit alors le paramètre non-newtonien L = µ c Ω/µ. En considérant les approximations de couche limite usuelles, les équations de continuité et de quantité de mouvement se réduisent à :

dH dζ + 2F = 0 (5) d 2 F dζ 2 -H dF dζ -F 2 + G 2 -F -1 2 L [( dF dζ ) 2 -3 ( dG dζ ) 2 -2F d 2 F dζ 2 ] = 1 ( 6 
)
d 2 G dζ 2 -H dG dζ -2F G -G + L ( dF dζ dG dζ + F d 2 G dζ 2 ) = 0 ( 7 
)
d 2 H dζ 2 -H dH dζ -7 2 L dH dζ d 2 H dζ 2 + dP dζ = 0 (8) 
Les conditions aux limites (3) deviennent alors :

ζ = 0 : F = 0, G = 0, H = 0, ζ → ∞ : F → 0, G → 1. (9) 
Le fluide adhère partiellement à la paroi. Une généralisation des conditions partielles de glissement donne dans les directions radiale et azimutale :

u| z=0 = λ 1 T rz | z=0 , v| z=0 = λ 2 T ϕz | z=0 ( 10 
)
où T rz , T ϕz sont les composantes physiques du tenseur des contraintes et λ 1 et λ 2 sont les coefficients de glissement :

λ = λ 1 √ Ω ν µ, η = λ 2 √ Ω ν µ. ( 11 
)
En utilisant les transformations (4), les conditions aux limites de glissement partiel (Eq.10) deviennent :

F (0) = λ[F ′ (0) -LF (0)F ′ (0)], G(0) = η[G ′ (0) -2LF (0)G ′ (0)], H(0) = 0 F (∞) → 0, G(∞) → 1 (12)
Les conditions aux limites loin du disque restent ainsi inchangées.

Solution numérique

On résoud le système d'équations différentielles non-linéaires défini par les Équations (5-7) associé aux conditions aux limites (Eq.12) en adoptant le même schéma numérique du second ordre en espace que celui décrit dans [START_REF] Sahoo | Effects of partial slip, viscous dissipation, Joule heating on Von Kármán flow and heat transfer of an electrically conducting non-Newtonian fluid[END_REF]. Les Équations (5-7) sont discrétisées par des opérateurs de différence centrée pour les dérivées :

Le domaine d'intégration semi-infini ζ ∈ [0, ∞) est remplacé par un domaine d'extension fini ζ ∈ [0, ζ ∞ ). En
F i+1 -2F i + F i-1 h 2 -H i ( F i+1 -F i-1 2h ) -F 2 i + G 2 i -F i - 1 2 L [( F i+1 -F i-1 2h ) 2 -3 ( G i+1 -G i-1 2h ) 2 -2F i ( F i+1 -2F i + F i-1 h 2 )] -1 = 0 (13) G i+1 -2G i + G i-1 h 2 -H i ( G i+1 -G i-1 2h ) -2F i G i -G i +L [( F i+1 -F i-1 2h )( G i+1 -G i-1 2h ) + F i ( G i+1 -2G i + G i-1 h 2 )]
= 0 (14)

H i+1 = H i -h(F i + F i+1 ) (15) 
où h = 0.05 est le pas d'espace supposé constant sur tout le domaine. Le maillage dans la direction axiale est donc défini par : ζ i = ih pour i = 0, 1, . . . n, avec n le nombre de points. Pour initier la résolution des Équations (13) and ( 14), non seulement les valeurs de F 0 et G 0 sont nécessaires mais il faut également connaître les valeurs de F 1 et G 1 . Celles-ci sont obtenues par des développements en série de Taylor autour de ζ = 0 pour F et G. Le calcul est mené jusqu'à ce que les valeurs de F , G et H soient connues en tout point du maillage. Il est à noter qu'il faut satisfaire les conditions aux limites asymptotiques (Eq.12). Pour satisfaire les conditions en ζ = ζ ∞ (Eq.9), une méthode de shooting associée à une méthode de Runge-Kutta d'ordre 4 est utilisée.

Résultats et discussion

La Figure 1 présente les valeurs de F , G et H pour une condition de non glissement (λ = 0) et un fluide newtonien (L = 0). Près du disque, la composante radiale de la vitesse F est purement centripète. Les comportements des trois composantes de vitesse confirment la représentation de l'écoulement donnée par Schlichting [START_REF] Schlichting | Boundary layer theory (7th Edition)[END_REF]. À partir du profil de G, on peut en déduire l'épaisseur de la couche limite ζ 99 , définie comme étant la position axiale pour laquelle la vitesse tangentielle est égale à la vitesse tangentielle du fluide à l'infini à 1% près. Pour L = 0 et λ = 0, la valeur classique ζ 99 = 8 (voir [START_REF] Owen | Flow and heat transfer in rotating disk systems[END_REF]) est retrouvée par la présente approche.

On considèrera dans la suite une rugosité uniforme, c'est à dire λ = η. Les variations de la composante radiale de la vitesse F avec le paramètre non-newtonien L et le paramètre de glissement λ sont présentées sur les Figures 2a et 2b respectivement. Sur la Figure 2a, il est clair que L a un effet dominant sur F près du disque. L'amplitude de l'écoulement radial centripète diminue près du disque pour des valeurs croissantes de L. Cependant, le profil de la composante radiale de vitesse reste toujours le même quelque soit la valeur de L : F est négative près du disque (écoulement centripète), change de signe loin de celui-ci (l'écoulement est alors dit centrifuge) avant de tendre vers sa valeur asymptotique. La Figure 2b montre la variation de F avec le paramètre de glissement λ(= η), pour des valeurs constantes des autres paramètres. L'effet du glissement sur F est important essentiellement près du disque. Son comportement est ensuite peu modifié pour des valeurs plus grandes de ζ. La valeur asymptotique de F est finalement atteinte sur une distance beaucoup plus courte que dans le cas de base pour L = λ = 0. Les Figures 2c et 2d présentent de même les variations de la composante tangentielle G de la vitesse avec L et λ(= η) respectivement. Le paramètre non-newtonien L a un effet spectaculaire sur G, loin du disque vers ζ = 2 (voir Fig. 2c). Une augmentation de L entraîne une décroissance de la vitesse tangentielle G proche du disque. Par contre, G augmente près du disque lorsque λ(= η) augmente (Fig. 2d). Les deux paramètres L et λ ont donc un effet opposé sur la composante de vitesse G. Les variations de la composante axiale H de la vitesse avec les paramètres L et λ sont données sur les Figures 2e et 2f respectivement. Les résultats montrent que les deux paramètres ont un effet similaire sur H. La composante axiale devient plus faible lorsque l'un de ces paramètres augmente. La valeur de cette composante loin du disque H ∞ est fortement réduite dans les deux cas comparée à la valeur de base 1.3494 obtenue pour L = λ = 0.

On peut déduire des profils de F et G la valeur du coefficient de moment C M , défini sous forme adimensionnée par : 3a), le coefficient de moment C M , en valeur absolue, augmente (resp. diminue) fortement pour des valeurs croissantes du paramètre de glissement λ lorsque λ < 0.6 (resp. λ > 0.6). Il tend rapidement vers 0 pour des très grandes valeurs de λ, ce qui signifie que le couple nécessaire pour maintenir le disque au repos est quasiment nul lorsque le paramètre de glissement est grand. Malgré la différence de conditions aux limites entre les deux problèmes, ces résultats confirment ceux obtenus par Sahoo [START_REF] Sahoo | Effects of partial slip, viscous dissipation, Joule heating on Von Kármán flow and heat transfer of an electrically conducting non-Newtonian fluid[END_REF] pour l'écoulement de Von Kármán. Sur la Figure 3b, le paramètre de glissement λ est fixé à 1 et le paramètre non-newtonien L varie entre 0 et 100 pour Re = 1. C M augmente alors en valeur absolue avec L. Dans ce cas, le couple requis pour maintenir le disque fixe est beaucoup plus grand que celui nécessaire pour maintenir le disque à ω dans le cas de l'écoulement de Von Kármán [START_REF] Sahoo | Effects of partial slip, viscous dissipation, Joule heating on Von Kármán flow and heat transfer of an electrically conducting non-Newtonian fluid[END_REF].

C M = -2πG ′ (0)[1 -2LF (0)] √ Re ( 16 

Conclusion

L'écoulement dû à la rotation d'un fluide non-newtonien de type Reiner-Rivlin près d'un disque fixe a été étudié pour la première fois pour diverses conditions de glissement et différentes valeurs du paramètre non-newtonien. Les équations différentielles fortement non linéaires qui en résultent sont résolues par un schéma aux différences finies du second ordre en espace. Les effets combinés du glissement λ = η et du paramètre non-newtonien L sur le champ de vitesse ont été regardés en détails. Il est intéressant de noter que λ et L ont des effets similaires sur les composantes radiale et axiale de la vitesse. Pour des valeurs croissantes de λ ou L, un léger épaississement de la couche limite du disque fixe est observé. Par contre, ces deux paramètres ont des effets opposés sur la composante tangentielle de la vitesse et sur le coefficient de moment. Le couple ainsi requis pour maintenir le disque fixe tend vers 0 pour des valeurs croissantes de λ et augmente en valeur absolue avec L, montrant un effet dominant du paramètre non-newtonien.
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 12 Figure 1 -Profils de vitesse pour un fluide newtonien avec λ(= η) = 0.
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 3 Figure 3 -(a) Variations du coefficient de moment C M (a) avec λ pour L = 1 et Re = 1 ; (b) avec L pour λ = 1 et Re = 1.

  pratique, ζ ∞ doit être choisi suffisamment grand pour que la solution numérique tende vers les conditions aux limites à l'infini. Ici, on fixe ζ

∞ = 27, valeur qui est à comparer avec celle utilisée pour le problème de Von Kármán : ζ ∞ = 10 [2].