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Abstract

Recent developments with indefinite SVM [11, 17, 5] have effectively demon-
strated SVM classification with a non-positive kernel. However the question
of efficiency still applies. In this paper, an efficient direct solver for SVM with
non-positive kernel is proposed. The chosen approach is related to existing
work on learning with kernel in Krein space. In this framework, it is shown
that solving a learning problem is actually a problem of stabilization of the
cost function instead of a minimization. We propose to restate SVM with
non-positive kernels as a stabilization by using a new formulation of the KKT
conditions. This new formulation provides a practical active set algorithm
to solve the indefinite SVM problem. We also demonstrate empirically that
the proposed algorithm outperforms other existing solvers.

Keywords: Non positive kernel, SVM solver

Résumé

La possibilité d’utiliser les SVM avec des noyaux non positifs a été démon-
trée récemment avec les Indefinite SVM [11, 17, 5]. Toutefois la question de
l’efficacité de la résolution se pose toujours. Dans cet article, nous proposons
un algorithme efficace qui résout directement les SVM avec un noyaux non-
positif. L’approche choisie est liée aux travaux existant sur l’apprentissage
avec noyaux dans les espaces de Krein. Dans ce cadre, il est démontré que ré-
soudre un problème d’apprentissage revient en fait à trouver un point stable
de la fonction coût plutôt que le minimum. Nous proposons de reformuler
les SVM avec noyaux non positifs comme une stabilisation en adaptant les
conditions KKT. Cette nouvelle formulation permets de mettre en œuvre un
algorithme de contraintes actives pour résoudre le problème des SVM indéfi-
nis. Nous apportons également une preuve empirique de la supériorité de cet
algorithme par rapport aux approches existantes.

Mots clés : Noyaux non positif, résolution de SVM
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1 Learning with non positive kernel

From the first stages of SVM [15], non positive kernels are proposed and
used, in particular the tanh kernel. In many application fields, some huge
efforts are made to produce true Mercer kernels when the natural kernels
turn out to be indefinite (for instance [7, 6]). Some author even study some
kernels that are definite positive with high probability ([3]). However, until
now, there is no adequate solver available. In [11], the authors propose to
solve SVM with indefinite kernel considering that the indefinite kernel is a
perturbation of a true Mercer kernel. They end up with a new optimiza-
tion problem that is able to provide good solutions. The major drawback
however would be that the proposed algorithm requires to tune at least one
more parameter, plus some different stopping criteria. Independently of the
interest of this approach, it makes practical applications difficult. In [17, 5],
the previous method is analyzed and improved. In [9], the author states that
learning with indefinite symmetric kernels is actually consisting in finding
a stationary point, which is not unique but each of those performs correct
separation. Moreover, it is shown that the problem is then cannot be seen
as a margin maximization although a notion of margin can be defined. We
will see that similar notions appear in our formulation.

It has been shown ([13]) that learning with non positive kernel is actually
solving the learning problem in a Krein space instead of a Hilbert space.
It has also been shown that in this situation, the learning problem is not
a minimization anymore but a stabilization problem. This means that the
solution is a saddle point of the cost function. Applying this to SVM requires
to interpret this stabilization setting. We first give the intuition behind the
proposed method. Following [10], we start from the fact that a (unconstraint)
quadratic program in a Krein space has a unique solution (if the involved
matrix is non singular) which is in general a stationary point. In the case of
SVM, we have to apply some box constraints that may exclude this unique
solution. Moreover, the optimal constraint solution is not necessarily unique
anymore.

In the definite positive case, solving the quadratic program under box
constraints is a problem of projection of the unconstrained solution onto the
admissible set. To do so, the gradient of the cost function gives the direction
towards the minimum admissible point. In the indefinite case, this projection
has to be redefined : indeed, since the optimal solution is not the minimum,
we can not follow the gradient direction, which leads to the minimum. In
our work, we propose another projection, in order to obtain the most stable
point within the admissible set. In other words, we want the admissible point
that has the lowest gradient.

2



In the next section, it is shown that the usual SVM problem with positive
definite kernels can be directly extended to the indefinite case such that the
provided solution is (one of) the most stable admissible point(s). In order to
illustrate the fact that the proposed formulation is a stabilization, the original
problem is modified such that any critical point becomes a local minimum.
We point out that the optimal solution of the modified problem is the same
as SVM with non positive kernels. Finally, the projection point of view is
provided and it is shown that it also leads to the same problem. Having those
three approaches, we conclude that the solution of a non positive SVM is the
solution of a stabilization problem, which is also the projection of the unique
unconstraint solution onto the admissible set, in the sense of the most stable
point.

2 SVM and KKT conditions of optimality

Let’s consider a training set {X ,Y} where xi ∈ X ∀i ∈ [1..n] are exam-
ples and yi ∈ Y are corresponding labels. In the case of binary classification,
possible values for labels are [−1; 1]. We denote K the symmetric kernel
matrix, of size n × n. C is the hyper parameter, penalizing the training
errors.

We recall in this section the SVM dual quadratic problem ([15]). This
dual is obtained from the margin maximization formulation. A Lagrange
multiplier αi is associated to each training example.







minα
1
2
α⊤Gα − α⊤1

subject to α⊤y = 0
and 0 ≤ αi ≤ C ∀i ∈ [1..n]

(1)

where G(i, j) = yiyjK(i, j).
We give the full KKT conditions for the classical SVM dual system (1).

The KKT conditions of optimality are divided into stationarity condition,
primal and dual admissibility and complementarity conditions. In the case
of SVM dual, the stationarity condition is as follows:

α⊤G − 1⊤ + λy⊤ − µ⊤ + η⊤ = 0 (2)

The primal admissibility is given by

α⊤y = 0
αi ≤ C ∀i ∈ [1..n]
αi ≥ 0 ∀i ∈ [1..n]

(3)
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The dual admissibility is given by

µi ≥ 0 ∀i ∈ [1..n]
ηi ≥ 0 ∀i ∈ [1..n]

(4)

The complementary conditions are

αiµi = 0 ∀i ∈ [1..n]
(αi − C)ηi = 0 ∀i ∈ [1..n]

(5)

Any solution respecting each of these conditions is a solution of the prob-
lem. In the case the kernel matrix is definite positive, the dual SVM problem
has a unique solution which is a global minimum.

2.1 Point of view 1 : the variational approach of quadratic

programming

In the case the kernel matrix is indefinite, the dual SVM problem is not
well defined and the solution is not unique. Following [4] and the variational
approach of quadratic programming, we can actually solve the problem using
normal residuals (ie. solving Ax = b via A⊤Ax = A⊤b). Note that normal
equations could also be an option (ie. solving Ax = b via AA⊤x′ = b with
x = A⊤x′).

α⊤G = 1 − λy⊤ + µ⊤ − η⊤

α⊤GG⊤ = (1 − λy⊤ + µ⊤ − η⊤)G⊤
(6)

This can be seen as least squares. All the other conditions remain iden-
tical.

2.2 Point of view 2 : a stabilization problem

Optimization technics provide minima and not saddle points. To that
purpose, we propose to use a simple trick known as magnitude of the gradient,
consisting in changing the problem such that any critical point becomes a
local minimum. This is done computing the sum of the squares of the partial
derivatives of the function to be stabilized. Let apply this to the following
unconstrained function:

J =
1

2
α⊤Gα − α⊤1 (7)

Stabilizing J is equivalent to minimizing M:

M(α) =
〈

α⊤G − 1⊤, α⊤G − 1⊤
〉

(8)
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This provides the following system:







minα

〈

α⊤G − 1⊤, α⊤G − 1⊤
〉

subject to α⊤y = 0
and 0 ≤ αi ≤ C ∀i ∈ [1..n]

(9)

Let now write the KKT condition of optimality for system (9). The
stationarity condition is as follows:

(α⊤G − 1⊤ + λy⊤ − µ⊤ + η⊤)G⊤ = 0 (10)

The other condition are identical to eq. 3, 4 and 5. Those KKT conditions
show that solving the SVM dual problem when the kernel is indefinite is
actually a stabilization problem.

2.3 Point of view 3 : The projection

As already mentioned, the unconstraint problem has a unique solution.
We want to project it onto the admissible set. However, this projection is not
obvious : what is the closest point of the admissible set to the unconstraint
optimum in the sense of the stabilization? We propose to define it as the
most stable point, i.e. the admissible point minimizing the gradient of the
cost function (which is α⊤G− 1⊤). Solving this minimization with the least
squares directly gives the same system as previously (eq. 9).

For illustration purpose, we draw the cost function for a sigmoid kernel
of a simple 2 gaussians problem, obtained with two support vectors, for both
CSVM cost and NPSVM cost. The plain area shows the admissible solutions.
We can easily observe that the usual minimization technics would lead to a
non optimal solution (see figure 1).

3 The solver

The proposed algorithm is derived from active set approach for SVM, sim-
ilar to [16]. The sets of points are defined according to the complementarity
conditions (see table 1).

By default, all training points are in the non support vector set I0 except
for a couple with opposite labels which is in Iw. Any other initial situation
based on warm-start or a priori does not change the algorithm.
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Figure 1: SVM cost function with sigmoid kernel, illustrated for 2 support
vectors. The plain area shows the admissible solutions. On the left, the
CSVM cost function (eq. 1). On the right, the NPSVM cost function (eq.
10). The blue cross on each graph shows the solution computed by solving
the usual CSVM problem. The red circle shows the solution proposed by the
NPSVM.
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Table 1: Definition of groups for active set depending on the dual variable
values

Group α η µ

I0 0 0 > 0
IC C > 0 0
Iw 0 < α < C 0 0

3.1 Solving linear system in Iw

We need to solve the linear system from the stationarity condition (eq.
10) only for unconstrained points, those of Iw. This leads to the following
equation :

α⊤

(w)G(w,:)G(:,w) = (1(:) − λy⊤

(:) − C1⊤

(C)G(C,:))G(:,w)

This can be solved using QR decomposition of G, for which one can maintain
a rank one update at each step of the algorithm. Computing λ can be easily
done substituting α⊤

(w) in α⊤

(w)y(w) = −C1⊤

(C)y(C).

3.2 Activating constraints in Iw

If any α(w)(i) does not lie in [0 C], the current solution is projected on
the admissible set such that all α(w)(i) satisfy the primal admissibility and
the violating point is transferred towards I0 or IC according to the violating
value.

3.3 Relaxing constraints in I0 or IC

If the current solution is admissible, we check the stationarity conditions
for I0 and IC (using eq. 10 and 5). The most violating point is transferred
from its group to Iw.

For any point j ∈ I0, µj > 0 and ηj = 0. From eq. 10 :

(α⊤

[w,C]G([w,C],:) − 1⊤ + λy⊤)G:,j > 0

For any point k ∈ IC , µk = 0 and ηk > 0. From eq. 10 :

(α⊤

[w,C]G([w,C],:) − 1⊤ + λy⊤)G:,k < 0

We can observe here that the notion of margin is distorted. Indeed, when
using the same active set solver in the positive definite case, the margin
clearly appears in the constraint relaxation (for j ∈ I0, the condition would be
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α⊤

[w,C]G([w,C],j) + λyj > 1). This means that in the feature space, the solution
won’t have the same properties as the usual SVM, especially concerning the
interpretation of support vectors relatively to the decision boundary.

3.4 The algorithm

1: Initialize (one random point for each class in Iw, all others in I0)
2: while solution is not optimal do

3: solve linear system (sec 3.1)
4: if primal admissibility is not satisfied then

5: project solution in the admissible domain : remove a support vector
from Iw (to I0 or IC) (sec 3.2)

6: else if stationarity condition is not satisfied then

7: add new support vector to Iw (from I0 or IC) (sec 3.3)
8: end if

9: end while

Note that the convergence after a finite number of step of the proposed
algorithm can always be proved since it can be seen as an active set procedure
applied to a convex QP and thus convergence proof in this case applies [12].

The code for proposed algorithm is available at ***.

3.5 Complexity

Compared to the same active set algorithm in the positive definite case,
the proposed formulation increases the complexity. Let’s consider that only
the original kernel is stored in memory, we list the added operations

– sec 3.1 : 2 matrix by matrix multiplication (O(n|Iw|2) and O(n2|Iw|))
– sec 3.2 : identical
– sec 3.3 : 1 matrix by matrix multiplication (O(n2(|I0| + |IC |)))

These can be reduced by various strategies, such as caching, rank-one update,
iterative search for violating example, etc.

4 Experimental results

In our experiements, we used the well known sigmoid kernel (tanh) :
k(xi, xj) = tanh(scale×〈xi, xj〉+bias) and the epanechnikov kernel (epanech)
: k(xi, xj) = max(0, 1−γ∗〈xi, xj〉). We also used the positive gaussian kernel
(rbf).
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4.1 UCI datasets

We tested our algorithm NPSVM on some popular UCI datasets [1] and
compared the results to a usual SVM solution (refered as CSVM). For each
scaled dataset (heart, sonar, breast cancer, diabetes) we provide the average
test accuracy on 10 random split of the database. The statistically better
results are bold and underlined (according to chi square independance test
at level 2%) (see table 2).

Validation protocol

We describe here the protocol used for each dataset, inspired by [8]. The
procedure is applied 10 times for each and the given results are on average.

– split randomly the dataset, 2/3 for cross validation, 1/3 for test.
– perform 10 fold cross validation on the validation set

(C ∈ [0.01, 0.1, 1, 10, 100, 1000], σ ∈ [0.1, 0.5, 1, 5, 10, 15, 25, 50, 100, 250, 500]∗√
n] for rbf kernel, scale = [pow2(−5 : 1.5 : 2),−pow2(−5 : 1.5 : 2)]

and bias = [pow2(−5 : 1.5 : 2),−pow2(−5 : 1.5 : 2)] for tanh kernel).
– train the svm on the full validation set with the parameters providing

the best average performance during cross validation.
– test on the separate test set.

Table 2: Results on some UCI dataset.
Solver kernel Heart Sonar Breast
C-SVM rbf 82.22% (23.2 sv) 84.78% (90.3 sv) 97.47% (53.8 sv)
NPSVM rbf 83.44% (35.9 sv) 86.09% (94.9 sv) 97.37% (56.6 sv)
NPSVM tanh 82.44% (14.8 sv) 84.06% (70.1 sv) 97.76 % (116 sv)

4.2 Usps digits

We tested the NPSVM on the well known USPS digits database. With
kernel, tanh with scale = 0.004 and bias = −1.5, C = 100 we obtained
94.92% of good classification (1 vs 1 multiclass setting). With an epanech
kernel (bandwidth = 0.01 and C = 1000) we obtained 94.07% of accuracy.
Those experiments convinced us that this approach of non positive SVM
could be applied at least to medium sized problem. However the tested non
positive definite kernels did not outperform the positive definite ones on that
problem.
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Figure 2: Evolution of the cost function during training. Curves are scaled on
vertical axis. On the left, we report the value of the usual CSVM cost function
during training. On the right are curves corresponding to the modified cost
function that is actually minimized. While the standard CSVM cost function
decreases monotonically (rbf CSVM on the left graph), the cost function for
NPSVM may increase. Note that test performance are similar for each of the
reported experiment on this figure (dataset is synthetic data generated from
the apple/banana setting).

4.3 Monitoring the cost function

We also observed the evolution of the cost function (eq 1) to illustrate
the fact that the cost function is stabilized and not minimized (figure 2).
However, we can observe that for some particular setting and datasets, the
proposed algorithms may converge to a minimum.

4.4 Comparison to over solvers

libSVM

This part reports an experiment pointing out that the proposed approach
can find much better solution than the widely used libSVM. Figure 3 illus-
trates this on a synthetic problem of checkers. The sigmoid kernel is used,
with positive scale and negative bias, as recommended in [14]. We can observe
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that even though libSVM converges, the proposed solution poorly classifies
the data while NPSVM converges towards a much better solution. Note that
one can find some kernel parameters that works better for libSVM, but the
reported result is frequent. Let us remark also that NPSVM is proposed

Figure 3: Results on checkers with NPSVM on the right and libSVM on the
left, for an identical sigmoid kernel (scale = 1, bias = -1). Circles are support
vectors.

here with an active set method but could also be implemented with an SMO
approach.

IndefiniteSVM

We conducted some experiments to compare our results to the Indefi-
niteSVM toolbox ([11]). We show here one of the best results we manage
to obtain (best in the sense of in favor of the indefiniteSVM). Note that we
had difficulties to reach some good parameters for IndefiniteSVM. We can
observe that even selecting favorable cases, IndefiniteSVM does not attain as
good solutions as NPSVM. Moreover, those are usually less sparse.

Global comparison

From results in table 3, we can say that NPSVM clearly outperforms
existing solvers handling non positive kernels. In terms of computational
time, as expected the proposed implementation is slower than standard SVM
solvers. However, it is much faster than IndefiniteSVM and can be used with
medium size datasets.
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Figure 4: Results on checkers with IndefiniteSVM on the left and NPSVM
on the right, for an identical epanech kernel. Circles are support vectors.

5 Conclusion

In this article we present a new algorithm to solve SVM with non positive
kernels. We base our work on the already stated fact that the solution, in
this case, is a stabilized point and not a minimum, and we modified the solver
according to that. We illustrate this point of view through three approaches,
the variational point of view, the stabilization point of view and the projec-
tion point of view. All leads to the same problem for which we provide a
practical algorithm. Compared to a usual SVM solver, the NPSVM needs to
take into account all training point for intermediate optimizations, thus the

Table 3: Comparison between IndefiniteSVM, libSVM and NPSVM on syn-
thetic data, with the same kernel and C for all solvers . IndefiniteSVM is
stopped after 2000 iterations if not converged

Solver Accuracy Training time Solution size Problem

IndefiniteSVM 58.25 % 16.34 s 48 sv Checkers 96 training points
libSVM 48.56 % 0.003 s 52 sv tanh kernel
NPSVM 84.82 % 0.35 s 28 sv min eig = -25.37

IndefiniteSVM 68.21% 726 s 496 sv Checkers 992 training points
libSVM 51.27% 0.01 s 232 sv tanh kernel
NPSVM 90.84% 2.8 s 53 sv min eig = -136.07

IndefiniteSVM -% - s - sv Checkers 4992 training points
libSVM 53.30% 1.54 s 2369 sv tanh kernel
NPSVM 92.41% 53.4 s 51 sv -
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computational time is increased. To that point, we think some heuristics can
be applied : a subset of points, chosen at random a priori, could be used in-
stead of the whole training set to support the intermediate optimizations. An
other lead consists in solving the linear program induced by the projection
point of view, if we take norm 1 instead of least squares. This will be stud-
ied in the near future. Let us note also recent work on projection in Krein
space [2] that might be applied to the non positive kernels learning methods.
Finally, we want to point out the fact that many well known technics, such
as regularization paths, could easily be used for NPSVM.
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