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Probing active forces via a fluctuation–dissipation relation
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We derive a new fluctuation–dissipation relation for non–equilibrium systems with long term memory. We
show how this relation allows one to access new experimental information regarding active forces in living cells
that cannot otherwise be accessed. For a silica bead attached to the wall of a living cell, we identify a cross-over
time between thermally controlled fluctuations and those produced by the active forces. We show that the probe
position is eventually slaved to the underlying random drive produced by the so-called active forces.

PACS numbers: 05.40.Ca,87.18.Tt,87.16.Nn

Living cells are paradigmatic out of equilibrium systems,
subjected to the ATP-driven activity of a collection of molec-
ular motors, whose individual motion cannot easily be disen-
tangled from thermal fluctuations. These are relatively small
systems for which fluctuation phenomena are prominent, as
investigated in recent works [1–4], with specific focus on
the active forces spectrum [1, 5] which can be measured via
micro-rheological devices. Our goal in the present work is to
show how the cell tissue’s random pull-and-push can be in-
vestigated by means of very recent theoretical advances in the
field of non–equilibrium statistical mechanics. And indeed,
from the theory standpoint, in the recent past, much effort
has been invested in deriving simple generalizations or ex-
tensions of the celebrated fluctuation–dissipation theorem for
systems that can be arbitrarily far out of equilibrium [3, 6–13].
These efforts have given birth to a flurry of formulas relating
the response of a system to a small external perturbation to
some correlation functions, even when the system is not in
an equilibrium state. Yet, so far none of these formulas has
been of any predictive power in an actual experimental sys-
tem. Existing experiments revolving around these theoretical
advances have been confined to refined and nontrivial confir-
mations that in some small scale systems such as an optically
trapped Brownian particle [14–16] the various ingredients en-
tering these extended fluctuation-dissipation relations (EFDR)
can indeed be measured. Our purpose in this work is to ex-
ploit an EFDR to access relevant pieces of information on ac-
tive forces in living cells that cannot otherwise be accessed.
Given that the dynamics of living cells exhibit strong mem-
ory effects, we will first have to derive our own version of an
EFDR adapted to a system with stochastic yet non-Markovian
dynamics. The latter EFDR and its consequence for the un-
derstanding of active forces are the central topics of this letter.
For instance, how relevant is the long term memory in relat-
ing response and fluctuations out of equilibrium (the answer is
fully negative in equilibrium)? What new pieces of informa-
tion on non–equilibrium forces can be learnt from such a rela-
tionship? Can thermal fluctuations be disentangled from those
arising from the active forces in a quantitative way? These are
the questions we wish to address in the present work.

Our experimental setup consists of a pre–muscular (C2C12)
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FIG. 1. Schematic view of the bead probe as attached to the cy-
toskeleton. The active force are the by-product of the ATP-driven
molecular motors activity.

cell to which we slave a micron sized silica probe specifically
bound to the membrane. Its dynamics strongly feels the visco-
elastic non-Newtonian underlying medium [1], which gives
rise to memory (non-Markovian) effects. A schematic view
of our experimental setup is shown in FIG. 1. We assume
that the bead dynamics is well described by a visco–elastic
description. Our bead attached to the cell cortex thus evolves
under the combined effect of thermal fluctuations ξ(t) and ac-
tive forces Fa(t). Discarding inertial effects, the position x of
the bead is governed by the Langevin equation

m

∫ t

−∞
dt′ γ(t− t′)dx(t′)

dt′
= Fa(t) + ξ(t) , (1)

where the Gaussian colored noise ξ has correlations σ(τ) =
〈ξ(t)ξ(t+ τ)〉. We assume that the causal function γ is re-
lated to σ through a local detailed balance condition [17]:
σ(τ) = m/βγ(|τ |), where β = 1/kBT is the inverse tempera-
ture. The active forces are modeled by an isotropic stationary
random force Fa(t). While the presence of the memory ker-
nel γ(τ) looks like an innocuous extension of the well-known
overdamped Langevin equation (for which γ(τ) is to be re-
placed by a Dirac delta in time), we shall soon see that a num-
ber of complications emerge.

We begin with deriving our central theoretical result,
namely a relationship between three quantities, two of which
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are accessible to measurement. Let R(t) be the response of
the bead position at time t when applying an external space
independent force at time 0. Let also C(t) = 〈x(t)x(0)〉 be
the auto-correlation function of the bead’s position. Our goal
is to connect R and C to the statistics of the active force Fa.
Then, we shall show how to exploit our mathematical identity
to extract useful pieces of information on active forces. Start-
ing from (1), the probability weight for a given realization of
the noise is written as P [ξ] = exp(−S[ξ]), where the action
functional S reads:

S[ξ] =
1

2

∫
dt1

∫
dt2 ξ(t1)σ−1(t1 − t2)ξ(t2) . (2)

The function σ−1 is the deconvolution inverse of the noise
covariance:

∫
dt σ(t)σ−1(τ − t) = δ(τ). The next step is

to rewrite (2) by replacing the noise ξ(t) with its explicit ex-
pression which solves (1). Then, by considering the effect of
a small force f(t) applied to the system, one has a variation
from S to S + δS, where δS is, up to linear order in f :

δS =

∫
dt1

∫
dt2

∫ t1

−∞
dt′1[−βσ(t1−t′1)v(t′1)σ−1(t1−t2)

× f(t2)] + [Fa(t1)σ−1(t1 − t2)f(t2)] +O(f2) . (3)

By defining the response R to the perturbation f as δ〈x〉(t) =∫
dt′R(t− t′)f(t′) one finds:

R(t− t′) =
δ 〈x(t)〉
δf(t′)

= −
〈
x(t)

δS

δf(t′)

〉
= β

∫
ds

∫ s

−∞
dr σ(s− r)σ−1(s− t′) d

dr
〈x(r)x(t)〉

−
∫
dsσ−1(s− t′)〈Fa(s)x(t)〉 . (4)

Formula (4) neither simplifies in the stationary (non–
equilibrium) limit nor in the absence of active forces Fa be-
cause of the memory-effects. In the Markov limit, the memory
kernel is a Dirac delta γ(t) = γδ(t), which leads to

R(t− t′) =
β

2

d

dt′
〈x(t′)x(t)〉 − β

mγ
〈Fa(t′)x(t)〉 , (5)

a formula that as such first appeared in [12] and for which
the second term in the right hand side has an interpretation
in terms of dynamical activity. The formula being valid for
arbitrary forces Fa, it would also be valid if Fa were an equi-
librium force field, and in that case the terms in the right
hand side of (5) add up and yield the standard form of the
fluctuation–dissipation theorem. Finally, in the absence of an
external force field Fa, no stationary regime can be reached,
but the formulaR(t−t′) = β

2
d
dt′ 〈x(t′)x(t)〉 suggests an effec-

tive temperature twice that of the bath governs the dynamics,
a simple interpretation already noted in [18].

The gist of equation (4) is that both R(t− t′) and the com-
panion correlation function 〈x(t′)x(t)〉 can independently be

measured, and thus, provided the functions σ−1, σ, γ en-
coding memory effects are well-known, access is granted to
the projection of the active force onto the beads position,
〈Fa(t′)x(t)〉. Our only requirement is thus to be able to de-
termine the functions γ and σ−1. This can explicitly be car-
ried out by computing the effect of the external perturbation
δ〈x〉(t) from (1). For this it is useful first to define the inverse
memory kernel γ−1 such that

∫
γ(t)γ−1(t − τ)dt = δ(τ).

With this we can explicitly solve (1) for x(t) obtaining:

R(t) =
1

m

∫ t

−∞
dτγ−1(τ) . (6)

Before precisely showing how to extract useful informa-
tion from experimental data, we shall first consider the time
dependence of our correlation functions. Since our system
is not in a steady state, all correlation functions a priori de-
pend on two times. However, since the velocity dx(t)/dt is in
a steady–state, the mean–square–displacement ∆x2(t, t′) =
〈[x(t)− x(t′)]2〉 only depends on t− t′. We can then rewrite:

d

dt′
〈x(t′)x(t)〉 =

1

2

d

dt′
〈x2(t′)〉+

1

2

d

dt
∆x2(t− t′) . (7)

Furthermore, the response function only depends on the time
difference t− t′, so that the correlation function 〈Fa(t′)x(t)〉
can also be decomposed as:

〈Fa(t′)x(t)〉 = 〈Fa(t′)x(t′)〉+ CxF (t− t′) . (8)

We can now deduce the active-force–position correlations
from (4), which we can rewrite as a first relation for the initial
time t′ and a second one for the time difference τ = t− t′:

〈Fa(t′)x(t′)〉 =
β

2

∫ t′

−∞
drσ(t′ − r) d

dr
〈x2(r)〉 , (9)

CxF (τ) =
β

2

∫ τ

−∞
dtσ(t−τ)

d

dt
∆x2(t)−

∫
dtR(t)σ(τ−t) .

(10)

These formulae allow us to fully determine the time behavior
of the correlation function 〈Fa(t′)x(t)〉. Of course the phys-
ically relevant component of this correlation function is the
time-translational invariant one, denoted above as CxF . In
fact the first term in the rhs of (10) only expresses the de-
pendence on the choice of the initial time t′. Here we shall
restrict ourselves to the case where t′ = 0 (the general case
t′ 6= 0 will be discussed elsewhere [19]). Furthermore, the
second term in the rhs of (10) corresponds to the correlation
function between the position and the thermal noise.

We shall now apply our result to probe active forces in liv-
ing cells. The experimental set-up is the same as exposed
in [4] and consists of a small bead attached to the cortex of
a muscular cell (see FIG.1) at room temperature (∼ 298K).

First, we track the free diffusion of the bead on the cell
cortex. This allow us to measure the mean square displace-
ment of the probe as a function of time

〈
∆x2(t)

〉
, shown in
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FIG. 2. The probe mean square displacement as a function of time
when there is no external applied force. A definite crossover time is
found at τ ' 1 s.

FIG. 2. It exhibits a two-step growth characterized by an early
sub-diffusion, up to a 1 s. timescale yet to be interpreted,
followed by super-diffusion. Second, the response function
is measured by applying optical tweezers to the bead. The
tweezer acts on the bead as a harmonic potential of spring
constant kopt = 120pN/µm. After switching our tweezers on
we quickly translate them by x0 = 0.6µm at time t = 0, cre-
ating a displacement of the bead attached to the cell. In the
experiment the external force we apply is hence well approx-
imated by fexp[x(t), t] = −kopt(x(t) − x0)θ(t), assuming
that the displacement at t = 0 is instantaneous. The distance
between the bead and the center of the tweezers allows us to
measure the force applied on the bead. By repeating this ex-
periment we can measure the average displacement and the
average force as shown in FIG. 3. The force suddenly in-
creases at a time of about 0.004s and then slowly decreases
towards 0, while the bead displacement increases following
a power law behavior (except in the initial steps of the relax-
ation), as shown in the Log-Log scale inset. This is compatible
with the visco-elastic rheology responsible for the subdiffu-
sivity of the mean square displacement [20–22]. The analysis
also shows that a sum of two power laws fits extremely well
the data over all the experimentally accessible range. Equa-
tion (1) implies that 〈x〉 and 〈fexp[x]〉 are related according
to δ 〈x(t)〉 =

∫
dt′R(t − t′) 〈fexp[x(t′), t′]〉, where R is the

response to a space independent force, as obtained in (4).

All our experimental data are discretized in time. We
first measure trajectories of the bead position when no ex-
ternal force is applied. We have collected N0

S = 39 inde-
pendent sample trajectories of 250s each with a time step
of 0.004s (each trajectory consists of N0

p = 62500 points).
This yields a set of vectors xji , where the subscript i stands
for the time position and superscript j refers to the trajec-
tory number. We compute the mean square displacement as
〈∆x2〉i =

∑
j,k(xkj − xkj+i)2/N0

s (N0
p − i), from which we

take the discrete derivative. A second set of measurements is
taken when we apply the external force on the bead. Then
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FIG. 3. Average particle position (black) and applied force (red) in
dimensionless units (d is the particle diameter), as a function of time.
Data is compared with the best fit used in deconvolving operations to
restrain noise amplification.

we measure both the position x(t) and the external force f(t),
as shown in FIG. 3. All trajectories are measured for a time
window of 25s with a time step of 0.004s and ensemble av-
erages are taken over 39 realizations. We obtain the discrete
response function Ri by deconvolving the discrete external
force 〈f〉 with δ〈x〉. In order to avoid noise amplification dur-
ing the deconvolution procedure, we have used the fitted data
instead of real data. FromRi we can access the triangular ma-
trix γ−1ij , which is the discrete equivalent of γ−1 appearing in
(6). Then γij is obtained by numerically inverting γ−1ij , and
σij = m/β(γij + γji).

It is now a matter of simple data manipulation to obtain the
correlation functions 〈Fa(0)x(t)〉 and 〈ξ(0)x(t)〉, which are
plotted in FIG. 4. As expected, the thermal noise–position
correlation function is of the order of kBT and decreases to
0 after a time of the order of the second. Besides, the active
force–position correlation function has a completely different
behavior. First, we observe that the short time behavior ex-
hibits small yet significant negative correlation. This would
mean that on average the particle moves opposite to the active
force for about the first ms. At later times, as expected the cor-
relation function turns positive and grows linearly with time.
This confirms the more intuitive idea that the particle on av-
erage moves in the same direction of the active forces. How-
ever we can now quantify this correlation, which turns out to
be of 10 − 100kBT . The figure also shows that for short time
(< 1s) the effect of thermal noise prevails, while at large times
the active force dominates. Again the crossover timescale be-
tween these two regimes is of the order of 1 s. This seems
to corroborate a scenario for which the short time behavior
has equilibrium–like properties, from which the sub-diffusive
nature of visco–elasticity emerges, while the long time be-
havior is strongly governed by active non–equilibrium forces.
Finally we briefly comment on the initial anti–correlation ex-
hibited by the active force–position correlation function. This
feature appears for the very first milliseconds of the measure-
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FIG. 4. Position-force correlation as a function of time difference.

ments. We also add that in this time range the data fit (as
shown in FIG. 3) is less accurate than at later times. This
anti–correlation could however be explained with the help of
the depicted scenario. Indeed, if the short time dynamics can
be seen as a diffusion in a localized potential determined by
the local structure of the cell cortex, the effect of the active
forces at these timescales could be a deformation of this po-
tential, which would result in a systematic tilting in the direc-
tion opposite to the force. Another useful information that can
be extracted from the correlation function concerns the power
spent by the active forces on the bead. This can be estimated
from the time derivative d/dt 〈Fa(0)x(t)〉 when t → 0. Our
experimental data shows that this power is about 30kBT/s.
Assuming a ballistic–like behavior, we estimate from FIG. 2
a typical velocity of v ∼ 5 × 10−3 µm/s (compatible with
0.08µm/s observed in [23]). This leads to an applied force of
almost 25 pN, which would mean that a small number (five or
less) of motors are contributing to the bead motion.

The equilibrium fluctuation–dissipation theorem relates the
response of the system to a small perturbation to sponta-
neous fluctuations in equilibrium. Out-of-equilibrium exten-
sions involve, besides dissipative aspects, also kinetic aspects
where the dynamical activity appears within an extra corre-
lation function with the physical observable under scrutiny.
For overdamped Langevin dynamics, and even for dynamics
with strong memory effects, the latter is directly related to the
non–equilibrium forces driving the system out of equilibrium.
Understanding the properties of these forces in the dynamics
of living cells is a problem of its own. With this new theo-
retical tool we have shown how to access some of the prop-
erties of these forces. We have been able to quantify the time
scale at which active forces driven fluctuations win over ther-
mal ones. Another quantitative spin-off is an estimate for the
power dissipated by the active forces into the system, which
turns out three orders of magnitude smaller than the chemi-
cal power injected into the underlying motors by the ATPase
steps. Another conclusion that we have arrived at is the strong

slaving of the probe motion to the active forces, which are co-
herently followed. We have thus demonstrated that extracting
useful information is indeed possible, and this paves the way
to a number of improvements or generalizations. An immedi-
ate modification of the experimental setup would involve the
use of an optical trap to render the unperturbed state station-
ary, and then pulling on the particle by displacing the trap.
Making the system stationary would eliminate time drifts and
would simplify the subsequent theoretical analysis by allow-
ing to focus solely on active forces. Other simple improve-
ments of the present work would, for instance, entail tracking
higher moments of the bead positions. This could be done
by attempting to vary, in the latter stationary setup, the trap’s
stiffness, instead of the position of its minimum. Even if the
rheological meaning of the response function would then be
lost, other relevant information concerning fluctuations would
then be gained. We leave these projects for future work.

We acknowledge several useful discussions with Julien
Tailleur and Damien Robert.
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