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We address the problem of computing the atoms of the decomposition by clique minimal separators of a graph G (also called the maximal prime subgraphs) when a minimal triangulation H of G is given as part of the input. We present a new algorithmic technique based on the clique tree of H. We introduce a new graph parameter, m 0 , which is the number of edges belonging to no minimal separator of H. We give an algorithm which runs in O(nm 0 ) time, which improves the current O(nm) time for this problem. Another version of our algorithm runs in O(n(n + t)) time, where t is the number of 2-pairs of H. We show that our technique computes the atoms in O(n 2 ) time for several graph classes, including the graphs with bounded treewidth, which improves the current O(n 3 ) time for dense graphs by a factor of n.

Introduction

Clique separator decomposition is a graph decomposition which uses the separators (or cutsets) inducing complete subgraphs.

The process was introduced by Tarjan [START_REF] Tarjan | Decomposition by clique separators[END_REF] as a useful divide-and-conquer approach to solve hard problems such as maximum clique and coloring. He used a LEX M ordering of the graph to provide an O(nm) time implementation.

LEX M is an O(nm) time search designed for minimal triangulation computing [START_REF] Rose | Algorithmic aspects of vertex elimination on graphs[END_REF]. Given a graph G = (V, E) (where |V | = n and |E| = m), a minimal triangulation is a chordal supergraph H = (V, E + F ) of G, such that if any of the added edges is removed, the graph is no longer chordal (a chordless 4-cycle has been created). F is called the fill, |F | = f , and the edges of F are called fill edges.

Tarjan's algorithm was modified by [START_REF] Leimer | Optimal decomposition by clique separators[END_REF] to use only clique separators which are also minimal separators, obtaining a canonical decomposition. The subgraphs obtained, called "atoms" [START_REF] Tarjan | Decomposition by clique separators[END_REF] (or "maximal prime subgraphs" [START_REF] Leimer | Optimal decomposition by clique separators[END_REF]) are defined as the inclusion-maximal connected subgraphs containing no clique separator. (The reader is referred to [START_REF] Berry | An introduction to clique minimal separator decomposition[END_REF] for full details).

Recently, this decomposition has generated interest in several fields. It has been applied to Bayesian networks [START_REF] Olesen | Maximal prime subgraph decomposition of Bayesian networks[END_REF], to treewidth [START_REF] Bodlaender | Safe separators for treewidth[END_REF], to graph problems [START_REF] Brandstädt | On clique separators, nearly chordal graphs, and the Maximum Weight Stable Set Problem[END_REF], to graph modelization of data from biochips [START_REF] Kaba | Clustering gene expression data using graph separators[END_REF] and from text mining [START_REF] Biha | Graph Decomposition Approaches for Terminology Graphs[END_REF].

As mentioned above, the only known way of finding the clique minimal separators efficiently is to use a minimal triangulation, by virtue of the following property : Property 1.1 [START_REF] Berry | A wide-range algorithm for minimal triangulation from an arbitrary ordering[END_REF], [START_REF] Berry | An introduction to clique minimal separator decomposition[END_REF], [START_REF] Parra | Characterizations and Algorithmic Applications of Chordal Graph Embeddings[END_REF] Let G = (V, E) be a connected graph, let H = (V, E + F ) be a minimal triangulation of G. Then any clique minimal separator of G is a minimal separator of H.

The edges missing from the separators of H which are not cliques in G are precisely the edges of F , so each fill edge lies inside a minimal separator of H.

Computing the (less than n) minimal separators of a chordal graph can be done in linear time ( [START_REF] Berry | A simple algorithm to generate the minimal separators of a chordal graph[END_REF], [START_REF] Blair | An introduction to chordal graphs and clique trees[END_REF], [START_REF] Kumar | Minimal vertex separators of chordal graphs[END_REF]), so deciding which are cliques of the input graph can be done in O(nm) time by searching G(S i ) for each separator S i .

When previous work was done on this decomposition, minimal triangulation cost O(nm) time [START_REF] Rose | Algorithmic aspects of vertex elimination on graphs[END_REF], so no effort was invested into computing the atoms faster. In fact, the algorithm from [START_REF] Tarjan | Decomposition by clique separators[END_REF] requires a separate graph search for each atom, which costs O(nm) time, as there may be n -1 atoms. As a result, each of the three steps from this process (compute a minimal triangulation, check the minimal separators for completion, compute the atoms) requires O(n) graph searches, and thus O(nm) time.

However, minimal triangulation has given rise to many recent results, showing that this O(nm) time bound can be improved. On special graph classes, the cost of computing a minimal triangulation may be lower than O(nm) ; for example, [START_REF] Meister | Recognition and computation of minimal triangulations for AT-free clawfree and co-comparability graphs[END_REF] presents linear time algorithms for AT-tree claw-free graphs and for co-comparability graphs. In the general case for non-sparse graphs, the O(n 3 ) time bound has been recently lowered : [START_REF] Kumar | Minimal vertex separators of chordal graphs[END_REF] offer an O(n 2.69 ) time bound, later improved by [START_REF] Heggernes | Computing Minimal Triangulations in Time O(n α logn) = o(n 2.376 )[END_REF] to O(n α logn) = o(n 2.376 ), where n α is the time required to do matrix multiplication, currently n 2.376 . Our purpose in this paper is to provide an approach to compute the atoms efficiently when a minimal triangulation H is given as part of the input. To accomplish this, we will use a clique tree of H (a clique tree is a compact representation of a chordal graph H, where the nodes are the maximal cliques of H, and each edge (K i , K j ) represents a minimal separator K i ∩ K j of H. As will become clear later, the clique tree will avoid the costly systematic graph searches.

Our approach, which will be detailed further on, is the following : given a graph G and a minimal triangulation H of G :

1. Compute the clique tree T of H.

2. Run through the edges of T and determine which ones correspond to a non-clique minimal separator of G.

3. Run through T and merge any two cliques K i and K j which are extremities of an edge corresponding to a non-clique minimal separator of G.

In the tree T ′ obtained in the end, which we call the atom tree, the nodes are the atoms of G and the edges are the clique minimal separators of G.

Example 1.2 Figure 1 gives graph G, and Figure 2 gives a minimal triangulation H of G, with the fill edges represented by dashed lines. Figure 3 gives the clique tree of H ; the minimal separators of H which are not cliques of G are : {10, 9, 8}, {8, 5} and {5, 4}. Figure 4 gives the atom tree T ′ obtained in the end. Step 1 can be done in O(m + f ) time, using the algorithm from [START_REF] Blair | An introduction to chordal graphs and clique trees[END_REF].

Step 3 can easily be done in O(n 2 ), as merging two cliques costs O(n), and there are less than n edges in a clique tree. This clique merging process, presented in [START_REF] Olesen | Maximal prime subgraph decomposition of Bayesian networks[END_REF], is of primary importance : it enables us to compute the atoms without requiring an O(m) time graph search each time a clique minimal separator of G is detected. In fact, T ′ is a clique tree of graph G * , presented by [START_REF] Leimer | Optimal decomposition by clique separators[END_REF], which is obtained from G by adding edges to make each atom Our complexity bottleneck thus resides in Step 2, i.e. in deciding which separators of the minimal triangulation H are cliques of the input graph G. As mentioned above, this is easily done in O(nm) time, but our aim is to propose techniques to accomplish a better time.

There are cases when Step 2 can be done efficiently in a straightforward fashion :

1. When the fill is of small size, each fill edge ab of F can be tested to see which minimal separators of H it belongs to. This is easily done in O(n) time per fill edge, and thus costs nf time, which may be lower than nm when the fill is small. This approach is interesting in the context of triangulations computed with the Minimum Degree Heuristic, which approximates minimum triangulation and often yields a very small fill in practice ; recent research has shown how to extract a minimal triangulation in O(f (m + f )) time [START_REF] Blair | A practical algorithm for making filled graphs minimal[END_REF].

2. A minimal separator S = {s 1 , s 2 , ..., s k } of H can be tested for completeness by testing for the presence in G of each edge s i s j of S. All the clique minimal separators of G can thus be found in time proportional to the sum of the number of edges over all the minimal separators of H. As these separators may overlap, in the worse case this approach costs O(nm) time. However, this number may be small, and can be evaluated as the minimal separators of H are computed.

In view of improving the cases where none of the above present a gain over the O(nm) time complexity, we present an algorithmic process which traverses the clique tree, testing each edge for completion.

Our technique, which will be detailed in Section 3, represents each separator S by a "super-vertex", which is the contraction of all the vertices of S. We modify this super-vertex while running through T by adding or removing vertices as we go along, so that the current minimal separator is represented by the current super-vertex. This technique presents a gain because instead of checking each edge inside each separator of H, we just check one super-vertex for being adjacent to a fill edge. Thus, when separator S is detected as being non-complete, we do not know exactly which edges of S are fill edges, but we do not need this information. Our complexity will reside in the number of additions or removals of vertices, and we will see that this number may be small.

We will present and analyze two implementations of our technique :

-When T is traversed from top to bottom, we obtain a complexity of O(n(n+t)), where t is the number of 2-pairs of H, which is in O(n(mf )), where m is the number of edges of complement G of G. -When T is recursively traversed from bottom to top, we obtain a complexity of O(nm 0 ), where m 0 is the number of edges of H which belong to no minimal separator of H. m 0 is at most m and can be considerably smaller. Thus our new approach can do no worse than the classical one, and offers a possibility to obtain a much better time. We will see in our discussions in Section 3 that there are many cases where our complexity is in O(n 2 ), thus offering a gain of a factor of n for dense graphs, which are precisely the graphs for which the cost of triangulation has been recently improved upon in the general case.

The paper is organized as follows : after this introduction, we give few preliminaries in Section 2, then present in detail our new technique in Section 3, before concluding.

Preliminaries

The graphs in this paper are finite, undirected and connected. For a graph G = (V, E), V is the set of vertices, |V | = n and E is the set of edges, |E| = m. For any subset X of V , G(X) denotes the subgraph of G induced by X (for the sake of simplicity, we will often not distinguish between a vertex set and the subgraph it induces). For a graph H, we will sometimes denote by E(H) the vertex set of H. For any vertex v of G, N G (v) denotes the neighborhood of v in G. A set of vertices X is complete or a clique if its vertices are pairwise adjacent.

Separation. In a connected graph G = (V, E), a subset S of V is a separator of G if G(V -S) is disconnected. For any non-adjacent vertices a and b, S is an ab-separator if a and b are in different connected components of G(V -S). S is called a minimal ab-separator if it is an inclusion-minimal ab-separator, and a minimal separator if there is some pair {a, b} such that S is a minimal ab-separator. A 2-pair is a pair {a, b} of non-adjacent vertices such that every path from a to b is of length exactly 2 [START_REF] Hayward | Optimizing weakly triangulated graphs[END_REF]. In a connected graph, {a, b} is a 2-pair iff N (a) ∩ N (b) is a minimal separator [START_REF] Arikati | An efficient algorithm for finding a two-pair, and its applications[END_REF], [START_REF] Spinrad | Algorithms for weakly triangulated graphs[END_REF]. Chordal graphs. A graph is chordal, or triangulated, if it contains no chordless cycle of length ≥ 4. A connected graph is chordal if and only if all its minimal separators are cliques [START_REF] Dirac | On rigid circuit graphs[END_REF]. A chordal graph has less than n minimal separators and less than n maximal cliques [START_REF] Rose | Triangulated graphs and the elimination process[END_REF]. [START_REF] Rose | Algorithmic aspects of vertex elimination on graphs[END_REF]. MCS [START_REF] Tarjan | Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs[END_REF] numbers the vertices of a chordal graph from n to 1. In the numbering π of V obtained, π(x) will denote the number of vertex x, and the upper neighborhood of x is M adj(x) = {y = x|π(y) > π(x)}. A vertex x is called a minimal separator generator (or a generator for short) if M adj(x) is a minimal separator and |M adj(x)| ≤ |M adj(y)|, where π(y) = π(x) + 1 [START_REF] Berry | A simple algorithm to generate the minimal separators of a chordal graph[END_REF].

A chordal graph H = (V, E + F ) is called a triangulation of non-chordal graph G = (V, E). The set F of edges, of size |F | = f , is called a fill. A triangulation H is minimal if ∀e ∈ F , (V, E + F -{e}) is not chordal
3 Using the clique tree to find the clique minimal separators

We will now explain our new process in detail. We will first consider the properties of the clique tree we construct, then explain our processes for running through the tree, and give a detailed complexity analysis for each. We will the compare the merits of the two approaches, in the general case as well as for some special graph classes.

Building the clique tree

We will use the clique tree T induced by an MCS execution of the given minimal triangulation H, as detailed in [START_REF] Blair | An introduction to chordal graphs and clique trees[END_REF]. This costs O(m + f ) time. As is the case for any clique tree, for each vertex x of H, the nodes of T containing x define a subtree. We will label each node with the vertex (or vertices) for which it is the root of the corresponding subtree. Each node K i of T thus bears as label a different vertex (or set of vertices). The vertices of a label bear consecutive numbers. Each of the these labels contain exactly one minimal separator generator, which is its vertex of largest number, call it x ; M adj(x) is exactly equal to the minimal separator stemming up from K i .

When the algorithm from [START_REF] Blair | An introduction to chordal graphs and clique trees[END_REF] for constructing the clique tree is used, the labels define a heap structure : for each subtree with root K i , the label of K i contains vertices whose numbers are larger than that of any of the vertices of the other labels of the subtree.

Example 3.1 Figure 2 shows a chordal graph H whose vertices are numbered by an execution of MCS. The minimal separator generators are marked by a star. Figure 3 shows the corresponding clique tree with its labels (which are framed), organized into a heap. Clique {11, 8, 6, 5} has label {6, 5}. The vertex of highest number of {6, 5} is 6, a minimal separator generator. M adj(6) = {11, 8}, which is the minimal separator stemming up from clique {11, 8, 6, 5}.

As mentioned above, we will search T in two different ways : by a Top-to-bottom and by a recursive Bottom-to-top approach, with a different complexity analysis for each.

Our technique in both cases is the same. In order to test a separator S for completeness, we will represent S in a global fashion by a super-vertex of G(F ), which is the contraction of all the vertices of S (the neighbors of this super-vertex will be the union of all the neighborhoods of the vertices of S).

Our algorithms start with a super-vertex representing either the root or a leaf of T , and moves this super-vertex through T , modifying it by adding or removing vertices of V in order to represent the current minimal separator.

Addition and removal of nodes to a super-vertex X are defined as follows, using as base the matrix M of G(F ) :

-Adding vertex x to X : for each y such that xy ∈ F , increment (y, X) by one.

-Removing vertex x from X : for each y such that xy ∈ F , decrease (y, X) by one. Note that the multiplicity of each edge of X is stored in the corresponding entry of the modified matrix of G(F ).

Each addition or removal of one vertex costs n time. To compute the super-vertices of an initial clique K i , start with any vertex v of K i , and add the other vertices one by one using the process above.

A minimal separator S = {s 1 , s 2 , ..., s k } represented by super-vertex X is tested for completeness by simply checking whether all s i X entries the matrix of G(F ) are null. If they are, then S is memorized as a clique minimal separator of G. If at least one value is non-zero, then S is memorized as a non-clique separator.

We will now describe and analyze the complexity for the two approaches.

The Top-to-bottom approach

For a Top-to-bottom approach, we initialize as super-vertex the root of T (which contains the vertex numbered as n by MCS), and then move through T in a Breadth-First fashion, each separator's super-vertex being computed from that of its father in T .

Example 3.2 On the clique tree of Figure 3, a super-vertex representing vertex set {12, 11, 10, 9} is created as initialization, then 12 is removed to create minimal separator {11, 10, 9}, which is tested for completeness, and so forth.

Complexity of the Top-to-bottom approach.

Initialization : Initializing the root clique K costs (n -1).|K|, which is in O(n 2 ).

Vertex additions : Each vertex x of V will be added at most once, when the root of the subtree of x is reached, so the global cost is less than n 2 . (Note that some vertices are never added, for instance the ones labeling the cliques which are leaves of T ).

Vertex removals : Consider vertex x being removed from clique K i to describe the minimal separator K i ∩ K j between K i and the child clique K j of K i . Let y be the generator from the label of K j . Because of the heap structure of T , y does not appear higher than K j in T , so y is not adjacent to x. x and y are at distance 2 in H, since for any s ∈ K i ∩ K j , s is adjacent to both x and y, so there is a chordless path (x, s, y) in H. It is easy to see that N H (x) ∩ N H (y) = K i ∩ K j = M adj(y) = S. Thus {x, y} form a 2-pair. Each vertex removal is associated with a unique 2-pair {x, y} such that π(x) > π(y) and y is a minimal separator generator.

Example 3.3 On the clique tree of Figure 3, vertex 8 is removed when moving from clique {11, 8, 6, 5} to clique {6, 5, 4} ; this removal is associated with the 2-pair {8, 4} ; N H (8) ∪ N H (4) = {6, 5}. 8 and 4 are at distance 2 in H.

It is easy to compute the exact number of vertex removals in O(n 2 ) by traversing T and computing, for each edge

(K i , K j ), K i -(K i ∩ K j ).
This number of vertex removals is bounded by the number t of 2-pairs of H, which is bounded by

|E(H 2 )|-|E(H)|, with |E(H)| = m+f , so by |E(H 2 )|-m-f . |E(H 2 )|-|E(H)| is in turn bounded by |E(H)|, which is m -f .
Thus the Top-to-bottom approach runs in time O(n(n

+ t)), which is in O(n(|E(H 2 )| - m -f )), which in turn is in O(n(m -f )).

The recursive approach

Our second approach is recursive. The initial call is on the root node of T . Each node K i is recursively processed as follows :

-If K i is a leaf, then create the super-vertex corresponding to the separator S i stemming up towards the father clique, and test S i for completion. -If K i is not a leaf, then procure (by a recursive call on each child) the super-vertices of the minimal separators stemming towards the children of K i . Take any one, and compare it with a second one, add any missing vertices to create a larger super-vertex, and so on, until all the children of K i in T have been merged into a new supervertex, add any vertices which are in K i but in none of K i 's children. A super-vertex representing K i is obtained. Modify K i so that it represents the separator S i between K i and the father of K i , and test S for completeness.

Example 3.4 On the clique tree of Figure 3, processing the clique labeled {6, 5} will require adding 6 to child super-vertex {8, 5}, since {8, 5} -{6, 5} = {6}. Vertex 11 is then added to obtain the entire clique {11, 8, 6, 5}. Minimal separator {11, 8} is then obtained from clique {11, 8, 6, 5} by removing vertices 6 and 5.

In order to accomplish our complexity analysis, we will define the graph parameter m 0 which we introduce : Definition 3.5 Let G = (V, E) be a graph, let H = (V, E + F ) be a minimal triangulation of G. We define the desaturated graph of H, denoted by H 0 , as the graph obtained from H by removing all the edges which have both endpoints inside some common minimal separator S of H. We denote by m 0 the number of edges of H 0 .

H 0 can easily be computed in n α time using the square of the bipartite graph between the minimal separators and the vertices. Each edge of H 0 is also an edge of G, as any minimal triangulation is obtained by making some minimal separators of G into cliques which will be the minimal separators of H [START_REF] Parra | Characterizations and Algorithmic Applications of Chordal Graph Embeddings[END_REF], [START_REF] Berry | A wide-range algorithm for minimal triangulation from an arbitrary ordering[END_REF]. Thus m 0 m. When the minimal separators of H are large, m 0 can be much smaller than m.

Complexity of the recursive approach. Initialization : Let S = {s 1 , s 2 , ..., s k } be a separator stemming up from a leaf K of T , and let x be a vertex from the label of T . All the pairs xs i , s i ∈ S, belong to E(H), since they are together in clique K, but they belong to no minimal separator, since no other clique can contain both x and s i , because of the heap structure of T . Thus each addition step of a vertex s i during the initialization is associated with a unique edge xs i of H 0 .

Vertex removals : Each vertex x is removed at most once, when the root of the subtree of x is reached, thus the vertex removals cost O(n 2 ) globally.

Vertex additions : A vertex addition step is necessary when vertex x appears in clique K i but appears in of the child cliques of K i . We can also bound the number of vertex additions using m 0 : let y be a vertex from the label of K i : xy is an edge of H (since x and y are together in clique K i ), but xy belongs to no minimal separator, since x and y can be in no other clique together.

Globally, the recursive approach thus requires O(nm 0 ) time.

Note that, aside from the initialization step, the vertex addition steps in the recursive approach form a subset of the vertex removal steps in the Top-to-bottom approach. Thus it is not necessary to compute m 0 to decide if this approach is better than the other one : the cost of the initialization is the prevailing factor, which can be evaluated in O(n).

Example 3.7 In our example from Figure 3, in the recursive approach, 11 is added to form clique {11, 8, 6, 5} from its children {8, 5, 3} and {6, 5, 4} ; this corresponds to 2 vertex removals in the Top-to-bottom approach. 8, on the other hand, need not be added at this step by the recursive approach, since 8 already appears in child clique {8, 5, 3}.

The merits of the Top-to-bottom approach versus the recursive approach

As mentioned in our complexity analysis, aside from the initialization step, the recursive approach does only a subset of the steps required by the Top-to-bottom approach. Therefore, the only drawback of the recursive approach is the initialization step. This is costly only when the minimal separators which correspond to the leaves of T present a large vertex overlap. This overlap is easily tested when building the clique tree.

In any case, m 0 is at most m, and may be much smaller, so using the recursive approach cannot be worse than using the classical method.

When initializing the leaves is costly, however, or when m 0 is of order m, the Top-tobottom approach may be very interesting. This is the case when the number of 2-pairs of H is small. It is also interesting that with this approach, the final tree T ′ can be computed with a single pass of MCS ; as a result, the Top-to-bottom approach uses only local information, and may be useful for handling very large graphs.

As discussed previously, the exact cost of each approach can be forecast in O(n 2 ) while building the clique tree, so the user can choose the best approach at no extra cost.

Let us finish this section by discussing some special cases.

-When input graph G is of bounded treewidth, the size of the maximal cliques of H, and thus also the sizes of the minimal separators, are bounded. In the recursive approach, the initialization will cost O(n 2 ). The number of vertex additions is at most k per clique, so will cost O(kn) per clique, so overall the vertex additions will cost. When G is f bounded treewidth, the recursive approach will thus run in O(n 2 ). -Applied to AT-free graphs, both our approaches will cost O(n 2 ), since the minimal triangulation is an interval graph [START_REF] Moehring | Triangulating graphs without asteroidal triples[END_REF] and thus the clique tree is a path : each vertex will be added and removed at most once. -For graphs where m is small, [START_REF] Mezzini | Simple algorithms for minimal triangulation of a graph and backward selection of a decomposable markov network[END_REF] recently proposed a minimal triangulation algorithm in O(m(δ 2 +m)), where δ is the maximum degree of G, so the Top-to-bottom approach nicely complements this work. -When the number of leaves of T is bounded by k, the Top-to-bottom approach will run in O(n 2 ), as for a given vertex x, the number of vertex removals is less than k, so each vertex will cost O(kn). We conjecture that there are many other graph classes where our algorithms will offer an O(n 2 ) time.

Conclusion

We present a new technique to compute the atoms of the clique minimal separator decomposition of a graph when a minimal triangulation is given as input, using a clique tree.

Contrary to the classical methods, our approach does not require graph searches, but the clique tree is searched instead, which is much more efficient.

We introduce a new graph parameter, m 0 , which is less than m, which we use to bound in nm 0 time our recursive approach.

Our Top-to-bottom approach is in O(n(n + t)), where t is the number of 2-pairs of H.

In many cases, our algorithms run in O(n 2 ) time, thus improving by a factor of n for dense graphs the pre-existing O(nm) time method for computing the atoms.

Fig. 1 -

 1 Fig. 1 -A non-chordal graph G.
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 2 Fig. 2 -Chordal graph H, a minimal triangulation of graph G from Figure 1, with an MCS numbering. The minimal separator generators are marked by a star.
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 3 Fig.3-The clique tree T of graph H from Figure2, generated by the algorithm from[START_REF] Blair | An introduction to chordal graphs and clique trees[END_REF]. The label of each node is framed. The minimal separator generators are marked by a star.
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 4 Fig. 4 -The atom tree T ′ of graph G from Figure 1, computed from clique tree T from Figure 3.
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 36 Figure 5 gives the desaturated graph H 0 of chordal graph H from Figure 2.
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 5 Fig. 5 -The desaturated graph H 0 of H.
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