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 have effectively demonstrated SVM classification with a non-positive kernel. However the question of efficiency still applies. In this paper, an efficient direct solver for SVM with non-positive kernel is proposed. The chosen approach is related to existing work on learning with kernel in Krein space. In this framework, it is shown that solving a learning problem is actually a problem of stabilization of the cost function instead of a minimization. We propose to restate SVM with non-positive kernels as a stabilization by using a new formulation of the KKT conditions. This new formulation provides a practical active set algorithm to solve the indefinite SVM problem. We also demonstrate empirically that the proposed algorithm outperforms other existing solvers.

La possibilité d'utiliser les SVM avec des noyaux non positifs a été démontrée récemment avec les Indefinite SVM [START_REF] Luss | Support Vector Machine Classification with Indefinite Kernels[END_REF][START_REF] Ying | Analysis of svm with indefinite kernels[END_REF][START_REF] Chen | Training svm with indefinite kernels[END_REF]. Toutefois la question de l'efficacité de la résolution se pose toujours. Dans cet article, nous proposons un algorithme efficace qui résout directement les SVM avec un noyaux nonpositif. L'approche choisie est liée aux travaux existant sur l'apprentissage avec noyaux dans les espaces de Krein. Dans ce cadre, il est démontré que résoudre un problème d'apprentissage revient en fait à trouver un point stable de la fonction coût plutôt que le minimum. Nous proposons de reformuler les SVM avec noyaux non positifs comme une stabilisation en adaptant les conditions KKT. Cette nouvelle formulation permets de mettre en oeuvre un algorithme de contraintes actives pour résoudre le problème des SVM indéfinis. Nous apportons également une preuve empirique de la supériorité de cet algorithme par rapport aux approches existantes.

Mots clés : Noyaux non positif, résolution de SVM 1 Learning with non positive kernel

From the first stages of SVM [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF], non positive kernels are proposed and used, in particular the tanh kernel. In many application fields, some huge efforts are made to produce true Mercer kernels when the natural kernels turn out to be indefinite (for instance [START_REF] Cortes | Positive definite rational kernels[END_REF][START_REF] Collins | Convolution kernels for natural language[END_REF]). Some author even study some kernels that are definite positive with high probability ( [START_REF] Boughorbel | Nonmercer kernels for svm object recognition[END_REF]). However, until now, there is no adequate solver available. In [START_REF] Luss | Support Vector Machine Classification with Indefinite Kernels[END_REF], the authors propose to solve SVM with indefinite kernel considering that the indefinite kernel is a perturbation of a true Mercer kernel. They end up with a new optimization problem that is able to provide good solutions. The major drawback however would be that the proposed algorithm requires to tune at least one more parameter, plus some different stopping criteria. Independently of the interest of this approach, it makes practical applications difficult. In [START_REF] Ying | Analysis of svm with indefinite kernels[END_REF][START_REF] Chen | Training svm with indefinite kernels[END_REF], the previous method is analyzed and improved. In [START_REF] Haasdonk | Feature space interpretation of svms with indefinite kernels[END_REF], the author states that learning with indefinite symmetric kernels is actually consisting in finding a stationary point, which is not unique but each of those performs correct separation. Moreover, it is shown that the problem is then cannot be seen as a margin maximization although a notion of margin can be defined. We will see that similar notions appear in our formulation.

It has been shown ( [START_REF] Cheng | Learning with non-positive kernels[END_REF]) that learning with non positive kernel is actually solving the learning problem in a Krein space instead of a Hilbert space. It has also been shown that in this situation, the learning problem is not a minimization anymore but a stabilization problem. This means that the solution is a saddle point of the cost function. Applying this to SVM requires to interpret this stabilization setting. We first give the intuition behind the proposed method. Following [START_REF] Hassibi | Indefinitequadratic estimation and control: a unified approach to H2 and H [infinity[END_REF], we start from the fact that a (unconstraint) quadratic program in a Krein space has a unique solution (if the involved matrix is non singular) which is in general a stationary point. In the case of SVM, we have to apply some box constraints that may exclude this unique solution. Moreover, the optimal constraint solution is not necessarily unique anymore.

In the definite positive case, solving the quadratic program under box constraints is a problem of projection of the unconstrained solution onto the admissible set. To do so, the gradient of the cost function gives the direction towards the minimum admissible point. In the indefinite case, this projection has to be redefined : indeed, since the optimal solution is not the minimum, we can not follow the gradient direction, which leads to the minimum. In our work, we propose another projection, in order to obtain the most stable point within the admissible set. In other words, we want the admissible point that has the lowest gradient.

In the next section, it is shown that the usual SVM problem with positive definite kernels can be directly extended to the indefinite case such that the provided solution is (one of) the most stable admissible point(s). In order to illustrate the fact that the proposed formulation is a stabilization, the original problem is modified such that any critical point becomes a local minimum. We point out that the optimal solution of the modified problem is the same as SVM with non positive kernels. Finally, the projection point of view is provided and it is shown that it also leads to the same problem. Having those three approaches, we conclude that the solution of a non positive SVM is the solution of a stabilization problem, which is also the projection of the unique unconstraint solution onto the admissible set, in the sense of the most stable point.

SVM and KKT conditions of optimality

Let's consider a training set {X , Y} where x i ∈ X ∀i ∈ [1..n] are examples and y i ∈ Y are corresponding labels. In the case of binary classification, possible values for labels are [-1; 1]. We denote K the symmetric kernel matrix, of size n × n. C is the hyper parameter, penalizing the training errors.

We recall in this section the SVM dual quadratic problem ( [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF]). This dual is obtained from the margin maximization formulation. A Lagrange multiplier α i is associated to each training example.

   min α 1 2 α ⊤ Gα -α ⊤ 1 subject to α ⊤ y = 0 and 0 ≤ α i ≤ C ∀i ∈ [1..n] (1) 
where G(i, j) = y i y j K(i, j).

We give the full KKT conditions for the classical SVM dual system (1). The KKT conditions of optimality are divided into stationarity condition, primal and dual admissibility and complementarity conditions. In the case of SVM dual, the stationarity condition is as follows:

α ⊤ G -1 ⊤ + λy ⊤ -µ ⊤ + η ⊤ = 0 (2)
The primal admissibility is given by

α ⊤ y = 0 α i ≤ C ∀i ∈ [1..n] α i ≥ 0 ∀i ∈ [1..n] (3) 
The dual admissibility is given by

µ i ≥ 0 ∀i ∈ [1..n] η i ≥ 0 ∀i ∈ [1..n] (4) 
The complementary conditions are

α i µ i = 0 ∀i ∈ [1..n] (α i -C)η i = 0 ∀i ∈ [1..n] (5) 
Any solution respecting each of these conditions is a solution of the problem. In the case the kernel matrix is definite positive, the dual SVM problem has a unique solution which is a global minimum.

Point of view 1 : the variational approach of quadratic programming

In the case the kernel matrix is indefinite, the dual SVM problem is not well defined and the solution is not unique. Following [START_REF] Brezinski | Projection methods for linear systems[END_REF] and the variational approach of quadratic programming, we can actually solve the problem using normal residuals (ie. solving Ax = b via A ⊤ Ax = A ⊤ b). Note that normal equations could also be an option (ie. solving

Ax = b via AA ⊤ x ′ = b with x = A ⊤ x ′ ). α ⊤ G = 1 -λy ⊤ + µ ⊤ -η ⊤ α ⊤ GG ⊤ = (1 -λy ⊤ + µ ⊤ -η ⊤ )G ⊤ (6) 
This can be seen as least squares. All the other conditions remain identical.

Point of view 2 : a stabilization problem

Optimization technics provide minima and not saddle points. To that purpose, we propose to use a simple trick known as magnitude of the gradient, consisting in changing the problem such that any critical point becomes a local minimum. This is done computing the sum of the squares of the partial derivatives of the function to be stabilized. Let apply this to the following unconstrained function:

J = 1 2 α ⊤ Gα -α ⊤ 1 (7)
Stabilizing J is equivalent to minimizing M:

M(α) = α ⊤ G -1 ⊤ , α ⊤ G -1 ⊤ (8) 
This provides the following system:

   min α α ⊤ G -1 ⊤ , α ⊤ G -1 ⊤ subject to α ⊤ y = 0 and 0 ≤ α i ≤ C ∀i ∈ [1..n] (9) 
Let now write the KKT condition of optimality for system [START_REF] Haasdonk | Feature space interpretation of svms with indefinite kernels[END_REF]. The stationarity condition is as follows:

(α ⊤ G -1 ⊤ + λy ⊤ -µ ⊤ + η ⊤ )G ⊤ = 0 (10) 
The other condition are identical to eq. 3, 4 and 5. Those KKT conditions show that solving the SVM dual problem when the kernel is indefinite is actually a stabilization problem.

Point of view 3 : The projection

As already mentioned, the unconstraint problem has a unique solution. We want to project it onto the admissible set. However, this projection is not obvious : what is the closest point of the admissible set to the unconstraint optimum in the sense of the stabilization? We propose to define it as the most stable point, i.e. the admissible point minimizing the gradient of the cost function (which is α ⊤ G -1 ⊤ ). Solving this minimization with the least squares directly gives the same system as previously (eq. 9).

For illustration purpose, we draw the cost function for a sigmoid kernel of a simple 2 gaussians problem, obtained with two support vectors, for both CSVM cost and NPSVM cost. The plain area shows the admissible solutions. We can easily observe that the usual minimization technics would lead to a non optimal solution (see figure 1).

The solver

The proposed algorithm is derived from active set approach for SVM, similar to [START_REF] Vishwanathan | Simplesvm[END_REF]. The sets of points are defined according to the complementarity conditions (see table [START_REF] Newman | UCI machine learning repository[END_REF].

By default, all training points are in the non support vector set I 0 except for a couple with opposite labels which is in I w . Any other initial situation based on warm-start or a priori does not change the algorithm. 

0 0 > 0 I C C > 0 0 I w 0 < α < C 0 0
3.1 Solving linear system in I w

We need to solve the linear system from the stationarity condition (eq. 10) only for unconstrained points, those of I w . This leads to the following equation :

α ⊤ (w) G (w,:) G (:,w) = (1 (:) -λy ⊤ (:) -C1 ⊤ (C) G (C,:) )G (:,w)
This can be solved using QR decomposition of G, for which one can maintain a rank one update at each step of the algorithm. Computing λ can be easily done substituting

α ⊤ (w) in α ⊤ (w) y (w) = -C1 ⊤ (C) y (C) .

Activating constraints in I w

If any α (w) (i) does not lie in [0 C], the current solution is projected on the admissible set such that all α (w) (i) satisfy the primal admissibility and the violating point is transferred towards I 0 or I C according to the violating value.

Relaxing constraints in I 0 or I C

If the current solution is admissible, we check the stationarity conditions for I 0 and I C (using eq. 10 and 5). The most violating point is transferred from its group to I w .

For any point j ∈ I 0 , µ j > 0 and η j = 0. From eq. 10 :

(α ⊤ [w,C] G ([w,C],:) -1 ⊤ + λy ⊤ )G :,j > 0
For any point k ∈ I C , µ k = 0 and η k > 0. From eq. 10 :

(α ⊤ [w,C] G ([w,C],:) -1 ⊤ + λy ⊤ )G :,k < 0
We can observe here that the notion of margin is distorted. Indeed, when using the same active set solver in the positive definite case, the margin clearly appears in the constraint relaxation (for j ∈ I 0 , the condition would be

α ⊤ [w,C] G ([w,C],j) + λy j > 1)
. This means that in the feature space, the solution won't have the same properties as the usual SVM, especially concerning the interpretation of support vectors relatively to the decision boundary.

The algorithm

1: Initialize (one random point for each class in I w , all others in I 0 ) 2: while solution is not optimal do 3:

solve linear system (sec 3.1)

4:

if primal admissibility is not satisfied then 5:

project solution in the admissible domain : remove a support vector from I w (to I 0 or I C ) (sec 3.2)

6:
else if stationarity condition is not satisfied then end if 9: end while Note that the convergence after a finite number of step of the proposed algorithm can always be proved since it can be seen as an active set procedure applied to a convex QP and thus convergence proof in this case applies [START_REF] Nocedal | Numerical Optimization[END_REF].

The code for proposed algorithm is available at ***.

Complexity

Compared to the same active set algorithm in the positive definite case, the proposed formulation increases the complexity. Let's consider that only the original kernel is stored in memory, we list the added operations -sec 3. 

Experimental results

In our experiements, we used the well known sigmoid kernel (tanh) : k(x i , x j ) = tanh(scale× x i , x j +bias) and the epanechnikov kernel (epanech) : k(x i , x j ) = max(0, 1-γ * x i , x j ). We also used the positive gaussian kernel (rbf).

UCI datasets

We tested our algorithm NPSVM on some popular UCI datasets [START_REF] Newman | UCI machine learning repository[END_REF] and compared the results to a usual SVM solution (refered as CSVM). For each scaled dataset (heart, sonar, breast cancer, diabetes) we provide the average test accuracy on 10 random split of the database. The statistically better results are bold and underlined (according to chi square independance test at level 2%) (see table 2).

Validation protocol

We describe here the protocol used for each dataset, inspired by [START_REF] Van Gestel | Benchmarking least squares support vector machine classifiers[END_REF]. The procedure is applied 10 times for each and the given results are on average.

-split randomly the dataset, 2/3 for cross validation, 1/3 for test.

-perform 10 fold cross validation on the validation set (C ∈ [0.01, 0.1, 1, 10, 100, 1000], σ ∈ [0.1, 0.5, 1, 5, 10, 15, 25, 50, 100, 250, 500] * √ n] for rbf kernel, scale = [pow2(-5 : 1.5 : 2), -pow2(-5 : 1.5 : 2)] and bias = [pow2(-5 : 1.5 : 2), -pow2(-5 : 1.5 : 2)] for tanh kernel).

-train the svm on the full validation set with the parameters providing the best average performance during cross validation. -test on the separate test set. 

Usps digits

We tested the NPSVM on the well known USPS digits database. With kernel, tanh with scale = 0.004 and bias = -1.5, C = 100 we obtained 94.92% of good classification (1 vs 1 multiclass setting). With an epanech kernel (bandwidth = 0.01 and C = 1000) we obtained 94.07% of accuracy. Those experiments convinced us that this approach of non positive SVM could be applied at least to medium sized problem. However the tested non positive definite kernels did not outperform the positive definite ones on that problem. 

Monitoring the cost function

We also observed the evolution of the cost function (eq 1) to illustrate the fact that the cost function is stabilized and not minimized (figure 2). However, we can observe that for some particular setting and datasets, the proposed algorithms may converge to a minimum.

Comparison to over solvers libSVM

This part reports an experiment pointing out that the proposed approach can find much better solution than the widely used libSVM. Figure 3 illustrates this on a synthetic problem of checkers. The sigmoid kernel is used, with positive scale and negative bias, as recommended in [START_REF] Hsuan Tien | A study on sigmoid kernels for svm and the training of non-psd kernels by smo-type methods[END_REF]. We can observe that even though libSVM converges, the proposed solution poorly classifies the data while NPSVM converges towards a much better solution. Note that one can find some kernel parameters that works better for libSVM, but the reported result is frequent. Let us remark also that NPSVM is proposed here with an active set method but could also be implemented with an SMO approach.

IndefiniteSVM

We conducted some experiments to compare our results to the Indefi-niteSVM toolbox ( [START_REF] Luss | Support Vector Machine Classification with Indefinite Kernels[END_REF]). We show here one of the best results we manage to obtain (best in the sense of in favor of the indefiniteSVM). Note that we had difficulties to reach some good parameters for IndefiniteSVM. We can observe that even selecting favorable cases, IndefiniteSVM does not attain as good solutions as NPSVM. Moreover, those are usually less sparse.

Global comparison

From results in table 3, we can say that NPSVM clearly outperforms existing solvers handling non positive kernels. In terms of computational time, as expected the proposed implementation is slower than standard SVM solvers. However, it is much faster than IndefiniteSVM and can be used with medium size datasets. 

Conclusion

In this article we present a new algorithm to solve SVM with non positive kernels. We base our work on the already stated fact that the solution, in this case, is a stabilized point and not a minimum, and we modified the solver according to that. We illustrate this point of view through three approaches, the variational point of view, the stabilization point of view and the projection point of view. All leads to the same problem for which we provide a practical algorithm. Compared to a usual SVM solver, the NPSVM needs to take into account all training point for intermediate optimizations, thus the computational time is increased. To that point, we think some heuristics can be applied : a subset of points, chosen at random a priori, could be used instead of the whole training set to support the intermediate optimizations. An other lead consists in solving the linear program induced by the projection point of view, if we take norm 1 instead of least squares. This will be studied in the near future. Let us note also recent work on projection in Krein space [START_REF] Ando | Projections in krein spaces[END_REF] that might be applied to the non positive kernels learning methods. Finally, we want to point out the fact that many well known technics, such as regularization paths, could easily be used for NPSVM.
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 1 Figure 1: SVM cost function with sigmoid kernel, illustrated for 2 support vectors. The plain area shows the admissible solutions. On the left, the CSVM cost function (eq. 1). On the right, the NPSVM cost function (eq. 10). The blue cross on each graph shows the solution computed by solving the usual CSVM problem. The red circle shows the solution proposed by the NPSVM.

7 :

 7 add new support vector to I w (from I 0 or I C ) (sec 3.3) 8:

  1 : 2 matrix by matrix multiplication (O(n|I w | 2 ) and O(n 2 |I w |)) -sec 3.2 : identical -sec 3.3 : 1 matrix by matrix multiplication (O(n 2 (|I 0 | + |I C |)))These can be reduced by various strategies, such as caching, rank-one update, iterative search for violating example, etc.

Figure 2 :

 2 Figure 2: Evolution of the cost function during training. Curves are scaled on vertical axis. On the left, we report the value of the usual CSVM cost function during training. On the right are curves corresponding to the modified cost function that is actually minimized. While the standard CSVM cost function decreases monotonically (rbf CSVM on the left graph), the cost function for NPSVM may increase. Note that test performance are similar for each of the reported experiment on this figure (dataset is synthetic data generated from the apple/banana setting).

Figure 3 :

 3 Figure 3: Results on checkers with NPSVM on the right and libSVM on the left, for an identical sigmoid kernel (scale = 1, bias = -1). Circles are support vectors.

Figure 4 :

 4 Figure 4: Results on checkers with IndefiniteSVM on the left and NPSVM on the right, for an identical epanech kernel. Circles are support vectors.

Table 1 :

 1 Definition of groups for active set depending on the dual variable

	values	Group	α	η	µ
		I 0			

Table 2 :

 2 Results on some UCI dataset.

	Solver kernel	Heart	Sonar	Breast
	C-SVM	rbf	82.22% (23.2 sv) 84.78% (90.3 sv)	97.47% (53.8 sv)
	NPSVM	rbf	83.44% (35.9 sv) 86.09% (94.9 sv) 97.37% (56.6 sv)
	NPSVM tanh 82.44% (14.8 sv) 84.06% (70.1 sv) 97.76 % (116 sv)

Table 3 :

 3 Comparison between IndefiniteSVM, libSVM and NPSVM on synthetic data, with the same kernel and C for all solvers . IndefiniteSVM is stopped after 2000 iterations if not converged

	Solver	Accuracy Training time	Solution size	Problem
	IndefiniteSVM	58.25 %	16.34 s	48 sv	Checkers 96 training points
	libSVM	48.56 %	0.003 s	52 sv	tanh kernel
	NPSVM	84.82 %	0.35 s	28 sv	min eig = -25.37
	IndefiniteSVM	68.21%	726 s	496 sv	Checkers 992 training points
	libSVM	51.27%	0.01 s	232 sv	tanh kernel
	NPSVM	90.84%	2.8 s	53 sv	min eig = -136.07
	IndefiniteSVM	-%	-s	-sv	Checkers 4992 training points
	libSVM	53.30%	1.54 s	2369 sv	tanh kernel
	NPSVM	92.41%	53.4 s	51 sv	-
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