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Sharing Water from many Rivers

Yann Rébillé* Lionel Richefort!

Abstract

This paper studies the problem of non-cooperative water allocation
between heterogeneous communities embodied in an acyclic network of
water sources. The extraction activity of a community has a negative
impact on the extraction activity of its direct successors: it reduces
the intensity of water flows entering their source, and thus, increase
their convex costs of water extraction. We show that the equilibrium
profile is unique and may be expressed through complementarity and
substitutability effects which characterize the incoming centrality of
a community in the network of sources. For each community, the ef-
ficient activity is a combination of two opposite network effects, the
incoming centrality and the outcoming centrality. Then, the optimal
tax rate imposed to a community depends on the network structure,
and reflects both the marginal damages and the marginal benefits this
community delivers to other communities at the efficient extraction
activity profile.

Keywords: flowing water, network of sources, equilibrium effects, effi-
ciency effects, optimal tax.
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1 Introduction

Consider a set of communities naturally distributed across a river basin com-
posed of many rivers. Each community extracts water from its closest river,
and the flowing nature of water determines unidirectional dependency among
communities. In general, the most disadvantaged participants would be the
ones located at the downstream tails of rivers. In river basins, however, con-
vergence of flow may occur in certain locations, and since water flows may
have different intensities, the negative effects for downstream participants
may be counterbalanced. How to achieve the efficient allocation of water if
communities do not cooperate? Do the structure and intensity of water flows
between communities matter?

In the classic common property resource dilemma described by Gordon
(1954) and Hardin (1960), participants face reciprocal externalities, and there
is often a feasible state, based on institutional agreements, that make all
the participants and the ecosystem better off (Ostrom, 1990; Ostrom et al.,
1994). This cooperative solution, built upon the Coase theorem, supposes
that property rights are well-defined. In case of local common property re-
sources, property rights should be exercised collectively by members of small
communities (Seabright, 1993). When dealing with flowing water, however,
rights owned by the agents are difficult to determine.

Studies on cooperative sharing of water from a river refer to the theory
of Absolute Territorial Sovereignity and the theory of Unlimited Territorial
Integrity, to define property rights. Under quasi-linear preferences over water
and money, the unique distribution that improves individual and social wel-
fare, the Downstream Incremental Distribution, has been found by Ambec
and Sprumont (2002). When the river caries pollutants to participants, Ni
and Wang (2007) have established two equivalent methods to divide fairly the



total river-polluting responsability among the polluters: the Local Respons-
ability Sharing and the Upstream Equal Sharing. More recent contributions
include Ambec (2008), Ambec and Ehlers (2008) and Wang (2011).

From a non-cooperative perspective, when there are riparian water rights,
the optimal tax plan to achieve the efficient allocation of water may involve
different tax rates at different sites throughout the river (Janmaat, 2005).
One unifying limit of these approaches, however, is to consider one single
river. This present paper deals with the problem of sharing water from
many connected rivers. For this purpose, we study a network game!, in
which players have their own source of water and extract the resource indi-
vidualistically.

Specifically, there is a finite number of heterogeneous communities embod-
ied in a network of water sources. At each source, one or several hydrological
flows of a certain intensity may impact the effort necessary to extract a given
amount of water. More precisely, the extraction activity of a community
has a negative impact on the extraction activity of its direct successors: it
reduces the intensity of water flows entering their source, and thus, increase
their costs of water extraction. Communities benefit only from their extrac-
tion activity, but their marginal costs, strictly positive and increasing in the
activity of water extraction, depend both on their own activity and on the
activity of their direct predecessors.

Related works include Tlkili¢ (2010), who studies a water extraction game
in bipartite networks, when there are multiples sources, and the users exploit
the sources freely. He characterizes the unique equilibrium in terms of the

centrality of an agent in the network, as well as the efficient allocation of

1See Jackson (2008) for an overview of social networks and economic application with
respect to how they influence social and economic activity, and how they can be modeled
and analyzed.



water. In his paper, links connect participants (cities) with sources. Two
participants interact if they share a source, and each link reflects a quantity
of extracted water. Our approach is different: there are property rights over
water sources and links connect sources directly. Two participants interact if
their sources are hydrologically dependent, and each link denotes an intensity
of hydrological influence.

This work is also related to the literature on network games with strategic
substitutes (Bramoullé and Kranton, 2007; Ballester and Calvé-Armengol,
2010). In this paper, we chose to model the activity of water extraction
from many connected rivers as a means of investigating weighted, directed
and acyclic network games, when a community’s extraction activity is an
imperfect substitute of the activities of its predecessors, and when players
have heterogeneous preferences. Our results allow to characterize in terms of
the Bonacich centrality vector, a widely used network centrality measure?,
the optimal tax plan to achieve the efficient allocation of water between the
communities.

The remainder of the paper is organized as follows. The network of
sources is introduced in Section 2. Section 3 defines and studies the game
played by the communities. Section 4 characterizes the efficient profile. Sec-

tion 5 discusses the results. The main proofs are relegated to the appendix.

2 The network of sources

Matrices are represented as bold upper case and vectors as bold lower case.
All vectors are column vectors. The transpose of a matrix M is denoted M7 .

Let I stands for the identity matrix.

2For its use in network games, see, e.g., Ballester et al. (2006); Ballester and Calvo-
Armengol (2009), Calvé-Armengol et al. (2009) or Tlkilig (2010).



We represent the network formed by the water sources as a graph. The
basic notation, some of which we borrow from Godsil and Royle (2001), is as
follows.

A weighted directed graph G consists of a vertex set V(G) = {1,...,N}
formed by water sources, an arc set A(G) formed by flows of hydrological
influence, where a flow is an ordered pair of distinct sources, and a mapping
from the set of flows to a set of intensities I(A). We will use ij to denote
a flow directed from source i to j, and w;; its associated intensity. If ij is a
flow, then we say that source j is a successor of source i, or that source 7 is
a predecessor of source j.

The weighted adjacency matriz Q(G) of a weighted directed graph G
is the non-negative matrix with rows and columns indexed by the sources,
such that the ¢j-entry of € is equal to w;; if ¢j € A, and 0 otherwise. The
unweighted adjacency matric M(G) of a weighted directed graph G is the
Boolean matrix with rows and columns indexed by the sources, such that the
ij-entry of M is equal to 1 if ij € A, and 0 otherwise.

As water flows from a river, because of gravity, always go from up to down,
we assume that flows of hydrological influence may form directed paths, but
not directed cycles. A directed path of length r is a sequence of r+ 1 distinct
sources connected by flows corresponding to the order of the sources in the
sequence. A directed cycle is a directed path whose first and last sources are
the same. A weighted directed acyclic graph (WDAG) is a weighted directed
graph with no directed cycles.

The wDAG G = (V, A, I(A)) with weighted adjacency matrix € and

unweighted adjacency matrix M is called the network of sources.



3 The game played by the communities

There are N communities, and the set of communities is N' = {1,...,N}.
Communities are embodied in a network of sources, and each community
extracts water from its own single source. For all community ¢, let a; denote
the extraction activity, ¢;(.) an increasing twice differentiable strictly convex
cost function, and p; the strictly positive benefit parameter. Letting a denote
the N-vector of extraction activities, the maximum utility, U;, can then be

determined by solving, for all 7,

Ui(Q,a) = Max p;a; — gi(a; + Z wjia;)-

Jiji

The strategy of utility-maximizing water extraction activities involves a
simultaneous-move game. For all community, utility maximization occurs
where the marginal benefit of extraction is equal to its marginal cost. Let a}
denote the value of extraction activity such that p; = ¢i(a}). We call a} the
equilibrium peak of community i. We note G(£2,a*) the game played by the
communities, where a* is the N-vector of equilibrium peaks.

We suppose that, for all 4, ¢/(0) < p; < ¢.(c0). As shown by the following
figure, this assumption guarantees, for all community, the existence of a posi-
tive and finite equilibrium peak. Note that the marginal utility is decreasing.
It is positive until a certain value of extraction activity, and becomes negative
above this point.

Given €, the best response a; of community i to a € (R )" is such that,

k : *
aj = > wiay, i Y7 wjia; <af.
i = jiai jai

0, otherwise.
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Figure 1: Utility-maximization of water extraction activity

For all community ¢, the activity of water extraction is positive as long
as >y, it Wiity 18 less than a;. If the impact of its predecessors’ extraction
activity is more than a}, the community extracts no water. If the impact is
less than a}, the community extracts water up to the point where the value
of extraction activity equals a;. It follows that a water extraction profile &

€ (Ry)" is a Nash equilibrium of the game G(€2, a*) if, and only if, for all 4,

a; = max{0,a; — Z WiiG; }-
JijFi
This class of Nash equilibria has been studied by several authors. When
networks are unweighted and undirected, and when individual preferences
are homogeneous, Bramoullé and Kranton (2007) have shown that multiple
equilibria is the rule. When networks are weighted and when individuals have
heterogeneous preferences, Ballester and Calvo-Armengol (2010) have found

that there is a unique Nash equilibrium if the spectral radius of the weighted



adjacency matrix is low enough. This condition suffices to guarantee that
best response functions are contraction mappings.

In this present paper, we design a step-by-step proof to show that the
game played by the communities always admits a unique Nash equilibrium.
Our proof is constructive, since it makes the equilibrium profile to appear
naturally. The algorithm is formally established in the Appendix; the intu-
ition is as follows.

It is known that every directed acyclic graph has at least one vertex with
no in-coming arcs and one vertex with no out-coming arcs.®> Thus, every
network game G(€2,a*) contains at least one community with no predecessor.
We refer to these participants as the source players of rank 1 and their set is
denoted (. They have a unique best response which is to extract an amount
of water equal to their equilibrium peak. That is, for all 1 € (7,

a; = a;.

Therefore, the equilibrium peak of the other players is modified, i.e., for all
j ¢ Cl)

* * 3 * *
a;y— Y wiay, ifaj > Y wya;.
a: = 1eCh ieCy

0, otherwise.

and therefore,

A 1 ~
a; = max{0,a; — E Wil -
k¢Ch

Next, consider the subgame obtained after deletion of all the source play-
ers of rank 1 and their out-coming flows. Since any subgraph of an acyclic
graph is also acyclic, a new set of source players appears. Let us call them

the source players of rank 2. Their set is denoted C5. Since they are also

3See, e.g., Godsil and Royle (2001, p. 337).



source players of rank 1 in this subgame, they have a unique best response
which is to extract an amount of water equal to their modified equilibrium

peak. That is, for all j € Cj,

A~ * ~ _ 1
a; = max{0, a; — E w;jG;} = aj.
oy

Therefore, the equilibrium peak of the other players is modified again, i.e.,

for all k& ¢ Cl U CQ,

1 11 1
, ap — > wiraj, ifap > Y7 wjraj.
a/k, - jEC2 j€C2

0, otherwise.

and it follows that

a, = max{0, a; — Z wikdy
1¢C1UC
Then, repeat the same procedure until the last set of source players is
considered. If the length of the longest directed path in G is p, the procedure
is repeated p + 1 times. Let us denote by C,1; the last set of source players.
Since they are also source players of rank 1 in the final subgame, they have
a unique best response which is to play their p-times modified equilibrium
peak. Therefore, each player has a unique best response to his predecessors’

action, and we may state the following result.
Theorem 1. The network game G(2,a*) admits a unique Nash equilibrium.

It should be noted that a more “traditional” proof of Theorem 1, based on

the spectral radius of the weighted adjacency matrix, may also be established.

Remark 1. By Theorem 1 of Nicholson (1975, p. 186), a graph G is acyclic if,



and only if, its unweighted adjacency matrix M(G) is nilpotent. Therefore,
its weighted adjacency matrix Q(G) is also nilpotent by Lemma Al (see the
Appendix). A square matrix is nilpotent if, and only if, all of its eigenvalues
are zero. Hence, a graph G is acyclic if, and only if, the spectral radius of its
weighted adjacency matrix is equal to zero. By Proposition 2 of Ballester and
Calvé-Armengol (2010, p. 403), we conclude that the network game G(£2, a*)

admits a unique Nash equilibrium.
Let (Q")~Y(p) = ((¢,) " (pr))x- Applying the same induction reasoning as

in Theorem 1, we obtain the following result.

Theorem 2. Let G(€2,a*) be a network game and p the length of the longest
directed path in Q. If for all v, a} — Zj:#i wj;a; > 0, the Nash equilibrium

profile is
lp/2] [p/2]
A=a’ + Z (QT)Zkza* . Z (QT)Qk—la_*7
k=1 k=1
where

a’ = (Q)'(p).

The first summation denotes the total weight of even directed paths that
end at the corresponding vertex in G, and the second summation denotes
the total weight of odd directed paths that end at it, where directed paths
that start from j are weighted by a}.

The first sum tells that the equilibrium extraction activity of a community
is positively related with the weight of even length directed paths that finish
at it. The water flows on links which have an odd number of sources between
them are strategic complements. In contrast, the negative sign on the second
summation means the equilibrium extraction activity of a community is neg-
atively related with the weight of odd length directed paths that finish at it.

The water flows on links which have an even number of sources are strategic

10



substitutes. These incoming “substitutability-complementarity ” effects are

given by
Lp/2] [p/2]
E — Z (QT)Qk _ Z (QT)2k—1,
k=1 k=1

which may be called the equilibrium effects matrix. Related results include
Ballester and Calvo-Armengol (2010) and Tlkili¢ (2010).

To conclude this section, it should be noted that Theorem 2 character-
izes the equilibrium profile in terms of the centrality of a community in the

network of sources, and is valid for all kind of pure-strategy Nash equilibria.

Remark 2. Let A be the (non-negative) weighted adjacency matrix of a
wDAG in which z is the length of the longest directed path. By Lemma
A1, A is nilpotent and we have the following algebraic identity,

ZZ:M = I+iA’*’ —(I-A)"!
k=0 k=1

which shows that I — A is invertible and has a non-negative inverse. Let

e >> 0 be a weight vector. Following Bonacich (1987), the vector
bt(Ae)=(I—-A)le=e+ ZAke
k=1

is called the outcoming weighted Bonacich centrality measure applied to e.
Its entry b} denotes the total weight of all directed paths in G that start
from 4, where all directed paths that end at j are weighted by e;. Therefore,
the vector

b (Ae)=(I-A")le=e+ zz: (AT)re

k=1
is called the incoming weighted Bonacich centrality measure applied to e. Its

entry b, denotes the total weight of all directed paths in G that end at i,

11



where all directed paths that start from j are weighted by e;.
Following these definitions, as well as the definition of series where terms

alternate signs, we may define the vector

bi(Ae)=(I+A)le=e+> (—1)"A’e,
k=1

that is,
1z/2] [2/2]
bl (A e) =e+ Z APe— " A% le,
k=1

as the alternate outcoming weighted Bonacich centrality measure applied to

e, and the vector

bu(Ae) = (T+AT) e =e+ > (~DH(AT)e,

that is,
[=/2] [2/2]
b (Ae)=e+ > (AT)*e— Y (AT)* e,
k=1 k=1

as the alternate incoming weighted Bonacich centrality measure* applied to e.
It follows that the equilibrium profile of game G(2,a*) may be expressed in
terms of the alternate incoming weighted Bonacich centrality vector applied

to the vector of equilibrium peaks, i.e.,
a= balt(ﬂ a )

Remark 3. If for some 7, a} —Zj:j# wjia; < 0, these players are “inactive” at
equilibrium, i.e., a@; = 0. Let L = {l : a; > 0} be the set of “active” players.
Theorem 2 may be applied to the subgame G(€2;,a*;) where ©; and a*j,

“Note that b}, (A,e) = bt(—A,e) and b, (A,e) = b~ (—A,e).

12



denote, respectively, the new network and the new vector of equilibrium

peaks obtained after deletion of all the inactive players.

4 The efficient allocation

To characterize the efficient allocation of water extraction activities, we take
a standard utilitarian approach. Given the structure and intensities of hy-
drological influences €2, the maximum social welfare, W, can be determined

by solving,
W(Q,a) = Max Z [pia; — qi(a; + Z wjia;)].
i Juji

We say a profile is efficient for a given network of sources if, and only if,
there is no other profile that leads to a strictly higher social welfare. Given

a network of source €2, the efficient profile® a € (R, )" satisfies, for all i,

a; >0 < p; — q;(Z wji;) > Z wikq (@ + Z Wikdy)-

jijFi k:k#i L:l#k i

Then, the first order conditions for efficiency are

if CNLZ' > 0, then Di — qg(dz + Z wjidj) = Z wikq;(ék + Z wlk&l).

YR k:k#1 l:l#£k
if EL, = 0, then Pi — q{(&, + Z Wjiglj) S Z wquﬁc(&k -+ Z wlkdl).
YR k:k#£i L:l#k

If all communities have a positive extraction activity, i.e., for all ¢, a; > 0,
the efficient extraction activity of a community may be expressed in terms

of its centrality in the original network. The proof is in the Appendix and

5The efficient profile is unique because the maximum social welfare W is a strictly
concave function.
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the intuition is as follows.

Since every directed acyclic graph has at least one vertex with no out-
coming arcs, every network game G(€2,a*) contains at least one community
with no successor. We refer to these participants as the sink players of rank
1 and their set is noted D;. For all i € Dy, the efficient extraction activity
verifies

pi— i@ + Y wjid;) =0,
jiji
that is,
a; + Z Wity = (q7) " (pi)-

Jij#i
Next, consider the subgame obtained after deletion of all the sink players
of rank 1 and their in-coming flows. Since any subgraph of an acyclic graph is
also acyclic, a new set of sink players appears. Let call them the sink players
of rank 2. Their set is denoted Dy. For all k € D,, the efficient extraction

activity verifies

Pr — g (ar + Z Wikly) = Z Wiy (@ + Z Wjidj) = Z Wi -

L:1£k i€D, jiji i€Dy

that is,

ay + Z wirty = (q) " (pr — Z wripi) = (¢) " (),

Lil#k ieDy
where pr. = pr. — zieDl wr;p; denote player k’s efficient marginal benefit.
Then, repeat the same procedure until the last set of sink players is
considered. If the length of the longest directed path in G is p, the procedure
is repeated p + 1 times. We show in the Appendix that, for all 7,

G+ Y wjid; = (q)) =Y wadr) = (¢) 71 (B)-

jiji kik#i

14



Therefore, the N-vector of efficient marginal benefits p may be expressed as
a function of both € and p.

Let af = (¢))~Y(p;) denote player i’s efficient peak. Since for all 4, a; > 0,
it appears that,

~ ~x ~
a; = a;, — E wj,-aj,

JiyFi
which results in a system of N linear equations that may be solved by apply-
ing the induction reasoning used for the proof of Theorem 2. Consider the
sets of source players Cy,Cy,...,Cpi1 defined in the previous section. For

all 1 € Cy,

for all j € Cy,

aj:a

and so on until the last set of source players ), whose efficient extraction
activity is equal to their p-times modified efficient peak. This leads to the

following result.

Theorem 3. Let G(€2,a*) be a network game and p the length of the longest

directed path in 2. If for all i, af — > wjia; > 0, the efficient profile is

jij
lp/2] (p/2]
a=a"+ (QT)2k5* Z (QT)QIc—lé*7
k=1 k=1
where
lp/2] [p/2]
& =(@Q) P+ p-> ¥ 'p)
k=1 k=1

The equilibrium effect described in the previous section is still present at
efficiency. However, this effect is now counterbalanced by another network

effect contained in a*. The first summation in the expression of a* counts

15



the total weight of even directed directed paths that start from the corre-
sponding vertex in GG, and the second summation counts the total weight of
odd directed paths that start from it, where directed paths that end at j in
G are weighted by p;.

Since for all i, g;(.) is strictly convex, the first sum in a* tells that the effi-
cient extraction activity of a community is positively related with the weight
of even length directed paths that start from it. In contrast, the negative sign
on the second summation means the efficient extraction activity of a commu-
nity is negatively related with the weight of odd length directed paths that
start from it. These outcoming “substitutability-complementarity ” effects

are given by

Eef — QQk o (2219—17
k=1 k=1

which may be called the efficiency effects matrix. Moreover, these effects are
weighted by the marginal costs. For a community, the higher the marginal
costs, the lower the impact of the efficiency effects.

To fix ideas on these results, we study the following example.

Example 1 (Sharing water in a river basin). Consider an hydrological unit
composed of five sources of water s;, i = 1,...,5. There are three “rivers”.
The main one starts from s; and ends at s3. The two other ones are trib-
utaries of the main river. One starts from s; and ends at ss, and the other
one starts from s; and ends at s3. The sources s and s3 are both at the
confluence of the main river with one tributary.

There are five communities and each community extracts water from its
own single source, i.e., the community 7 extracts water from the source s;.
We assume that communities are “price-taker”, so the marginal benefits are

constant and uniform. For all community 7, let p; = 1 and a; denotes the

16
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Figure 2: An hydrological unit with five water sources

water extraction activity. For all community without predecessors, i.e., for

1 = 1,4, 5, the utility function Uj; is given by

We suppose that hydrological influences are more important along the
tributaries than along the main river. Moreover, we assume that communities
being at the confluence of two rivers have lower marginal costs of water
extraction than those whose water source is feed by only one river. For the
community that extracts water from s, i.e., for ¢ = 2, the utility function
U, is given by

1

3 1
Uy = ay — 1(02 + ga1 + §G4)2,

where (1/5)a; denotes the impact from its predecessor along the main river
and (1/3)ay the impact from its predecessor along the tributary. For the
community that extracts water from ss3, i.e., for ¢ = 3, the utility function
Us is given by

1

3 1
U3 = as — Z(ag + SCLQ + §a5)2,

where (1/5)as denotes the impact from its predecessor along the main river

17



and (1/3)as the impact from its predecessor along the tributary.
The weighted adjacency matrix € of the graph that represents the net-

work of sources is

0+ 000
00+ 00
RX=1000 00
0+ 000
\0 0 100

The length of the longest directed path in the graph is p = 2. It follows that

the equilibrium effects matrix is given by

0 0 0 0 0
-+ 0 0 -+ 0

R L
0 0 0 0 0
0 0 0 0

This matrix summarizes the intensity of the hydrological influences between
the sources. In particular, it shows that the community that extracts water
from s3 is positively impacted by both the community that extracts water
from s; and the community that extracts water from ss. This is due to the
fact these communities are two-links-away from each other in the network of
sources and therefore, their extraction activities are strategic complements.

Since for ¢ = 1,4,5, af = 1/2, and for ¢ = 2,3, af = 2/3, the Nash

18



equilibrium profile of the game played by the communities is

% 0.50

JEPTISE o

A= §+2_15x%—%x§+1—15><%—%><% = | 0.42
% 0.50

% 0.50

At equilibrium, U; = Uy = Us = 0.25, Uy =~ 0.07 and Uz =~ 0.09. Clearly, the
most disadvantaged communities, in terms of both water extraction activity
and utility level, are the ones that extract water from sy and s3.

To obtain the efficient profile®, we compute the efficiency effects matrix,

0 -2 +5 00
00 -1 oo
E'=10 0 0 00
0 —5 +% 00
00 -1 oo

Since for i = 1,4,5, (¢)"*(z) = (1/2)z, and for i = 2,3, (¢}) "' (z) = (2/3)x,

the vector of efficient peaks is

1-%+5)x3 i
(1-3)x3 15
= 1x3 =1 3
(1—35+15) %3 e
(1-3) %3 3

6Note that in the example, the sets of source players and the sets of sink players are
not symmetric, i.e., C3 = Dy = {3} but Cy = {2} # Dy = {2,5} and C; = {1,4,5} #
D; ={1,4}.

19



and therefore, the efficient profile of the game played by the communities is

% 0.42

2 _Ix&Z-Iixl 0.33

A= | Bedxmobeieheyoba x| o
u 0.37

% 0.33

At efficiency, disparities of utility levels decrease since U; ~ 0.24, U, ~
0.12, U3 =~ 0.16, Uy = 0.23 and Us =~ 0.22.

At equilibrium, water is over-consumed. However, not all communities
over-consume water. Indeed, there is only one community whose equilibrium
extraction activity is less than its efficient level: the one at the downstream
tail of the main river. The community located at the downstream tail of a
tributary but with successors along the main river, i.e., the community that
extracts water from sy, has a lower efficient activity than its equilibrium level.
However, its utility level is greater at efficiency, because all of its predecessors
have a lower extraction activity.

In this example, to achieve the efficient allocation of water, the com-
munities without predecessors should decrease their equilibrium extraction
activity and renounce to some benefits. Then, the other communities would
get more benefits. Moreover, the community without successors should be

the only one to increase its equilibrium extraction activity.

To conclude this section, it should be noted that assuming a positive
efficient profile implies a positive vector of efficient marginal benefits, and
that Theorem 3 characterizes the efficient profile in terms of the centrality
of a community in the network of sources and is valid for all kind of efficient

profile.
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Remark 4. For all i,

a; = (q;)" (i) — Z wjit; > 0= p; = p; — Z wijp; > 0.
JijFi JijFi
Remark 5. Following the definitions of the alternate weighted Bonacich cen-
trality measures (incoming and outcoming) provided at Remark 2, we may
express the efficient profile in terms of the alternate incoming weighted
Bonacich centrality vector applied to the vector of efficient peaks, which may
itself be expressed in terms of the alternate outcoming weighted Bonacich

centrality vector applied to the vector of marginal benefits, i.e.,
a=b,,(Q,a") = b, (2,(Q) ' [by, (2, p))).

Remark 6. If for some i, (q;)~"(pi) — D, 4 wWsi@; < 0, these players are
“inactive” at efficiency, i.e., @; = 0. The inactivity of a player may come
from two sources: one resulting from the calculation of the efficient peaks, and
the other resulting from the calculation of the efficient extraction activities.
Let S = {s:al > 0} be the set of players with positive efficient peaks and
T = {t:a; > 0} the set of “active” players. The vector of efficient peaks
may be calculated from the new network €25 obtained after deletion of all the
players with non-positive efficient marginal benefits. Let a° be the resulting
vector of efficient peaks. Theorem 3 may then be applied to the subgame
G(Qr,a%;) where Q1 and a7 denote, respectively, the new network and
the new vector of efficient peaks obtained after deletion of all the inactive

players.
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5 Discussion

The optimal tax plan to achieve the efficient allocation of water involves
different tax rates at each source of water throughout the network of sources.

Following Theorem 3, if for all 7, a; > 0, the optimal tax plan of game

G(Q,a") is

[p/2] Lp/2]
= [Z Q2k—1 _ Z QZk]p,
k=1 k=1
or equivalently,
T = —Ep.

Therefore, the optimal tax rate of a community is positively related with the
weight of odd length directed paths that start at it, and negatively related
with the weight of even length directed paths that start at it, where directed
paths that end at j in G' are weighted by p;. The optimal tax plan is the
opposite of the efficiency effect matrix, weighted by the vector of marginal
benefits. For a community, the highest its efficiency effects, the lowest its
optimal tax rate.

Suppose there is a social planner who knows the game G(2, a*) perfectly,
and who wants to encourage communities to play the efficient extraction ac-
tivity profile without decreasing the utility levels. The social planner may
implement the optimal tax plan 7 and then, redistribute the tax revenue
via direct transfer payments. The implementation of the optimal tax policy
will encourage communities to play the efficient profile, and the implemen-
tation of lump sum subsidies will keep the utilities efficient. The strategy of
utility-maximizing water extraction activities involves a new simultaneous-
move game.

Let 7; be the i-entry of the tax vector. The maximum utility may be

22



determined by solving, for all ¢,
(jvz(ﬂva) = Max p;a; — gi(a; + Z wjia;) + 7i(a; — a;)
JuF

where a; is given, since it is known by the social planner. It follows that a
water extraction profile & € (IRy)Y is a Nash equilibrium of the new game

played by the communities if, and only if, for all ¢,

di = HI&X{O, d;k — Z wjidj}~

J:gFi

where a; = (¢/) ' (p;—m:). Following Theorem 2, if for all ¢, a; — > wja; > 0,

JijF
the Nash equilibrium profile is
lp/2] [p/2]
E=[I+ ) (@)= (@) @) (p-)
k=1 k=1

where p is the length of the longest directed path in 2. It follows that

lp/2] [p/2] lp/2] [p/2]
d=[1+ ) (@)% = 3 (@) @) I+ D 0 - S 0 p),
k=1 k=1 k=1 k=1

and therefore, a = a.

The optimal tax plan reflects the marginal damages a community inflicts
on other communities at the efficient extraction activity profile. In that sense,
the optimal tax plan may be seen as a Pigouvian tax plan. However, since
the network game played by the communities also involve complementarities
for players who are two-links-away from each other in the network of sources,
the optimal tax plan also reflects the marginal benefits a community brings

to other communities.
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The efficient utility levels are achieved thanks to the redistribution of the

revenue generated by the optimal tax plan. That is, for all 4,

UZ(Q7 a) = pzél - Q'L(éz + Ej:j;éi wjiéj) + 7}(5% — él)
= il = Q{8+ 20 wjitly) + i@ — @)
= pid; — qi(a; + ijj# wjidy )
To conclude this paper, we illustrate these results by computing the op-

timal tax plan and the vector of lump sum subsidies for the game studied at

Example 1.

Example 2 (Example 1 continued). The i-entry of the vector of lump sum
subsidies s is the product between the optimal tax rate 7; and the efficient

extraction activity a;. Since for all ¢, p; = 1, we obtain

0.16 0.07
0.20 0.07
T~ | 0.00 and s~ | 0.00
0.27 0.10
0.33 0.11

The highest tax rates are imposed to the communities located at the up-
stream tail of the tributaries, because this communities deliver important
marginal damages and few marginal benefits to other communities. For
instance, the tax rate of the community that extracts water from ss only
reflects the marginal damage inflicted on the community that exploits ss.
The highest transfer payments are distributed to the communities without

predecessors because these communities do not benefit from the changes in
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water extraction activity by other communities. Their subsidy only reflects
the decrease of their utility level through the decrease of their own water
extraction activity. Finally, since the community that exploits s3 has no

successors, this community is not taxed and therefore not subsidized.

These results create space for further research. We list three useful direc-
tions. Firstly, the intuition that our findings also apply to cyclic networks,
provided that the spectral radius of the weighted adjacency matrix is suf-
ficiently low, needs to be formally studied. Secondly, the optimal tax plan
designed in this paper raises issues as to the how water rights might be de-
fined. Thirdly, several refinements of the model could be undertaken. For
instance, the availability of water resources could be constrained, at the in-
dividual level and/or at the system level. Another extension refers to the
fact that participants could exploit several water sources, and share some of

them with other participants.
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6 Appendix

6.1 Proof of Theorem 1

Algorithm Nash equilibrium in wDAG (Data: Q, a*; Result: &)
1: S(—{iiﬁ_iZO}
2: T N\ S
3: while S # () do

4: for all i € S do

5: a; < CL;§<

6: for all j € T'do

7: a}'f —a; — wi;Q;

8: if a7 <0 then > No negative activity
9: CL;f 0

10: end if

11: end for

12: end for

13: Q<+ Qpyr > The graph is reduced
14: a* < ay

15: S+ {i:Q,;=0}
16: T+ T\S
17: end while

6.2 Lemma Al

Definition A1l. Let X be a square matrix. Then X is nilpotent if X¥ = 0

for some positive integer k.

Lemma A1l. Let G be a weighted graph, € its weighted adjacency matriz
and M its unweighted adjacency matriz. Then, S is nilpotent if and only if
M is nilpotent.

Proof. Let G be a weighted graph, €2 its weighted adjacency matrix and M

its unweighted adjacency matrix. Denote by W, w, the greatest and smallest
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positive entry of €2,
W= A Wy and w = n%iln{wkl twi > 0}
Let us prove by induction, that Vn € IN,
WM™ < Q" < w"M".
For n = 1, it is immediate. Assume it holds for some n > 1. Then, for all kl,

n+1 n
wg ™ = X, wiwn

< >, w”m,(g))wmpl, by induction hypothesis

_ —=ntl (n)
= w" Zp mkp Myl

_ +1
_ wn+1ml(€7lz )

where w,(;;),m,(;;) denote the kl-entries in Q",M" for r = n,n + 1. Hence,

Qil < "M holds. The proof is similar for the other inequality.
Therefore, by induction the inequalities have been established. It follows
that € and M are simultaneously nilpotent and are moreover nilpotent of

same order. O

6.3 Proof of Theorem 2

Let G(R2,a*) be a network game with Q > 0 the weighted adjacency matrix
of a wDAG and a* >> 0 a vector of equilibrium peaks. Let p denote the

length of the longest directed path in the wDAG.
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If for all 4, af — > wj;a; > 0, let us show by induction that, for all 7,

jiji
lp/2] [p/2]
;= (a"+ Y _ (Q7)*a - (Q")* "),
k=1 k=1
or equivalently,
p
;i = (1> _ (1) Q")*a");.

k=0

Since the graph is acyclic, there exists at least one player with no pre-
decessors. Let C denote the set of players who have no predecessors (call
them the source players of rank 1). Let C, denote the set of players who
have no predecessors in the subgraph where all source players of rank r < =z,
and their outcoming links, have been deleted (call them the source players
of rank ). The maximum value integer x can have is p + 1.

For all i € C},

a; = a;y = ((=1)°(Q7)"a");.

The ij-entry of (27)* denote the total weight of all directed paths with length
k starting at vertex j and ending at vertex 7. By Lemma 8.1.2 in Godsil and
Royle (2001, p.165), and since the graph is acyclic, ((27)%);; = 0 for all
1 € (', for all 5 and for all integer k£ > 1. Therefore, the property holds.
Let x < p. Assume the property holds for C; , = C;UCyU...UC,. That

is, for all [ € C,,
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By induction hypothesis, it follows that

Ay = ((_1)0(QT)03*)WL - Zlecm wlm([Zi:o (_1)k(QT)k]a*)l
= ((=1)(Q")%a")n, — (27)mu([>i— (=1)*(Q7)"a*),

= ((=1)%(Q")a")m — (") [X5=o (=D (27)*a")m

since (Q7),; =0 for all [ ¢ C; . Then,

am = ((=D)Q) ") + (275 (DM@ 2"
= (20 DM

= (ko (DA a )

since there is no directed path of length equal or greater than p 4+ 1 ending
at vertex m, i.e., ((Q1)P*1),, = 0 for all m € C,,,. Therefore, the property

is true for z 4+ 1. So by induction, it will be true for x = p + 1. O

6.4 Proof of Theorem 3

Let G(€2,a*) be a network game with € > 0 the weighted adjacency matrix
of a wDAG and a* >> 0 a vector of equilibrium peaks. Let p denote the
length of the longest directed path in the wDAG.

If for all 4, af — > wj;a; > 0, let us show by two inductions that, for

JiiF
all 1,
lp/2] [p/2]
;= (5* + Z (QT)ngl* i Z (QT)Qk_lé*)i,
k=1 k=1
where

lp/2] [p/2]
a=(Q) '+ ) p-) 9% 'p),
k=1 k=1
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or equivalently,

a; = (Y (=M@ D (~1) 2p))s.

k=0 k=0

First induction. Let us show that, for all 7,

p
a; = (q;)_l(([z (—1)*Q*]p),) — Z Wyl
k=0 Ji

Since the graph is acyclic, there exists at least one player with no suc-
cessors. Let Dy denote the set of players who have no successors (call them
the sink players of rank 1). Let D, denote the set of players who have no
successors in the subgraph where all sink players of rank r < x, and their
incoming links, have been deleted (call them the sink players of rank z). The
maximum value integer z can have is p + 1.

For all 1 € Dy,

ai = (@) ') — 2 widy
i

(@)~ (((=1)°Q%):) — > wyid
JigF#

The ij-entry of QF denote the total weight of all directed paths with length
k starting at vertex ¢ and ending at vertex j. By Lemma 8.1.2 in Godsil and
Royle (2001, p. 165), and since the graph is acyclic, (2%);; = 0 for all i € Dy,
for all j and for all integer k > 1. Therefore, the property holds.

Let x < p. Assume the property holds for D, , = DyUDyU...D,. That
is, for all [ € Dy ,,
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For all m € D, 4,

= (q) " (P — Zl:l;ﬁm Wiy + Zj:j;él wjid;)) — Zn:n;ﬁm Wrmn

= (q;n)_l(pm - ZleDl,w Wi q) (@ + Zj;#l wjl&j))
since (£2),,,, = 0 for all n. By induction hypothesis, it follows that
an = (¢) ' (((=1)°Q°P)m = PXiep, , wmi [Pk (=1)*2*]p)1)
= (¢,)"(((=1)°2P)m — Quu([Xo7— (1) Q*]p)1)

= ()" (((=1)" Q%) — (X5 (—1)*Q"]P)wi)
since (2),; = 0 for all I ¢ Dy ,. Then,

n = (0,) 7 ((=1)°Q2°P) + (275 (-1 Q4]p)w)
(a) " (205 (= 1)*2]p) )
= (@) (k= (1) Q2 p)m)

since there is no directed path of length equal or greater than p + 1 starting
at vertex m, i.e., (QP),, = 0 for all m € D, ;. Therefore, the property is

true for = 4+ 1. So by induction, it will be true for z = p + 1.

Second induction. To show that, for all 7,

ai = (D2 (=DH@DI@) (D (-1 2'p

k=0 k=0
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apply Theorem 2 to the following system of N equations,

for all 4, @ = ()" (D_ (~1)"Q2Ip):) — D wjidy.
k=0 jiti
with a; = a; and af = (¢) "' (([X5_ (—1)"Q*]p),). O
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