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The weak KAM theory was developed by Fathi in order to study the dynamics of
convex Hamiltonian systems. It somehow makes a bridge between viscosity solutions
of the Hamilton—Jacobi equation and Mather invariant sets of Hamiltonian systems,
although this was fully understood only a posteriori. These theories converge under
the hypothesis of convexity, and the richness of applications mostly comes from this
remarkable convergence. In this paper, we provide an elementary exposition of some
of the basic concepts of weak KAM theory. In a companion paper, Albert Fathi
exposed the aspects of his theory which are more directly related to viscosity
solutions. Here, on the contrary, we focus on dynamical applications, even if we also
discuss some viscosity aspects to underline the connections with Fathi’s lecture. The
fundamental reference on weak KAM theory is the still unpublished book Weak
KAM theorem in Lagrangian dynamics by Albert Fathi. Although we do not offer
new results, our exposition is original in several aspects. We only work with the
Hamiltonian and do not rely on the Lagrangian, even if some proofs are directly
inspired by the classical Lagrangian proofs. This approach is made easier by the
choice of a somewhat specific setting. We work on R? and make uniform hypotheses
on the Hamiltonian. This allows us to replace some compactness arguments by
explicit estimates. For the most interesting dynamical applications, however, the
compactness of the configuration space remains a useful hypothesis and we retrieve it
by considering periodic (in space) Hamiltonians. Our exposition is centred on the
Cauchy problem for the Hamilton—Jacobi equation and the Lax—Oleinik evolution
operators associated to it. Dynamical applications are reached by considering fixed
points of these evolution operators, the weak KAM solutions. The evolution
operators can also be used for their regularizing properties; this opens an alternative
route to dynamical applications.

1. The method of characteristics, existence and uniqueness of regular
solutions

We consider a C? Hamiltonian
H(t,q,p) : R x RT x R R
and study the associated Hamiltonian system

q(t) = OpH(t,q(t),p(t),  p(t) = =0, H(t,q(t), p(t)), (HS)

*This paper is a late addition to the papers surveying active areas in partial differential equa-
tions, published in issue 141.2, which were based on a series of mini-courses held in the Interna-
tional Centre for Mathematical Sciences (ICMS) in Edinburgh during 2010.
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and Hamilton—Jacobi equation
O+ H(t,q,0qu(t,q)) =0. (HT)
We denote by Xg(2) = Xp(q,p) the Hamiltonian vector field Xy = JdH, where

J is the matrix
0 I
o

The Hamiltonian system can be written in condensed terms %(t) = Xy (¢, z(t)). We
shall always assume that the solutions extend to R. We denote by

ot = (QL, PY): R x R™* — R? x R%*
the flow map which associate to a point z € T*R? the value at time ¢ of the solution
x(s) of (HS) which satisfies z(7) = .
If u(t, q) solves (HJ), and if ¢(s) is a curve in R?, then the formula

ty
u(ty, q(t1)) —ulto, q(to)) = | Oqu(s,q(s))-4(s) — H(s,q(s), 0qu(s, q(s)))ds (1.1)
to
follows from an obvious computation. The integral on the right-hand side is the
Hamiltonian action of the curve s — (q(s), 9,u(s, q(s))). The Hamiltonian action
of the curve (¢(s),p(s)) on the interval [tg,¢1] is the quantity

/t | p(s) - d(s) — H(s,q(s),p(s)) ds.

A classical and important property of the Hamiltonian actions is that orbits are
critical points of this functional. More precisely, we have the following.

PROPOSITION 1.1. The C? curve z(t) = (q(t), p(t)): [to, t1] — R xR solves (HS)
if and only if the equality

iuw(ZEWQ@“ﬁ—waﬁmmﬁmQ:o

(where the dot is the derivative with respect to t) holds for each C? wvariation
x(t,s) = (q(t,8),p(t,s)): [to,t1] x R — R? x R¥* fizing the endpoints, which means
that x(t,0) = x(t) for each t and that q(to, s) = q(to) and q(t1,s) = q(t1) for each s.

Proof. We set 6(t) = 05q(t,0), ((t) = Osp(t,0) and compute

% S_()(/: p(t,s)i(t,s) — H(t,q(t,s),p(t,s)) dt)

= / 1 pB)O(E) + C(1)q(t) = g H (t,a(t), p(£))0(t) — OpH (£, q(t), p(1))(¢) dt

to

= p(t1)0(t1) — p(to)0(to) + /tl (q(t) = OpH(t, q(t),p(t)))C(t) dt

to

—/“ww+@ﬂmammmwww.

to
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As a consequence, the derivative of the action vanishes if (¢(t), p(t)) is a Hamiltonian
trajectory and if the variation ¢(t, s) fixes the boundaries. Conversely, this compu-
tation can be applied to the variation q(t, s) = q(t) + s6(t), p(t, s) = p(t) + sC(¢),
and implies that

t1 t1
| a0 = 0,1 a0 pec0a— [0+ 0,1 a(0).p0)0(0) at = 0
for each C? curve 6(t) vanishing on the boundary and each C? curve ((t). This
implies that ¢(t) — O, H(t,q(t),p(t)) =0 and p(t) + 9,H (¢, q(t), p(t)) = 0. O

We now return to the connections between (HS) and (HJ). A function is said to
be of class C11 if it is differentiable and if its differential is Lipschitz. It is said to be
of class Cllo’cl if it is differentiable with a locally Lipschitz differential. Rademacher’s
theorem states that a locally Lipschitz function is differentiable almost everywhere.

THEOREM 1.2. Let 2 C R x R? be an open set, and let u(t,q): 2 — R be a ch!

loc

solution of (HJ). Let q(t): [to,t1] — RY be a C' curve such that (t,q(t)) € 2 and

q(t) = 9 H(t, q(t), Oqu(t, q(t)))
for each t € [to,t1]. Then, setting p(t) = dyu(t,q(t)), the curve (q(t),p(t)) is C*
and it solves (HS).

The curves ¢(t) satisfying the hypothesis of the theorem as well as the associated
trajectories (q(t),p(t)) are called the characteristics of w.

Proof. Let 0(t): [to,t1] — R? be a smooth curve vanishing on the boundaries. We
define q(t,s) := q(t) + s0(t) and p(t,s) := O4u(t,q(t,s)). Our hypothesis is that
4(t) = 0,H(t,q(t),p(t)), which is the first part of (HS). For each s, we have

u(ty; q(t1)) = ulto, q(to)) = / p(ts) - dlt.s) — Ht.a(t,s).plt,5)) d;

to

hence

% S_O(/t:l p(t,s)d(t,s) — H(t q(t, s), p(t, s)) dt) = 0.

We now claim that

ty

O,H (t,q(t), p(t)) - (1) — p(t)6(t) dt

_ % S_g( /tt p(t, 8)ilt, s) — H(t,q(t, s), plt, s))dt).

to

Assuming the claim, we obtain the equality

t1

Oy H (t, (), p(1)) - 0(t) — p(t) - 6(t) dt = 0

to

for each smooth function 6 vanishing at the boundary. In other words, we have

p(t) = =9, H(t, (1), p(t))
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in the sense of distributions. Since the right-hand side is continuous, this implies
that p is C' and that the equality holds for each ¢. We have proved the theorem,
assuming the claim.

The claim can be proved by an easy computation in the case where u is C?.
Under the assumption that u is only C’loc, the map p is only locally Lipschitz, and
some care is necessary. For each fixed 0, we have

0,H(t,q(t,s),p(t,s)) - 0(t) —p(t,s) - G(t)
= 0, H(t,q(t),p(t)) - 0(t) — p(t) - 6(t) + O(s),
Oeq(t,s) — OpH (L, q(t, ), p(t,5)) = ¢ — OpH(t, q(t), p(t)) + O(s)
= 0(s),

where O(s) is uniform in t. We then have, for small S > 0,
t1 .
| dutrte.a0).00) - 000) ~ pl0) - 0
t
0 AL :
=0(8) + g / | duttatt.s).0(0,9) - 000) = ) - ) ds

:O(S)+ /(9H 0sq — - 0stq+ (01q — OpH) - Ospdsdt

tl
S/ [p-O0q —

1 s
=0(9) + [/ patq—Hdt] .
S to 0
We obtain the claimed equality at the limit S — 0. O

The following restatement of theorem 1.2 has a more geometric flavour.

COROLLARY 1.3. Let 2 C R x R? be an open set, and let u(t,q): 2 — R be a Cllog

solution of the Hamilton—Jacobi equation (HJ). Then the extended Hamiltonian
vector field Yy = (1, Xg) is tangent to the graph
G :={(t,q,04u): (t,q) € 02}.

Proof. Let us fix a point (g, go) in £2. By the Cauchy—Lipschitz theorem, there exists
a solution ¢(t) of the ordinary differential equation ¢ = 9,H (¢, q(t), Ogu(t, ¢(t))),
defined on an open time interval containing ¢, and such that g(tg) = go. Let us, as
above, define p(t) := d,u(t, ¢(t)). The curve (t,¢(t), p(t)) is contained in the graph
G, and we deduce from theorem 1.2 that it solves (HS). As a consequence, the
derivative Yy of the curve (¢, q(t),p(t)) is tangent to G. O

COROLLARY 1.4. Let u(t,q) be a C\ solution of (HJ) defined on the open set
2 =lto, t1]. Then, for each s and t in |tg, t1] we have

Iy = 902(1—‘5)’

where I is defined by
Iy = {(q, dus(q)): g € RY}.
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Proof. Let (gs,ps) be a point in I'y. Let us consider the Lipschitz map

F(t,q) := 0,H(t,q,04u(t,q)),

and consider the differential equation ¢(t) = F'(¢, ¢(t)). By the Cauchy—Peano theo-
rem, there exists a solution ¢(t) of this equation, defined on the interval |t~ ¢*[, and
such that ¢(s) = g¢s. Setting p(t) = J,u(t, ¢(t)), theorem 1.2 implies that the curve
(q(t), p(t)) solves (HS). We can choose t* such that either t* = ¢! or the curve g(t)
is unbounded on [s,t*[. The second case is not possible, because (q(t),p(t)) is a
solution of (HS), which is complete; hence, we can take ¢+ = ;. Similarly, we can
take t— = tg. We have proved that (g(t),p(t)) is the Hamiltonian orbit of the point
(¢s, ps)- Then, for each t € ]to, t1], we have

©l(gs,ps) = (q(t), p(t)) = (q(t), Bgu(t, q(t))) € I;.

Since this holds for each (gs,ps) € I's, we conclude that ¢t (Is) C I} for each
s,t € Jtg, t1]. By symmetry, this inclusion is an equality. O

Let us now consider an initial condition up(g) and study the Cauchy problem
consisting of finding a solution (¢, q) of (HJ) such that «(0,q) = uo(q).

PROPOSITION 1.5. Given a time interval |to,t1 containing the initial time t = 0
and a Cllo’i initial condition ug, there is at most one Clt’cl solution u(t,q): |to, ]
of (HJ) such that u(0,q) = ug(q) for all ¢ € R%.

Proof. Let u and u be two solutions of this Cauchy problem. Let us associate to
them the graphs Iy and I3, t € Jto, t1]. Since (T, q) = u(t,q), we have Iy = I;
hence, by corollary 1.4,

Ft:@i(pr):ﬁag—(ﬁr):ft'

We conclude that d,u = 9,4, and then, from (HJ), that d,u = 9,4. The functions
u and @ thus have the same differential on ]¢o, t1]; hence, they differ by a constant.
Finally, since these functions have the same value on {7} x R%, they are equal. [J

To study the existence problem, we lift the function ug to the surface Iy by
defining wg = wug o7, where 7 is the projection (g,p) — ¢ (later we shall also use
the symbol 7 to denote the projection (¢, q,p) — (¢,q)). It is then useful to work in
a more general setting.

A geometric initial condition is the data of a subset Iy € R? x R% and of a
function wg: I'y — R such that dwg = pdq on Iy. More precisely, we require
that the equality 9s(wo(g(s),p(s))) = p(s)dsq(s) holds almost everywhere for each
Lipschitz curve (¢(s), p(s)) on Iy. We shall consider mainly two types of geometric
initial conditions:

(i) the geometric initial condition (I, wo = ugo7) associated to the C* initial
condition ug;

(ii) the geometric initial condition (Iy = {qo} x R, wy = 0), for gy € RY,
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Given the geometric initial condition (I, wq), we define

Gi= U {1 xehn) (©)

te Jto,t1]
and, denoting by Qf (z) the derivative with respect to s, the function
w: G—= R,

(t, ) Hwo(wg(x)H/o P (1)@ (x) — H(s, @3 (2)) ds. (w)

The pair (G,w) is called the geometric solution emanating from the geometric
initial condition (I, wp).

This definition is motivated by the following observation: assume that a C? solu-
tion wu(t,q) of (HJ) emanating from the genuine initial condition ug exists. Let
(Lo, wp) be the geometric initial condition associated to ug. Let G be the graph of
Oqu, as defined in corollary 1.4, and let w be the function defined on G by w := uom.
Then, (G, w) is the geometric solution emanating from the geometric initial condi-
tion Iy. This follows immediately from corollary 1.4 and equation (1.1). In general,
we have the following.

PROPOSITION 1.6. Let (I, wo) be a geometric initial condition, and let (G, w) be
the geometric solution emanating from (I'y,wp). Then, the function w satisfies dw =
pdg— H dt on G. More precisely, for each Lipschitz curve Y (s) = (T'(s),0(s),¢(s))
contained in G, then for almost every s,

d do dT
T ((T(),005),¢(5))) = ()T — HOV () 5.

Proof. Let us first consider a C? curve Y(s) = (T(s),0(s),{(s)) on G. We set
alts) = Qb (0(s).C(s)) and plt,s) = Pl (6(s).C(s)) and, finally, a(t,s) =
(q(t,s),p(t,s)). We have

T(s)
w(T(S)a 9(5)’ C(S)) = wO(Q(O7 5)7p(07 S)) + / p(t, S)q.(t’ S) - H(tv x(tv 8)) dt.

0

Since dwg = pdq on I, the calculations in the proof of proposition 1.1 imply that

d

ds (’LU o Y) (Oa S) ' asQ(O’ S) —|—p(T(S), S) : asQ(T(S)7 5) - p(O, 3) : 8SQ(07 S)
+ (P(T(s),5) - 0a(T(s),s) — H(T(s),z(T(s),s))) ar

ds
ar dr

= 0(6) (0T (9).9) + 279,95, ) + HO NG

The desired equality follows from the observation that

oo 0eq(T'(s), 3) (g) + 05q(T'(s), 5),

which can be seen by differentiating the equality 8(s) = q(T'(s), s).
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These computations, however, cannot be applied directly in the case where Y (s)
is only C!, or, even worse, Lipschitz. In this case, we shall prove the desired equality
in integral form:

S1
[on]gé = g C(s)-0s0(s) —HoY(s) 0:T(s)ds

for each Sy < 5. Fixing Sy and S7, we can approximate uniformly the curve Y (s)
by a sequence Y, (s): [Sp,S1] — R x R? x R% of equi-Lipschitz smooth curves
such that Y, (Sg) = Y (Sp) and Y;,(S1) = Y (S1). To the curves Y, we associate
xn(t, 8) = (pn(t, ), qn(t, s)) as above. The functions x,, are equi-Lipschitz and con-
verge uniformly to x. In general, we do not have Y,,(s) € G on ]Sy, S1[; hence, we do
not have x,,(0,s) € Iy, and we cannot express dsw(x,, (0, s)) as we did above. Since
this is the only part of the above computation which used the inclusion Y (s) € G,
we can still get

%(wOYn) = %(wo(xn(o,s)) —pn(0,8) - 95¢, (0, 3)
+ () - 050 (s) + H(Y(5))0sTn(5)).

Noting that [on]§; = [onn]g(l) and that [wo(z(o,.))]§; = [wo(xn(o,.))]gg, we
obtain

[woY]§ = [wo(x(0, )3

S1
+ /S _pn(oa 5) : aSQn(07 5) + Cn(s)asen(s) + H(Yn(s))aSTn(S) ds

[¢]

S1
=/ 2(0,5) - 9:(0, ) — P (0, 5) - Dsgn(0, ) ds
S

o
S1

+ Cn(8)0s0n(s) + H(Yn(8))0sT(s) ds.
So
We derive the desired formula at the limit n — oo, along a subsequence such that
8Sqn(07 ) - asQ(Oa ')7 88971 - 8897 aSTn - aqu’
weakly-* in L*°, taking into account that

Pu(0, ) - p(07 s Cn(s) = C(S), H(Yn(s)) - H(Y(S)>

uniformly, and hence strongly in L!. Recall that a sequence of curves f,,: [to, 1] —
R? is said to converge to f weakly-* in L™ if

t1 ty
/ frngdt — / fgdt
to to

for each L' curve g: [tg,t;] — RZ. We have used two classical properties of the
weak-* convergence:

(i) a uniformly bounded sequence of functions has a subsequence which has a
weak-* limit;
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ty
/ Fugn dt - / fgdt
to

holds if f, — f weakly-* in L> and if g,, — ¢ strongly in L'.

(ii) the convergence

O

COROLLARY 1.7. If there exists a locally Lipschitz map x: §2 — R on some open
subset 2 of |to, ti] such that (t,q, x(t,q)) C G for all (t,q) € §2, then the function

u(t, q) :=w(t, ¢, x(t,9))
is C! and it solves (HJ) on £2. Moreover, we have Oyu = x.
Proof. For each C! curve (T'(s),Q(s)) in £2, the curve

Y(s) = (T(s),Q(5), x(T'(s), Q(s)))

is Lipschitz; hence, by proposition 1.6, we have

Osu(T(s),Q(s)) = sw(T'(s), Q(s), x(T(s), Q(5)))
= X(T(s), Q(s)) - 9:Q(s) — H(T(s),Q(s), x(T'(s), Q(s))) 9T (s)
almost everywhere. Since the right-hand side in this expression is continuous, we
conclude that the Lipschitz functions w(7T'(s), Q(s)) is actually differentiable at each
point, the equality above being satisfied everywhere. Since this holds for each C!
curve (T'(s), Q(s)), the function u has to be differentiable, with d,u(t, q) = x(t,q)
and 8tu(t7q) +H(t?Q7X(taQ)) =0. O

We have reduced the existence problem to the study of the geometric solution
G. We need an additional hypothesis to obtain a local existence result. We shall
use the following one, which it is stronger than would really be necessary, but will
allow us to rest on simple estimates in this course.

HyPOTHESIS 1.8. There exists a constant M such that
|A2H (t,q,p)|| < M

for each (t,q,p).

This hypothesis implies that the Hamiltonian vector field is Lipschitz, and hence
that the Hamiltonian flow is complete. The hypothesis can be exploited further to
estimate the differential

0,Qo(x)  0pQ0(x)

dpl =
s 9P (x)  OpPg(x)

using the variational equation

0,Qb(x)  9pQh(x)
aqu(x) 6pp(§(x)

04Q0(x)  9pQp()
0y F5(z)  OpF5(x)

OppH(t, ) OppH(t, )
B —04qH(t,x) —0pgH(t,2)
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We obtain the following estimate:

lde} — 1] < M= =1,
which implies, for |t — 7| < 1/M, that

ldgr — Il < 2M|t — 7], (M)
or componentwise (taking 7 = 0, and assuming that || < M):
104Q0 — IIl < 2Mt], (10, P5 — I|| < 2M]t], (|95l < 2Mt],  [[9,Q0l < 2M [t].
We can now prove the following.

THEOREM 1.9. Let H: R x R% x (RY)* be a C? Hamiltonian satisfying hypothe-

sis 1.8. Let ug be a CY1 initial condition. There exist a time T > 0 and a C’llo’c1

solution u(t,q): |=T,T[ of (HJ) such that u(0,q) = uo(q). Moreover, we can take
T = (AM(1 + Lip(dug))) ",

and we have
Lip(du;) < Lip(dug) + 4[¢|M (1 + Lip(dug))?,

when |t| < T. If the initial condition ug is C2, then so is the solution u(t,q).

Proof. Let (I, wg) be the geometric initial condition associated to ug, and let
(G, w) be the geometric solution emanating from (I, wp). We first prove that the
restriction of G to |—T,T] is a graph. It is enough to prove that the map

F(t,q) = (1, Qto(qv duo(q)))
is a bi-Lipschitz homeomorphism of |—T,T[. By (M), we have
Lip(F — Id) < 2|¢|M (1 + Lip(dug)) < 1,

provided |t| < (2M(1 + Lip(dup)))~t. We conclude using the classical proposi-
tion A.1 that F is a bi-Lipschitz homeomorphism of |—T, T'[. Moreover, if ug is C2,
then F is a C! diffeomorphism. Since F is a homeomorphism preserving ¢, we can
denote by (¢, Z(t,q)) its inverse. By proposition A.1, we have

1

Lip(Z) < ,
(Z) S T390 £ Tip(dug)

and, under the assumption that |¢t| < T (as defined in the statement), we obtain
Lip(Z) < 1+ 4M|t|(1 + Lip(dug)) < 2.
We have just used here that (1 —a)™' <1+ 2a for a € [0, 2]. We set
X(t,q) = Po(Z(t,q),duo(Z(t, q)))

in such a way that G is the graph of x on |-T, T[. Observing that x is Lipschitz, we
conclude from corollary 1.7 that the function u(¢, q) := w(t, ¢, x(¢, q)) solves (HJ).
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Moreover, we have u(0,q) = ug(g). Corollary 1.7 also implies that du; = x:; hence,
in view of (M), we have

Lip(du¢) = Lip(x+) < 2Mt| Lip(Z) + (1 + 2Mt|) Lip(duo) Lip(Z:)
< 4M|t| + Lip(dug) + Lip(dug)(4M|¢|(1 + Lip(dug))) + 4M|t| Lip(dug)
< Lip(dug) + 4M]|t|(1 + Lip(dug))(1 + Lip(dug)).

1.1. Exercise

Take d = 1, H(t,q,p) = $p* and uo(q) = —¢°, and prove that the C? solution
cannot be extended beyond ¢t = %
2. Convexity, the twist property, and the generating function

We make an additional assumption on H. Once again, we make the assumption in a
stronger form than would be necessary; this allows us to obtain simpler statements.

HypoOTHESIS 2.1. There exists m > 0 such that
92,H >mld
for each (t,q,p), in the sense of quadratic forms.
Let us first study the consequences of this hypothesis on the structure of the flow.

PROPOSITION 2.2. There exists o > 0 such that the map p — Qf(q,p) is (%mt)—
monotone when t € |0,0], in the sense that the inequality

(Qb(q,p") — Qb(a,p)) - ' —p) = 3mt[p’ — p|?

holds for each ¢ € R and each t € [0,0]. As a consequence, it is a C* diffeomor-
phism onto R?.

We say that the flow has the twist property.

Proof. Fix a point ¢ and denote by F*' the map p — Qf(q, p). We have dF*(p) =
9,Qb (g, p). In order to estimate this linear map, we recall the variational equation

0pQh(x) = 02, H (t, 0 (2))0,Qb () + 05, H (t, b () Dp P ().
We deduce that
0p Qb () — Op H (L, 0h(x)) = 02, H (¢, 0 (2))0pQb () + 02, H (t, 06 ()) (8, P () — 1d)
and then that _
10pQ0(x) — 82, H (t, b (x))|| < 2M*t.

As a consequence, for t < o = m/(4M?), we have

9,Q4 = (m — 2M>t)I > (1m)1d

1
2
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in the sense of quadratic forms (note that the matrix 8,Q} is not necessarily sym-
metric). Since

0,Q} /6Qo

we conclude that
dF"(p) = 9,Q5(q,p) = (3m) 14,

which means that (dF*(p)z,z) > (3m)|z|* for each z € R%. This estimate can be
integrated, and implies the monotony of the map F':

(Q(a.#") = Q@) (W' ~p)
(/ 8,Q"(¢,p+s(p' —p)) - (' —p)d).(p/_p)

/ (0,Q'(a,p + 57 —p) - (7 —p))ds

2/0 (zm)t(p’ —p)- (0" —p)ds
> (Am)t(p’ —p)- (¥ —p).

It is then a classical result that the map F? is a C' diffeomorphism; see proposi-
tion A.2. O

COROLLARY 2.3. The map (t,q,p) — (t,q,Q%(q,p)) is a C diffeomorphism from
10, o] onto its image 10, o|.

We denote by po(t, go, ¢1) the unique momentum p such that
Q6(q0, po(t, g0, q1)) = qu.-
In other words, po(t, qo,q1) is the initial momentum p(0) of the unique orbit
(a(s),p(5)): [0,4] — R? x R™*

f (HS) that satisfies ¢(0) = ¢qo and ¢(t) = ¢1. By the corollary 2.3, the map
po is C'. Similarly, we denote by p1(t,qo,q1) the unique momentum p such that
Q%(q1, p1(t,90,q1)) = qo- We can equivalently define p; by

pl(t7q0a QI) = POt(QO7p0(ta q0, QI))

Considering the geometric initial condition (I = {go} x R%,wy = 0), and the
associated geometric solution (G, w), we see that

G= {(t’qapl(taqu q))v (t»Q) € ]Ov U[ X Rd}

We conclude from corollary 1.7 that there exists a genuine solution of (HJ) ema-
nating from the geometric initial condition ({go} x R%*,0). We denote this solution
by S*(qo,q). We have

5(qo,q) = w(t,p, p1(t, 90, q))
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and

945" (q0,9) = p1(t, 90, q).

In view of the definition of geometric solutions, the function S can be written more
explicitly:

t
St(QOa Q1) = / POS(QO7p0(t7q0a %))QS(QOM’O(LQOa (11))_H(3a ¢S(QO7p0(ta q0, ql))) ds.
0

In words, S*(qo, q1) is the action of the unique trajectory (q(s),p(s)): [0,1] — R x
R of (HS) that satisfies q(0) = qo and ¢(t) = ¢;.

We have defined the function S*(qo, g1) as the action of the unique orbit joining
qo and ¢; between time 0 and time ¢. We can similarly define the function S%(qo, g1)
as the action of the unique orbit joining ¢o to ¢; between time 7 and time ¢, all this
being well defined, provided 0 < ¢t — 7 < o. It is possible to prove as above that the
function (s,q) — S%(q,q1) solves the Hamilton—Jacobi equation

Osu+ H(t,q, —04u) =0,
on s < t, and that
aqSt(qa ql) = 81158((]7 Q1) = —po(t, q, fh)

Convention. We shall from now on denote by 9yS* the partial differential with
respect to the first variable (which in our notation is often qg), and by 9,5 the
partial differential with respect to the second variable (which in our notation is
often ¢q1).

The relations 89S = —pg, 1S = p1, .S = —H(t,q1,p1) = —H(0, qo, po) that we
have proved imply that the function S is C2. Moreover, since §(qo, po(t, g0, q1)) =
(q1,p1(t, g0, q1)), we have

©6(q0, —90S(q0, 01)) = (q1, 015 (q0, 1))

We say that S is a generating function of the flow map ¢f. See [18, ch. 9] for more
material on generating functions. It is useful to estimate the second differentials
of S.

LEMMA 2.4. The function S is C? on |0,0|, and the estimates

03,8t = - 1d,

QO +10

04, 8"

WV
—
&

1050 I + 110581l + 1195, 5°1| <

Q-

hold, with constants ¢ and C which depend only on m and M.

Proof. Let us first observe that

9315 (g0, q1) = (0Pt (g0, po(t, 90, 41))) (Fp Qb (g0, po(t, g0, q1)))
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and recall the estimates
10, P5 —1d|| < 2Mt, [0,Q0] < 2Mt,  3,Q > (3mi)Id.
We conclude that (see lemma A.3)

_ m _
3Q0) " 2 5o 1, 18,Q0) 7' <

8M?2t mt’

Finally, we obtain that

Id

m 4M m
9315(q0, q1) > ( > Id >

SM2t m ~ 16M2t

provided t < m?/(64M?3). The other estimates can be proved similarly, using the
expressions

3205 (q0, q1) = —(0p P2 (q1, p1(t, 90, 1)) (3@ (a1, p1(t, g0, 1))
9705 (g0, @1) = (9,Q% (g0, po(t, 0, p0))) "
0

PROPOSITION 2.5. Given times t1 and ts such that 0 < t; < ty < o, we have the
triangle inequality

562 (g0, q2) < St (q0, q1) + S¢* (a1, g2)
for each qo, q1,q2. Moreover, S§(qo, q2) = ming(S¢* (g0, q) + S¢2(¢, 42)).

Proof. Let us consider the map
q~ f(a) = Sg' (a0 ) + 52 (¢, 42).
We have d?f > 2c; hence, the map f is convex. Now let us denote by
(a(s),p()): [0,82] = R x R**
the unique orbit that satisfies ¢(0) = go and ¢(t2) = g2. We can compute
df(q(t1)) = 0157 (0. a(t1)) + 0oSy? (a(t1), 42) = p(t1) — p(t1) = 0.

The point ¢(¢1) is thus a critical point of the convex function f; hence, it is a
minimum of this function. We conclude that

S6t(q0,9) + Si2(q,92) = St (g0, q(t1)) + Si2(a(t1), a2) = Si2 (90, g2)
for all q. O

Under the convexity hypothesis (hypothesis 2.1), theorem 1.2 can be extended
to C1 solutions, as follows.

THEOREM 2.6. Let 2 C R x R? be an open set, and let u(t,q): 2 — R be a C*
solution of the Hamilton—Jacobi equation (HJ). Let q(t): [to,t1] — RY be a C curve
such that (t,q(t)) € 2 and

q(t) = OpH(q(t), Oqu(t, q(t)))

for each t € [to,t1]. Then, on setting p(t) = dqu(t, q(t)), the curve (q(t),p(t)) solves
(HS).



1144 P. Bernard

Proof. As in the proof of theorem 1.2, we consider a variation (¢, s) = q(t) + s6(t)
of ¢(t), where 6 is smooth and vanishes on the endpoints. We choose the vertical
variation p(t, s) in such a way that the equation

(j(ta S) = aPH(t’ Q(t7 S)7p<t, S))

holds. The map p(¢, s) defined by this relation is differentiable in s, because ¢ and
¢ are differentiable in s and because the matrix (“)ng is invertible. It is also useful
to consider the other vertical variation:

P(t,s) := 0qul(t, q(t, s)).

Our hypothesis is that ¢(t) = 9,H (t,q(t), p(t)), which is the first part of (HS). We
start as in the proof of theorem 1.2 with the following equality:

d th .
ds S_O(/tn p(t,s)-q(t,s) — H(t,q(t,s),p(t,s))dt> =0. (2.1)

We deduce this equality from the observation that s = 0 is a local minimum of the
function

swnﬁ:/ﬁmgﬁwﬁ—HwWmemw.

to
This claim follows from the equality
ty
F(O) = u(tla Q(tl)) - u(to, Q(to)) = / P(t7 S) : Q(ta S) - H(t7 Q(ta 8)7 P(t7 8)) dS,
to
which holds for all s, and from the inequality
ty
F(s) > / P(t,s) - d(t,s) — H(t.q(t,s), P(t, s))ds
to
that results, in view of the convexity of H, from the computation
H(t, q(t,s), P(t,s))
z (P(t,s) = p(t,s)) - OpH(t,q(t, 5),p(t, 5)) + H(E, q(t, s), p(t, 5))

= (P(ta 8) - p(ta 3)) ' q(t7 8) + H(ta Q(t7 S),p(t, 8))

We have proved (2.1). As in the proof of theorem 1.2, we develop the left-hand side
and, after a simplification, we get

[ pt0)- 00 = 2,110, a(0).p00) - 60y 2t = 0.

In other words, we have proved that p(t) = 0,H (t, ¢(t), p(t)) in the sense of distri-
butions. Since the right-hand side is continuous, p is C! and the equality holds in
the genuine sense. O

As in the C? case, we have the following corollary (see [12]).
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COROLLARY 2.7. Let u(t, q): Jto, t1] be a C* solution of (HJ). Then, for each s and
t in Jto, t1] we have

Ft = (pi(Fb)a

where I} is defined by
Iy = {(q, dus(q)): g € RY.

Proof. This corollary follows from theorem 2.6 in the same way as corollary 1.4
follows from theorem 1.2. The only difference here is that the map

F(t,q) := 0,H(t,q,0qu(t,q))

is only continuous. By the Cauchy—Peano theorem, this is sufficient to imply the
existence of solutions to the associated differential equation, which is what we need
to develop the argument. O

Another property of the functions S will be useful. Assume that we are consid-
ering a family H,,u € I of Hamiltonians, where I C R is an interval, such that
the whole function H(u,t,q,p) is C? and such that each of the Hamiltonians H 1
satisfy our hypotheses 1.8 and 2.1, with uniform constants m and M. Then, for
each value of u, we have the function S*(u;qo, q1), which is defined for ¢ € 0, o],
the bound ¢ > 0 being independent of u. Since everything we have done so far
has been based on the local inversion theorem, the function S*(u;qo,q1) is C! in
p, or, more precisely, the function (u,t,qo,q1) — S*(14;q0,q1) is Ct. Moreover, a
computation similar to the proof of proposition 1.1 yields

t
95" (15 4o, 1) = — / O H,. (s, a1, ), plus s)) ds,
0

where s — (g(p, s),p(p, s)) is the only H,-trajectory satisfying ¢(u,0) = go and
q(pt,t) = ¢1. We can exploit this remark when H,, is the linear interpolation H,, =
Ho+p(Hy— Hp) between two Hamiltonians Hy and H;, and conclude the important
monotony property:

Hy<Hy = 5'0;q,¢") > 5'(1;4,9). (monotone)

2.1. Exercise

If H(t,q,p) = h(p) is a function of p, then
Sy = (252

where h* is the Legendre transform of h. As an example, when H(t,q,p) = 3alp|?,
we have

1
St(Qo,Ch) = %Ml - QO|2-
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3. Extension of the generating function: the minimal action

A classical problem consists in finding an orbit (¢(t), p(t)) of the Hamiltonian system
such that g(to) = qo and q(t;) = qi, for given [to, t;] C R, go,q1 € RY. We have seen,
under hypotheses 1.8 and 2.1, that this problem has a unique solution, provided
ty < t1 < tg+ o, where o is a constant depending only on m and M. The situation
is more subtle for larger values of t; —tg. In order to study it, it is useful to consider
the function

S: (ala ) on—l) — Sé/n(QO7 01) + Stz/ty/Ln(ela 02) + -+ S(tn_l)t/n(on—lv Q1)7

where we have taken ty) = 0 and t; = ¢ to simplify notation, and where n is an integer
such that t/n < o. The critical points of & are in one-to-one correspondence with
the solutions of our problem.

LEMMA 3.1. The point (01,...,0,_1) is a critical point of & if and only if there
exists an orbit (q(s),p(s)): [0,¢] — R x R¥ such that q(0) = qo, q(t) = q1, and
q(it/n) = 0; for i = 1,...,n — 1. This orbit is then unique, and its action is
SO, .. 0p1).

Proof. Let (q(s),p(s)) be the piecewise orbit defined on [it/n, (i + 1)t/n] by the
constraints g(it/n) = 0; and q((¢+ 1)t/n) = 6;11. The action of this piecewise orbit
is 6(01,...,0,_1). The statement follows from the simple computation
09,6 = 015" (0:-1,0;) + 0o S (03, 0:41) = p~ (it/n) — p (it/n).
O

Using this finite-dimensional variational functional is usually called the method
of broken geodesics (see [9]). The function & can be minimized under additional
assumptions, for example, as follows.

HyPOTHESIS 3.2.
smlpl> — M < H(t,q,p) < $M|p|* + M.

By exploiting the monotony property (monotone), this hypothesis implies that
1 ) 1
—|q — — Mt < SYq0,q1) < =—|q1 — qo|* + Mt,
2tM|q1 qol < S(q0,q1) < 2tm|Q1 ol +
and then that
n
6(917 ) en—l) = TtM
As a consequence, the function & is coercive and C?; hence, it has a minimum.
Note that, although & is convex separately in each of its variables, it is not jointly
convex. It can have critical points which are not minima, and it can have several
different minima. We denote by A? the value function

A(qo,qr) =min®& = min (5" (qo,01) + 877" (01,02) + St 1y /m(On-1, 1)

01,02 ..... On_1
(A)
where n is any integer such that ¢/n < o. The functions A% (g, q:1) are defined
similarly for each ¢t > 7. This notation is legitimate in view of the following.

(161 — qol® + 102 — 611> + -+ - + |q1 — On—1]?) — M.
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LEMMA 3.3. The value of At does not depend on n provided t/n < o. Moreover,
we have

1 ) 1
——|q — — Mt < A < — a1 — qof? 2
2Mt|q1 qol (90, q1) o lg1 — qo|” + M

This statement implies that A* = S? when t < o; hence, A® can be seen as an
extension of S? beyond t = 0.

Proof. Since we have not yet proved the independence of n, we temporarily denote
by A(qo,q1;7n) the value of the minimum. We have

. n
A'(qo,q1;n) = min ((01q0|2+-~~+|Q19n-1|2)Mt>
n—1

01,02,..., 2Mt
1 2
= —|q1 — qo|]® — Mt.
oMt la1 — qol

If t < o, then the equality S*(qo,q1) = A*(qo, q1;n) can be proved by recurrence for
each n using proposition 2.5. For general ¢, let us prove that A*(n) is independent
of n. We take two integers n and m such that t/n < o,t/m < o and want to
prove that A*(n) = Af(m). We shall prove that A’(n) = A*(nm) = A*(m). Since
t/m < o, we have

AT (g0, quin) = ST ™ (g0, 1)

for each 7 and n; hence,

A'(qo, q1;mm)
= min  [SY"(go,01) + SP(0y,05) + -+ ST (Bn1,0,)

01,02, Onm—1 t/nm (n—1)t/nm

+ Sfﬁlﬂ/"m(@n, Ons1) + -+ S(QQtT/LTl)t/nm(92n—ly O2n) + -
+ S G 1y Om 1y 1) + -
+ Sflfl/nm)t<9mnfl7 Q1)]

= min S ™(q0.00) + 2L (O 020) + -+ St syt jon Olom—1yms 1)

021,030 5., 9(77171)71
= A'(qo, q1;m).
We have proved that A*(nm) = A?(m); by symmetry we also have A*(nm) = At(n).
Hence, A(n) = A*(m). Finally, we have
n
601, 0n—1) < 5 (161 — qol* + 62 — 01> + a1 — s |*) + Mt;

hence,

n
At < ] — (101 — qo]? Oy — 04|? —0,_ 2 Mt
(q0,q1) g o n 2mt(| 1= qol” + 102 — 01" + ¢ %) +

1 2
= —|q1 — + Mt.
9 thl CI0|
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The following property concerning A follows easily from the definition:
Aiﬁ(‘loa q2) = H;}H(Aié (qo0,q1) + Aif (q1,42)), (T)

when 0 < ty < t1 < to. The following consequence of hypothesis 3.2 will also be
useful.

LEMMA 3.4.

SE

Proof. We deduce from hypothesis 2.1 that
H(t,q,0) > H(t,q,p) — p- pH(t,q,p) + 3m|p|*.
We deduce that

p'apH(t7Qap) _H(taQ7p) 2 %m|p|2 _H(t7Qa0) 2 (H(t7Q7p) - M) - M.

SE

O

The minimal action A’(qg,q1) is not necessarily C'; we need some definitions
before we can study its regularity. The linear form [ is called a K-superdifferential
of the function w at point ¢ if the inequality

w(f) < u(q) +1(0 — q) + K|0 — qf

holds in a neighbourhood of ¢g. The linear form [ is a proximal superdifferential of «
at point ¢ if it is a K-superdifferential for some K. The form [ is a proximal super-
differential of u at g if and only if there exists a C? function v such that dv(q) = I
and such that the difference v — » has a minimum at ¢q. More generally, we shall
say that [ is a superdifferential of u at ¢ if there exists a C' function v such that
dv(gq) = [ and such that the difference v —u has a minimum at ¢. A superdifferential
is not necessarily a proximal superdifferential.

A function u: R — R is called K-semi-concave if it admits a K-superdifferential
at each point. It is equivalent to requiring that the function 6 — u(0) — K|0|* is
concave. A function is called semi-concave if it is K-semi-concave for some K. If u
is a K-semi-concave function, and if [ is a superdifferential at u, then the inequality

u(9) < ulg) + 10 —q) + K6 — g
holds for each 6. In particular, [ is a K-superdifferential.

LEMMA 3.5. The function A is C(1 + 1/t)-semi-concave, with some constant C
that depends only on m and M.

Proof. Let us first assume that ¢ € ]0,0[. In this case, Af = S§, this function is
C? and its second derivative was estimated in lemma 2.4. Let us now assume that
t > 0. Then, there exists n € N such that ¢/n € [10, 20[. We have

Aj(g,4") = min(S5" (g, 6) + Ay, (0,6) + S}_, 1, (0. 4)-
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Considering a minimizing pair (g, ;) in the expression above at (go,q1), we see
that the C? function

(Q7 q/) = Sé/n(Q7 90) + Ai/_rtb/n (003 01) + Sf_t/n(ela q,)

is touching from above the function Af, at point (go, ¢1). In view of lemma 2.4, this
provides a uniform (for ¢ > o) semi-concavity constant for Af. O

4. The Lax—Oleinik operators

Given to < t;, we define the Lax-Oleinik operators T}! and Tttf, which, to each
function u: R? — R, associate the functions

T} u(q) := inf (u(0) + AjL(0,q)), T/ ul(q) := sup (u(f) — Ajl(q,0)).
0cRd deRd

We have the Markov (or semi-group) property:
’I;ttf o Tvttol _ th

fito it it
for tg < t1 < ty. Note, however, that J}tol oTtth and Tttlo o]}tol are not the identity.
Concerning these operators, we only have the inequalities

jjttlo 011:01 (U’) < u’ 117;01 ojjttlo (U) 2 u’

the easy proof of which is left to the reader. Each property concerning the Lax—
Oleinik operator T has a counterpart for the dual operator T', which we shall
not always bother to state but never hesitate to use. The family of operators Ttto1
is characterized by the fact that Tttolu(q) = infg(u(9) + Stt; (go,q1)) when tg < t1 <
to+o and by the Markov property. The Lax—Oleinik operators solve (HJ) in various
important ways that will be detailed in this section. It is useful first to settle some
regularity issues.

LEMMA 4.1. There exists a constant C, depending only on m and M, such that for
each t € )0, 0], the function T u is (C/t)-semi-concave provided it is finite at each
point.

Proof. The function T"u is the infimum of the functions f = u(6) + S*(6,-), which
are C? with the uniform bound [|d?f|| < C/t. It is then an easy exercise to conclude
that the function T"u is C'/t-semi-concave; see lemma A.5. O

Given an arbitrary function ug, the infimum in the definition of T{ug is not
necessarily finite, and, even if it is finite, it is not necessarily a minimum. It is clear
from proposition 3.3 that the infimum is a finite minimum under the assumption
that ug is continuous and Lipschitz in the large, which means that there exists a
constant k such that

uo(q') —uo(q) < k(L +1]q" —ql)

for each ¢ and ¢'.

LEMMA 4.2. If ug is Lipschitz in the large, then so are the functions Tiug for all
t > 0. The function (t,q) — u(t,q) = T¢uo(q) is locally semi-concave, and hence
locally Lipschitz on ]0,00) x R%. The function u solves (HJ) at all its points of
differentiability (hence almost everywhere).
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Proof. Since uy is Lipschitz in the large, the function T¢uo —ug is bounded for each
t > 0, as follows from the inequalities

inf(uo(q) — k — k[0 — q| + SH0,q)) < Tiuo < uolq) + S'(g,q),

which imply (setting A = 6 — ¢) that

1

inf (—k—kAH—th

Jnf, \A\Q — tM) < Tguo(q) —up(q) < Mt.

We conclude that the function Tug = (T¢ug — ug) + uo is Lipschitz in the large.
In the computations above, we also see that the infimum can be taken on |A| < K,
where K is a constant independent from gq.

Let us now prove that the function u(t,q) := T{uo(q) is locally Lipschitz on
t > 0. In view of the Markov property, it is enough to prove that the function w is
Lipschitz on |7, 20| for each closed ball B C R? and each time 7 € ]0, 1o[. Since
u(q) is Lipschitz in the large, there exists a radius R > 0 such that

u(t,q) = inf u(f) + S48, 4q)

for (t,q) € ], 30[. Since S is C?, the functions (t,q) — u(0) + S'(6,q),|0| < R
have uniform C? bounds on |7, 1o[. Their infimum u(t, ¢) is then semi-concave, and
hence Lipschitz on that set; see lemma A.5.

Finally, let (¢, ¢) be a point of differentiability of u, and let 7 € | max(0,t—0), [ be
given. Since u., is Lipschitz in the large and locally Lipschitz, there exists 6 such that
Tiu,(q) = ur(0) + SL(8, q). For a different point (s,y), we have T5u,(y) < u,(0) +
SL(,y); hence, the function (s,y) — u(s,y) — S2(A,y) has a maximum at (t,q),
which implies that the functions u(s,y) and S£(6,y), each of which is differentiable
at (t,q), have the same differential at (¢,¢). Since the functions (s,y) — S2(0,y)
solve (HJ), the function w also solves (HJ) at (¢, q). O

Let us now establish the relation of our operators with regular solutions.

PROPOSITION 4.3. Let u(t,q): Jto, t1] be a C' solution of HJ. Then Tiu, = u; and
T uy = u, for each T <t in |to, t1]. The function u is locally C11.

This property is one of the main motivations to introduce the Lax—Oleinik opera-
tors. The observation that O solutions are actually locally C**! comes from Fathi’s
paper [12], itself inspired by anterior works of Herman. Another consequence of this
Theorem is that uniqueness extends to C' solutions under the convexity assump-
tion.

Proof. In view of the Markov property, it is enough to prove the result for 0 <
t —7 < 0. Given q and @ in T?, we consider the unique orbit (g(s),p(s)) such that
q(7) = 0 and ¢(t) = q. By the convexity of H, we have

H{(q(s), 0qu(s, q(s))) = H(q(s),p(s)) + (9gu(s, a(s)) = p(s)) - OpH (s, 4(s), p(s))-
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Noting that ¢(s) = 9,H(s,q(s),p(s)) and integrating gives

SL(0,q) = / p(s) - d(s) — H(s, q(s),p(s)) ds

> /t Iquls, q(s)) - 4(s) — H(s, q(s), Oqu(s, q(s))) ds
= uzt,Q) - u(,0),
with equality if p(s) = dqu(s, ¢(s)) for each s. We conclude that
Trur(q) > ui(q),

with equality if there exists an orbit (q(s), p(s)): [7,t] — R% x R%* such that p(s) =
Oqu(s,q(s)) and ¢(t) = g¢. By corollary 2.7, the orbit of the point (g, dqu(t,q)
satisfies this property; hence, the equality holds.

To prove the regularity of u we consider a subinterval [fy, 1] Clto, t1[, and prove
that u is locally C*! on o, [. We have

u(t,q) = Tt ug, (q) = T{ gz, (q)

for each ¢ € |tg,#;[. If the functions u; were Lipschitz in the large, we could apply
lemma 4.2 and deduce that u is both locally semi-concave and locally semi-convex,
and hence locally C11, on Jtg,#;[. Here we do not make any growth assumption, so
we need a slightly different argument to prove the semi-concavity of u (and, simi-
larly, its semi-convexity). We have seen that the infimum in the definition Tt'to uz, (q)
is a minimum, which is attained at the point # = Q!°(q, Oqu(t, q)). This gives us an
a priori bound on 6, and we can continue the proof as in lemma 4.2. O

Let us sum up some properties of the Lax—Oleinik operators T associated to a
Hamiltonian satisfying hypotheses 1.8, 2.1 and 3.2.

PROPERTY 4.4.
Markov property: T oT$ =T when 7 < s < .
Monotony: u > v = Ttu > Ttv for each t > 7.

Compatibility with (HJ): if u(t,q): ]Jto,ti is a C? solution of (HJ), then
Tiu, = u; when tog <7 <t <.

Boundedness: if u, is Lipschitz in the large, then the functions Tu., t € [r, T},
are uniformly Lipschitz in the large for each T' > 7.

Regularity: if u, is Lipschitz in the large, the function (t,q) — Tlu,(q) is
locally Lipschitz on |7, 00) x R9.

Translation invariance: T!(c + u) = ¢ + T'u for each constant ¢ € R.

The Lax—Oleinik operators solve the Cauchy problem for (HJ) in the viscosity
sense. Actually, this follows from property 4.4.
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PROPOSITION 4.5. Let H be a Hamiltonian satisfying hypothesis 1.8. Assume that
there exists a family T, 0 < T < t of operators satisfying the Markov property,
the monotony, the compatibility with (HJ) and the boundedness as expressed in
property 4.4. Then if ug is an initial condition which is Lipschitz in the large, the
function

(t,q) — u(t,q) = Tguo(q)

is a wviscosity solution of (HJ) on ]0,00) x RY.

Note that we did not make any convexity assumption. This kind of axiomatic
characterization of viscosity solutions is reminiscent of [1] (see also [8]). It may also
help to understand the links between viscosity solutions and variational solutions
in the non-convex setting. Such links were suggested by Claude Viterbo and Marc
Chaperon, and established in [22].

Proof of proposition 4.5. Let us prove that w is a viscosity subsolution, a similar
proof yields that it is also a supersolution. We consider a point (T, Q) € ]0,00) x
R? and a superdifferential (h,p) of the function u at (7,Q). To prove that h +
H(T,Q,p) <0, we assume, by contradiction, that

h+ H(T,Q,p) > 0.

As is usual for viscosity solutions we shall use a test function ¢. We shall assume
that ¢: R x R? — R is smooth and satisfies the following properties:

(1) ¢(T7 Q) = U(T; Q)7 6t¢(T, Q) = h’ 8q¢(T, Q) =p;
(i) ¢ > won [~1T,2T] x RY

(iii) there exists a constant C' > 0 such that ¢(¢,q) = C/1 + |¢|? when |g| + [¢| =
C.

Note that d?¢ is bounded. Such a test function exists because the functions u,
t € [3T, 2T, are uniformly Lipschitz in the large, as follows from the boundedness
property assumed on the operators.

CLAIM 4.6. There exist S > 0 and a C? function w(7,t,q) defined on the open set
{(1,t,q) ERxRxR: 7 —S<t<7+S}CRxRxR?

such that, for each fixed T, the function w;: (t,q) — w(7,t,q) is the solution of the
Cauchy problem

8,511)-,— + H(ta q, aqu) =0, } (41)

w(7,q) = ¢(7,q).
The existence of a solution w;, to this problem follows from theorem 1.9. However,

to see that w is C? in all its variables, we find it more convenient to consider the
Cauchy problem

(4.2)

85” + (azu + H(Za q, aqu(sa Z, q))) = 07
u(0,2,9) = 6(2,9).
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By theorem 1.9, applied to the Hamiltonian

H(s,2,¢,&,p): Rx (R xRY) x (R xRY)* > R,
(5,2,¢,&,p) = {4+ H(z,q,p),

there exists S > 0 and a C? solution u(s,z,q): |—=S, S| of this Cauchy problem.
Setting

w(Ta t7 q) = U(t - T, tv q),

we verify that

Ow(t,q) + H(t,q,0,w(t,q))
= 8éu(t -7, t) Q) + azu(t -7, t7 Q) + H(t’ q, 8qu(t -7, t7 q))
-0

and that w(r, 7,q) = u(0,7,q) = ¢(7,q).

CLAM 4.7. There exists T € |T — S, T[ such that w(r,T,Q) < ¢(T,Q).
Since w(T,T,q) = ¢(T,q), we have

8t'w(/I’a T» Q) = _H(T7 Qv aqw(T7 Q)) = _H(T7 Qa aq¢(Tv Q)) < at(b(Tv Q)
As a consequence, there exists § > 0 such that
aﬂU(T, t7 Q) - 8t¢(ta Q) <0

forr,t €T — 4, T[. Since w(r,7,Q) = &(7,Q), we deduce by integration that

T
w(r, T,Q) — (T, Q) = / Drew(r,t,Q) — Bb(t, Q) dlt < 0

provided T € |T — 6, T|, which proves our claim.
Since we are considering monotone operators compatible with (HJ) we have
w(r, T, Q) = T w,(Q) = TV 6,(Q) > T ur (Q) = u(T, Q);
hence (T, Q) > u(T,Q), which is a contradiction. O

This aside through viscosity solutions being complete, let us turn our attention to
more geometric aspects of the Lax—Oleinik operators. We denote by I, the graph
of the differential of v on its domain of definition,

I, :={(q,du(q)): ¢ € R, du(q) exists}.
PROPOSITION 4.8. Let u be a semi-concave and Lipschitz function. The set
QOS(I;TO'u)

s contained in I, for each t > 0, and it is a Lipschitz graph.
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Proof. In view of the Markov property, it is enough to prove the result for ¢ € ]0, o].
Let (¢,p) be a point of 'y, which means that the function Tyu is differentiable at
q and that d(T{u)(q) = p. Let © be a minimizing point in the expression T{u(q) =
ming u(f) + SE(H, ). Since each of the functions u and S§(-,q) are semi-concave,
this implies that they are both differentiable at ©, and that du(©) 4+ 955§(0, q) =
0. Moreover, this implies that the function u(©) + S§(O,-) touches the function
Tiu from above at point ¢, and hence that S¢(O,-) is differentiable at ¢, with a
differential equal to p. We then have

00 (q,p) = ¢} (q,0:55(8,q)) = (0, —0S4(0,q)) = (6,du(6)) C I,.

We have proved that ¢f(I'ry,) C . Moreover, we have Q}(I'ry,) C Z, where
T C RY is the set of points # that are minimizing in the definition of Tgu(q) for
some point q.

CLAIM 4.9. The function u is C*' on I. This means that u is differentiable at
each point of Z, and that the map 6 — du(0) is Lipschitz on I. In other words, the
projection of Iy to R contains I, and the set

FU|I = {(eadu(a))a 0 € I}
18 a Lipschitz graph.

To prove the claim, we first prove that u has C-superdifferentials and C-sub-
differentials at each point of Z, where C is a common semi-concavity constant of all
the functions —S§(+, ¢) and of the function u. The existence of a C-superdifferential
follows from the C-semi-concavity of u. To prove the existence of a C-subdifferential
at a point © € Z, we consider a point g such that u(©) + S§(0, q) = Tiu(q). Such a
point exists by definition of Z. This implies that the function 6 — w(0)+S§(6, q) has
aminimum at § = ©; hence, each C-subdifferential of —S{(-, ¢) is a C-subdifferential
of w. The claim then follows from a result of Fathi (see proposition A.4).

Let now (g,p) be a point in the closure I Tiu of I'rt,. There exists a sequence
(Gnspn) of points of Iy, that converges to (¢,p). By definition, the function Tiu
is differentiable at ¢, and p,, = d(Tgu)(gn). Let ©,, = QY(qn, pn) be the sequence
of points such that

Tu(gn) = u(Gn) + Sb(Ons an).

The sequence O, is converging to © = QY%(q, p), and, at the limit, we see that
Tyu(q) = u(®) + S5(6, q).

We conclude that @ € Z. Since we have already proved the Lipschitz regularity of
du on Z, we deduce that

7 (g,p) = im(p; (gn, pn)) = Lim(O, du(On)) = (8,du(0)) € Iz C L.
O

The action of the Lax—Oleinik operators on semi-convex functions also has a
remarkable property; see [4]. It is useful to denote by L, the set of point (Q, P)
such that P is a subdifferential of u at (). Note that I, C L,,.
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PROPOSITION 4.10. If u is K-semi-convex, then for each § € ]0,1[ there exists
T > 0 such that T¢u is (K + 6)-semi-convez, and hence C*t, for each t € ]0,T].
One can take 5

T=—°
2M (3 + 2K)?
Proof. Since u is K-semi-convex, for each (Q, P) € L,, we have

u(g) > w(Q) + P(q— Q) — Klg — Q|*.
We denote by lg,p(¢) the function on the right in this inequality, so that

u= max lgp.
@pPyeL, I
Taking T as in the statement, it follows from theorem 1.9 that the functions
Ti(lg.p), t € [-T,T), are C? with a second derivative bounded by 2K + 4tM (1 +
2K)? < 2K + 26. We claim that
Tiu= max T¢(l ,
0 (Q)PféL o(lq.p)
for t € [0,7] N [0, 0], which implies that Tgu is (K + 4tM (1 + 2K )?)-semi-convex.
We prove the claim in two steps. First, the inequality

Tiw > max TE(l
0 (Q.P)eL O(QJ:’)

follows immediately from the fact that u > lg p for each (Q, P) € L in view of the
monotony of T} (see property 4.4). Let us fix a point (¢,q) and prove the converse
inequality at this point. Since

1
u(0) + S5(0,9) > u(g) + P(0 — q) = K(0 = q)* + 5510 — q|* = tM
and since K < 1/2tM, there exists a point 6 such that Tgu(q) = u(6) + S§(6, q).
Assuming that ¢ < o, this implies that the point (6,¢) = (0, —00S5§(6,q)) belongs
to Ly, and that ¢ = Q}(6, (). Then, we have

T5(lo.c)(q) = lo,c(0) + S5(0, q) = u(f) + S4(0,q) = Tgu(q);

hence
Tiy < max T ,
ou(q) @ Per o(lo.p)(q)
provided ¢ < 0. We conclude that T{u is semi-concave with constant K + 2¢tM (1 +
2K)? for t € [0,0] N [0,T]. We can then apply this result to T u, and, since K +
tM(1+2K)? < K + 1, we conclude that the function T.TS u is semi-concave with
constant

K+20M(1+2K)? +2tM(3+2K)? < K +2(c +t)M(3+2K)* < K + 1

for t € [0,0] N [0,T — ). In other words, the functions T¢u are semi-concave with
constant K + 2tM (3 + 2K)? for t € [0,20] N [0,T]. We can apply this argument as
many times as necessary and obtain that the functions T{u are semi-concave with
constant K + 2¢tM (3 + 2K)? for each t € [0,T]. O
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The following was first stated explicitly by Arnaud in [2].

ADDENDUM 4.11. Under the hypotheses of proposition 4.10, we have

L,= @?(FTOtu)

for each ¢ € ]0,T[. Moreover, for each ¢, we have T{u(q) = u(f) + S§(6, q), with
0 = Q7 (¢, d(Tgu)(q))-

Proof. For each ¢ € R? we have seen that there exists (#,() € L, such that
Tiu(q) = u(0) + Si(0,q) and ¢ = —3pSE(6,q). Since we know that Tgu is C1,
the first of these equalities implies that d(T¢u)(q) = 015§(0,q), while the second
implies that ¢f(60,¢) = (¢,8155(0, q)). We conclude that o (I'r¢,) C L. Moreover,

0 = QY (q,d(Tgu)(q))-

Conversely, let us consider a point (6,() € L, and denote by [ the associated
function lg .. By proposition 4.3, the function (¢,¢) — T¢l(q) is the restriction to
10, T of the C? solution of (HJ) emanating from [. As a consequence, we have

T;1(Q0(0,¢)) = 1(0) + S50, Q58 ©)) = u(B) + S5(8, Qo(8. 0)) > Tyu(Q(6,¢))-

Since we know from the monotony property that T¢l < Ttu, we conclude that this
last inequality is actually an equality. Setting g1 = Q5(6, (), this implies that

(6.¢) = (0. —005(0, 1)) = ¢} (a1, 01550, 01)) = 9} (a1, ATgu(ar)) C &} (Dgpa)-
We conclude that L, C @?(FTOtu). O

ADDENDUM 4.12. Under the hypotheses of proposition 4.10, we have Tto oTlu=u
for each t € ]0,T7.

Proof. Let us define the map F: ¢ — QY(q,d(T¢u(q))). By addendum 4.11, the
image of F is equal to the projection of L, on R?; hence, the map F is onto. Given
a point 6 € R, we consider a preimage g of § by F, and write

T o Tu(6) > Tiulg) — S(0,q) = u(6)

where the last equality comes from addendum 4.11. We conclude that TP oTiu > u;
hence, TP o Tgu = u. O

The following extrapolates the ideas in [7]. For tg € R and §,¢ > 0, let us define
the operators

R' =T

to+5t to—t ot . to to—ot to+t
toror 0Lyt 0Ty R =T, 50T, oT,)".

THEOREM 4.13. Yihere exists 6 € )0, 1], which depends only on m and M such that
the operators R', Rt have the following properties:

(i) for each to € R and t € 10,1, the finite-valued functions in the images of R
and R’ are uniformly C*1;

(ii) for each semi-concave function u, there exists T > 0 such that R'u < u and
Riu < u for each to € R and t €]0,T;
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(iif) for each semi-convex function u, there exists T > 0 such that R'u > u and
R'u > u for each to € R and t €0, T;

(iv) for each CY' function u, there exists T > 0 such that R'u = u and Ru = u
for each to € R and t €10, T7.

Proof. The finite-valued functions in the image of ’_I}to‘)ft& are C'/t-semi-concave, by

lemma 4.1 (we assume that ¢ € ]0, 1[). Then, by proposition 4.10, the finite-valued
functions in the image of Ttto‘) st oTttOOftét are (2C'/t)-semi-concave, provided

5t < ¢ -
S tM(3+2C/t)2  M(3t+20)?’

which holds if § < C/(M (3 4 2C)). For such a d, the finite-valued functions in the
image of R! are uniformly semi-concave. They are also uniformly semi-convex, and
hence uniformly C**. The proof is similar for R. Let us now write

R' .= (T

to+ot to to—t
to+ot © T, ) O(Tto—t oy, )s

which implies, using the monotony, that

Rlu> o

to+dt t to rto—t
rsto L) " and Ru < T,)_,oT,) u.

By addendum 4.12 we conclude that R'u > u for small ¢ when v is semi-convex.
All the statements of (ii) and (iii) follow by similar considerations. Statement (iv)
follows from (ii) and (iii). O

5. Subsolutions of the stationary Hamilton—Jacobi equation

We assume from now on that the Hamiltonian does not explicitly depend on time.
Then, in addition to (HJ), we can consider the stationary Hamilton—Jacobi equation

H(q,du(q)) = a, (HJa)

for each real parameter a. This stationary equation is the main character of Fathi’s
companion lecture (see also [16]). Formally, a function u(q) solves (HJa) if and only
if the function (¢, q) — u(q) — at solves (HJ). It is not hard to check that this also
holds in the sense of viscosity solutions: the function u(q) is a viscosity solution
of (HJa) if and only if the function (¢, q) — u(q) — at is a viscosity solution of (HJ).
Let us give a summary for later reference.

HypOTHESIS 5.1. We say that H is autonomous if it does not depend on the time
variable.

In this autonomous context, we have T7 Tt = T}. We shall denote this operator
by T?. The Markov property becomes the equality T o T® = T**%. In other words,
the Lax—Oleinik operators form a semi-group, the famous Lax—Oleinik semi-group.
Another important specificity of the autonomous context is that the Hamiltonian
H is constant along Hamiltonian orbits, as can be checked by an easy computation.
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PROPOSITION 5.2. Given a Hamiltonian H satisfying hypotheses 1.8, 2.1, 3.2 and
5.1, the following properties are equivalent for a function u:

(i) the function u is Lipschitz and it solves the inequality H(q,du(q)) < a almost
everywhere;

(i) the inequality u(q1) — u(qo) < A*(qo,q1) + at holds for each qo € R%, q €
Rt > 0;

(iil) the inequality u < T'u + ta holds for each t > 0;

(iv) the function u is a wviscosity subsolution of the Hamilton—-Jacobi equation
H(q,du(q)) = a;

(v) the function u is Lipschitz and the inequality H(q,du(q)) < a holds at each
point of differentiability q of u (by Rademacher’s theorem, the set of points of
differentiability has full measure).

The function u is called a subsolution at level a, or a subsolution of (HJa), if it
satisfies these properties.

Proof. Tt is tautological that (v) = (i) and easy that (ii) <= (iii). Let us prove
that (i) = (ii), following Fathi. If (i) holds, then there exists a set M C R? of full
measure composed of points of differentiability ¢ of u such that H(q,du(q)) < a.
We first assume that ¢ < o and prove (ii) (recall that A* = S*). Let us consider the
map

(90, q1,7) = (q(7),q1,7),

where ¢(7) is the value at time 7 of the unique orbit (¢(s),p(s)) that satisfies
q(0) = qo and ¢(t) = q;. This map is a diffeomorphism of R? x R%x]0, ¢[, the inverse
diffeomorphism being

(97 q1, T) = (Q(O)7 qi, T)a

where (q(s),p(s)) is the unique orbit such that ¢(7) = 6 and ¢(t) = ¢1. As a
consequence, for almost every pair (qo, q1), the function w is differentiable at the
point ¢(s) for almost every s € ]0,¢[. If (qo,q1) is such a pair, we have, using the
convexity of H in p,

u(q
-

:/mww@ﬂm»mmm

u(q1) — u(qo) (t)) — u(q(0))
du

q(s) . q(s) dS

;HM%mwm+%HM@m®%M@—HM$M$NS

at +5'(q(0), q(t))
at + A*(qo, q1)-

N

N

We have proved the desired inequality for almost every pair (qo, ¢1), and hence on a
dense subset of pairs. Since both sides of the inequality are continuous, we deduce
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that the inequality holds for all pairs (qo,q1), provided ¢ < o. In order to deduce

the inequality when t > o, we write, for n large enough,

A'(go.q1) +at = min (S™(qo,01) +at/n+ -+ + S (gn_1,q1) + at/n)

1y--sUn—1

> min (u(0) ~ulgo) + -+ ulgr) — u(6a 1))

= u(q1) — u(qo)-

Let us now prove that 3 = 4. Let u be a function satisfying (iii). This function then
satisfies (ii); hence, it is Lipschitz. We consider a C? function v(g) that touches u
from above at some point #, which means that v — u has a global minimum at 6.
Since the function w is Lipschitz, we can modify v at infinity and assume that it
has bounded second differential. Then, there exists a C? solution V(¢,q) of (HJ)
defined on |—T,T[ with T > 0, and such that V(0,q) = v(q). For ¢ > 0, we have
V; = T'v, by proposition 4.3. Since v > u, we obtain that

V(t,q) = T'v(q) > T'u(q) > ulq) —at

for t € )0, T[; hence, 0;V(0,6) > —a (recall that 6 is the point of contact between
uw and v). Since we know that V solves (HJ), we conclude that

H(0,0,V(0,0)) = H(6,dv(6)) < a.

The proof that (iv) = (v) is classical and can be found in [13], but we recall
it here for completeness. If ¢ is a point of differentiability of u, then du(q) is a
superdifferential (but not necessarily a proximal superdifferential) of u at ¢; hence,
H(q,du(q)) < a. We shall now prove that the function u is locally Lipschitz. The
estimate H(q,du(q)) < a, which holds at each point of differentiability of u, then
implies that it is globally Lipschitz in view of hypothesis 3.2.

Let B(Q,1) be a closed ball, of radius 1. Let us set

(u(0) = u(q))-

= max
0eB(Q,2),9eB(Q,1)
Let k be a positive number greater than r and such that |p| > k = H(q,p) > a for
each ¢. Such a k exists by hypothesis 3.2. Given ¢ in B(Q, 1), the function

0 — k|0 — q| —u(0)

then has a local minimum in the interior of the ball B(Q,2). If this minimum is
reached at a point ¢; # ¢, then the function v(6) := k|0 — ¢| is smooth at ¢; and,
since u is a viscosity subsolution, we have H(q1,dv(q1)) < a, which contradicts the
fact that |dv(q1)| = k. Hence, the minimum must be reached at ¢, which implies
that k|6 — q| — u(f) = —u(q) or, equivalently, that

u(0) —u(q) < k|0 —q|

for each § € B(Q,2) and all ¢ € B(Q,1). We conclude that u is k-Lipschitz on
B(Q.1). o

COROLLARY 5.3. If u is a subsolution of (HJa), then, for each t > 0, T'u is a
subsolution of (HJa), and so is T"u.
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Proof. The function w is a subsolution if and only if T®u + as > u for each t > 0.
Applying T, we obtain T!'T*u + as = T*T'u + as > T'u. Since this inequality
holds for each s > 0, we conclude that T?u is a subsolution. O

COROLLARY 5.4. If the function w is Lipschitz, and if the Hamiltonian is auto-
nomous, then the functions T'u,t > 0 are equi-Lipschitz.

Proof. If the function u is k-Lipschitz, then du(q) < k almost everywhere; hence,
u is a subsolution to (HJa) for some a (one can take a = sup, <, H(g,p)). As a
consequence, the functions T%u, ¢t > 0 are all subsolutions to (HJa); hence, they are
K-Lipschitz, with K = sup{|p|, H(q,p) < a}. O

6. Weak KAM solutions and invariant sets
We derive here the first dynamical consequences from the theory.

DEFINITION 6.1. The function u is called a weak KAM solution at level a if T u +
ta = u for each t > 0. Weak KAM solutions at level a are viscosity solutions
of (HJa). We say that the function wu is a weak KAM solution if it is a weak KAM
solution at some level a.

If u is a weak KAM solution, then it is semi-concave (with a semi-concavity
constant that depends only on M and m). By theorem 4.8, for ¢ > 0, we have the
inclusion

¢~ (L) C L,

and this set is a Lipschitz graph. The set

() o= () (L)

neN

is a closed invariant set contained in a Lipschitz graph. It would be a very nice
result to have obtained a distinguished closed invariant subset of our Hamiltonian
system contained in a Lipschitz graph. Unfortunately, at this point, we cannot prove
(because it is not necessarily true) that the set Z*(u) is not empty. In order to
obtain interesting dynamical consequences from this theory, we need an additional
assumption.

HYPOTHESIS 6.2. We say that the Hamiltonian H is periodic if H(q + w,p) =
H(q,p) for each w € Z¢, g € R? and p € R,

Under this hypothesis, we should see the Hamiltonian system as defined on the
phase space T¢ x R%, with T¢ = R?/Z?. Indeed, the flow ' commutes with the
translations (¢,p) ~ (q + w,p), w € Z%. The compactness of this new configura-
tion space has remarkable consequences, summed up in the following Theorem. We
assume in the rest of this section that the Hamiltonian H satisfies hypotheses 1.8,
2.1, 3.2, 5.1 and 6.2.

THEOREM 6.3. If the Hamiltonian is autonomous and periodic, then there exists a
periodic weak KAM solution. The corresponding set T*(u) is a non-empty closed
invariant set that is contained in a Lipschitz graph and is invariant under the
translations (q,p) — (¢ +w,p), w € Z%.
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This latter property on the invariance under translations means that Z* (u) nat-
urally gives rise to an invariant space on the quotient phase space T¢ x R%*.

Proof. Let us first prove the second part of the theorem. If u is a periodic weak
KAM solution, then the set I, is contained in {|p| < C} for some constant C,
and it is invariant under the integral translations; hence, it descends to a compact
subset of T¢ x R%, which we still denote by I,. Then the sets ¢~"(I,) form a
decreasing sequence of non-empty compact sets; hence, their intersection is a non-
empty compact set.

Let us now prove that there exists a periodic weak KAM solution. We follow the
proof of [6], which is slightly different from the original proof of Fathi. Observe first
that the functions A?(qg,q1) are periodic in the sense that A'(qo + w,q + w) =
At(qo,q1) for each w € Z%. This implies that T%u is periodic when u is periodic.
Considering the Cauchy problem for (HJ) with initial condition equal to zero, we
define v (¢, q) := T"0(q). The quantities a™ (¢) = max, v(¢) and a™ (¢) = ming v¢(q)
will be useful. Since the functions v, ¢t > 0 are equi-Lipschitz, there exists a constant
K such that a™(t) — a™ (t) < K for all ¢t > 0. We have

at(t+s) = maxT""50
= max T"(T*0)
<T'(a"(s))
at(s)+T"0)
<a'(s)+a’ (1),

and, similarly,
a”(t+s)=a (t)+a (s).

By standard results on subadditive functions, we conclude that a™ (¢)/t and a™ (¢)/t
converge, respectively, to inf;>o a™(t)/t and sup,-q a~ (t)/t. Since a™ —a~ is bound-
ed, these two limits have the same value: let us call it —a. We have

K—taza t)+K>at(t)>-ta>a (t)2at(t) - K> K —at

for all £ > 0; hence,
K>ov(tq) +ta>-K.

We can now define
u(q) := litm inf(v(t, q) + ta).
—00

We claim that u is a weak KAM solution at level a. Since the functions v; + ta are
equi-Lipschitz and equi-bounded, the function u is well defined and Lipschitz. We
have to prove that T%u + ta = u for all ¢ > 0.

We have

u(t+s,q1) + (t +s)a < v(s,q0) + sa + A'(qo, q1) + ta
for each qg, g1 and t > 0, s > 0. Taking the infimum limit in s yields

u(qr) < u(qo) + A(qo, q1) + ta.

We have proved that u is a subsolution to (HJa).
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Conversely, we have to prove that T?u-ta > u. Let us pick a point ¢ and consider
a sequence t,, such that v(t,,q) +t,a — u(q). Fixing t > 0, we consider a sequence
¢n in R? such that

V(tn, q) + tha = vty — t,qn) + (tn — t)a + A'(qn, q) + ta.

This equality implies that the sequence ¢, is bounded, and we assume by taking
a subsequence that it has a limit ¢’. We can also assume that the sequence v(t, —
t,q') + (t, — t)a has a limit, which we denote by I. Note that [ > u(q’). Since the
functions v; are equi-Lipschitz, we have v(t,, — t,¢,) + (t, — t)a — [; hence, taking
the limit in the equality above,

u(g) =1+ A'(d',q) + at > u(d) + A'(¢, ) + at > T"u(q) +at.
We have proved that u is a periodic weak KAM solution at level a. O

The periodic weak KAM solutions at level a are the periodic viscosity solutions
of (HJa), as is proved in Fathi’s companion paper. The existence of periodic vis-
cosity solutions was first obtained by Lions et al. in a famous unpublished preprint
(see [17]). The most important aspect of Fathi’s weak KAM theorem that we just
exposed is that these viscosity solutions have a dynamical relevance and give rise
to invariant sets.

Let us comment a bit further in that direction, and explain the name ‘weak
KAM’. Consider a periodic Lipschitz function u, and the associated set I, which
we consider here as a subspace of T¢ x R%*.

Assume first that u is C2, so that I}, is a C! graph. This graph is invariant
if and only if there exists a such that u solves (HJa). This follows from §1: if u
solves (HJa), then the function U(t,q) = u(q) — at solves (HJ); hence,

@t(Fu):FUt :Fu

Conversely, if I', is invariant, then I'pe, = '(I,) = I, by corollary 1.4; hence,
T'u is equal to u up to an additive constant a(t). Since T is a semi-group, it is
easy to deduce that a(t) = at for some a € R. As a consequence, u is a C? weak
KAM solution; hence, a classical solution of (HJa).

The classical KAM theorem gives the existence, in certain very specific settings, of
some invariant C' graphs of the form I',,. From what we just explained, the theorem
can be interpreted as giving the existence of C? solutions of (HJa), although this
point of view is not the right one to obtain its proof. It is natural to expect that the
Hamilton—Jacobi equation could be used to produce invariant sets in more general
situations. Since we do not know any direct method to prove the existence of C?
solutions of (HJa), we should deal with some kind of weak solutions. However, if
u is just a Lipschitz solution almost everywhere, we cannot say much about the
dynamical properties of I',. It is remarkable that the inclusion o*(I3,) D I, holds
for viscosity solutions (or, equivalently, weak KAM solutions) in the convex case.
This is the starting point of Fathi’s construction of the invariant set Z*(u) that we
have presented in this section.
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7. Regular subsolutions and the Aubry set

We abandon for a moment hypothesis 6.2, and consider a Hamiltonian satisfying
hypotheses 1.8, 2.1, 3.2 and 5.1. We describe a new construction of invariant sets
based on the study of regular subsolutions, and define the Aubry set. We mostly
follow [4] in this section. The following result is the basis of our constructions
(see [2,4,15]).

THEOREM 7.1. If (HJa) admits a subsolution, then it admits a CY! subsolution.
Moreover, the set of C'' subsolutions is dense in the set of all subsolutions for the
uniform topology.

Proof. Let u be a subsolution at level a. We use the operator R = T o TO+Dt o T
of theorem 4.13 to regularize u. Since the operators T and T" preserve subsolutions,
so does R?. We claim that

u—(C+a)(1+6)t < Ru<u+ (C+a)(l+ ),

with a constant C' that depends only on m and M. This implies that the function
R'u is finite valued. If the parameter § has been chosen small enough, then, by
theorem 4.13, the functions R' are C''! subsolutions, which converge uniformly to
w as t — 0. The bound on R'u claimed above follows from the following ones in
view of property 4.4:

v—sa<T°v<v+Cs, v—Cs < T < v+ sa,
=0

which hold for each s
seen by writing

and each subsolution v at level a. The first one can be

u(q) — as < T*u(q) < u(q) + A%(q,q) < u(q) + Cs.

This ends the proof of theorem 7.1. Observe that we could have used the simpler
operator T oT*, as was done in [4], but the operator R! deserves attention for
some nicer properties. O

DEFINITION 7.2. The critical value of H is the real number « (or a(H)) defined as
the infimum of all real numbers a such that (HJa) has a subsolution. The subsolu-
tions of (HJa) are called critical subsolutions.

LEMMA 7.3. We have the estimate —M < a < M.

Proof. The function v = 0 is a subsolution at level M; hence, a < M. Conversely,
since H > — M, there exists no subsolution at level a when a < —M. O

PROPOSITION 7.4. There exists a C11 subsolution of (HJ).

Proof. Let a,, be a sequence decreasing to «. Since a,, > «, the Hamilton-Jacobi
equation at level a,, has a subsolution u,,. The sequence u,, is equi-Lipschitz, and we
can assume by adding constants that it is also equi-bounded. Taking a subsequence,
we can also assume that it converges locally uniformly to a limit «. Taking the limit
n — oo in the inequalities u,(q1) — un(q0) < A%(qo, q1) + tan, gives u(qr) — u(qo) <
A'(qo, q1) + ta,. This holds for all gg, q; and ¢ > 0; hence, u is a subsolution at level
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a, or, in other words, a critical subsolution. Since there exists a critical subsolution,
theorem 7.1 implies that there exists a C'1'! critical subsolution. O

DEFINITION 7.5. The projected Aubry set is the set A C R? of points ¢ such that
the equality H(q,du(q)) = « holds for all C! critical subsolutions u.

We point out that .4 might be empty without additional hypotheses.

LEMMA 7.6. If ¢ € A, then all C' critical subsolutions u have the same differen-
tial at q. In other words, the restriction I3, 4 does not depend on the C' critical
subsolution wu.

Proof. Let v and v be two critical subsolutions, and ¢ a point in .A. We have to
prove that du(q) = dv(q). Assume, by contradiction, that this equality does not hold
and consider the subsolution w = %(u + v). Since H(q,du(q)) = H(q,dv(q)) = a,
the strict convexity of H(q,-) implies that H(q,dw(q)) < «, which contradicts the
definition of A. O

LEMMA 7.7. There exists a C™' subsolution ug that satisfies the strict inequality
H(q,duo(q)) < « for all q in the complement of A.

Proof. The set of C! functions is separable for the topology of uniform C* conver-
gence on compact sets. This topology can be defined, for example, by the distance

) = 37 WPz reen(ulo) + duto))
n
Since a subset of a separable space is separable, there exists a sequence u, of C!
critical subsolutions which is dense for this topology in the set of all C! critical
subsolutions. Let us set
ao

2% suppgp,lgi<n (L + |ur(g)] + [dur(g)])

Ap =

and choose ag such that 3 -, a, =1. The sum } -, anu, converges uniformly
with its differentials on each compact sets to a C! limit vg. The function vg is a
critical subsolution, and we claim that H(q,dvo(g)) = a if and only if ¢ belongs to
A. Indeed, this equality holds only if all the inequalities H(q, du,(q)) < « are equal-
ities, which, in view of the density of the sequence u,,, implies that H(q,du(q)) = «
for all C! subsolutions u. By definition, this implies that ¢ belongs to .A. We have
constructed a C! subsolution vy such that

H(g,dvo(q)) < a

outside of A. We have to prove the existence of a C™! critical subsolution with
the same property. We consider a smooth function V(q), bounded in C?, which is
positive outside of A4 and such that

0< V(g) <a— H(q,dv(q))

for all ¢ € R". The modified Hamiltonian H(q,p) = H(q,p) + V(q) satisfies all our
hypotheses. Since H > H, the corresponding critical value & satisfies & > «. Since
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vg is a subsolution of the inequality

H(q,dvo(q)) < a,

we can apply theorem 7.1 to H at level o, and obtain the existence of a CU!
subsolution ug to the same inequality. The inequality

H(g,duo(q)) < a—V(q)

implies that ug is a critical subsolution for H that is strict on the set {V > 0},
which, from our construction of V| is the complement of A. O

DEFINITION 7.8. The Aubry set A* is defined as
A" =\ Tupa = Tus

where the intersections are taken on the set of C! critical subsolutions.

In view of lemma 7.6 we have A* = I, 4 for each C' subsolution w; hence,
m(A*) = A, where m: R? x R™ — R? is the projection on the first factor. To check
the second inequality, it is sufficient to prove that (), I, C A*. Let ug be a o
critical subsolution such that H(q, dug(q)) < « outside of A. Given a point (qg, po)
in I,, — A*, we can slightly perturb the critical subsolution uy around ¢y to a
critical subsolution u; such that dui(qo) # dug(go) (we use the strict inequality
H(q,dup(q)) < ). The point (qo,po) does not belong to I,,; hence, it does not
belong to (), Iu, which ends our proof.

The set A* is contained in the Lipschitz graph I,, for each C! subsolution uy.
As in §6, we have obtained an invariant set contained in a Lipschitz graph, but
which may be empty in general.

PROPOSITION 7.9. The Aubry set is a closed invariant set.

Proof. Let ug be a C1! critical solution such that H(q, dug(q)) < a outside of A. By
proposition 4.10, there exists T > 0 such that Tuq is still C1! for t € [T, T]. Given
(q,p) € A*, we conclude that, for ¢ € [0,T], we have p = d(T"ug)(q). Setting 6 =
Q7 %(q,p), the addendum to proposition 4.10 implies that T uq(q) = uo(0)+S5%(0, q),
and that

@t(aa duO(o)) - (qap)

Since the flow preserves the Hamiltonian, we get that H (0, dug(6)) = «; hence, the
point @ belongs to A, and then

© "(q,p) = (0,dug(6)) € A*.

We have proved that ¢~*(A*) C A* for ¢ € [0,T]. We can prove in a similar way,
using the CH! subsolution Ttuq instead of Ttug, that ¢f(A*) C A* for t € [0,T],
and hence that

pl(AT) = A7
for each t € [T, T, which clearly implies that this equality holds for all ¢. We have
proved the invariance of A*. O
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PROPOSITION 7.10. The equality
T'u(q) — ta = u(q) = T'u(q) + to

holds for each critical subsolution u, each t > 0 and each q € A. The inclusion
A* C I, holds for each critical subsolution; hence, the inclusion A* C Z*(u) holds
for each weak KAM solution at level o.

Proof. Let (q(s),p(s)) be a trajectory contained in A*, and let ¢ > 0 be given. For

each O critical subsolution u, we have p(s) = dug(sy, and

u(g(t)) — u(g(0)) = / duug(oyi(s) ds

t
=t + / duq(s)(j(s) — H(q, duq(s)) ds
0
> A%(q(0),4(t)) + ta.

Since wu is a critical subsolution, the second point in proposition 5.2 implies that
the last inequality must be an equality; hence,

u(q(t)) —ula(s)) = A" *(q(s),q(t)) + (t — )

for each ¢ > s. In the terminology of Fathi, we have proved that the curve ¢(s) is
calibrated by the subsolution u. We can now write

u(q(t)) < T'u(q(t)) + tor < u(q(0)) + A'(q(0), q(1) + tor = u(q(t)).

This implies that T%u 4 tow = w on A, and, similarly, T%u — ta = u on A. Let us
now fix ¢ € ]0,0[. Given an orbit (¢(s),p(s)) in A*, we have

u(q(0)) < u(6) + 56, 4(0)) + ta

for each subsolution v and each 6, with equality at § = g(—t). This implies that
015(q(—t),¢(0)) is a superdifferential of u at ¢(0). This holds, in particular, for
C' subsolutions, which satisfy du(g(0)) = p(0); hence, 915(q(—t),q(0)) = p(0).
We have proved that p(0) is a superdifferential of u at ¢(0). Similarly, using the
inequality

u(q(0)) = u(8) - S*(4(0),6) — ta,

with equality at 6 = ¢(t), we conclude that p(0) is a subdifferential of u at ¢(0). This
implies that u is differentiable at ¢(0), and that du(g(0)) = p(0). As a consequence,
A* c I, for each subsolution u. O

In the course of the above proof, we have established the following lemma, which
will be needed later.

LEMMA 7.11. Let u be a subsolution at level a, and let (q(s),p(s)) be a Hamiltonian
trajectory contained in I, N{H = a} (note that this set is not necessarily invariant
in general). Then, the equality T*u(q(s)) — ta = u(q(s)) = T*u(q(s)) + ta holds for
each t > 0 and each s € R.
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8. The Mané potential

In this section, we work with a Hamiltonian satisfying hypotheses 1.8, 2.1, 3.2
and 5.1. The Mané potential at level a is the function

¢a(q07 ql) = %gg(At(qiih ‘h) + at)

This function was first introduced by Ricardo Mané (see [19]). We leave as an easy
exercise for the reader the proof of the triangle inequality

(g0, q1) < P"(qo,0) +P9*(0,q1).

In view of proposition 5.2, each subsolution u at level a satisfies

u(qr) — u(qo) < 2%(q0, 1)

for each qg and q;. We conclude that @ is finite if there exists a subsolution at level
a, which holds if and only if a > «. Conversely, If the function @ is finite, then we
see from the triangle inequality that the function ¢ — &*(qo, ¢) is a subsolution at
level a, which implies that a > «. The estimates of lemma 3.3 imply that

(g0, q1) < 2¢/2m(M + a)|q1 — qo

provided a > « (note that a > —M). We have proved that the Mané potential is
the function called the viscosity semi-distance in [13].

PROPOSITION 8.1. Ifa > «, then the function g — $*(qo,q) is the mazimum of all
subsolutions u at level a that vanish at qo. If a < «, then there is no such subsolution
and 9% is identically equal to —oo.

This statement also implies that the Mané Potential at level a depends only on
the energy level {H = a}. More precisely, let G be another Hamiltonian satisfying
our hypotheses and such that H = a & G = a. Then, the sets {H < a} and
{G < a} are equal, which implies, in view of the first characterization of subsolutions
in proposition 5.2, that G and H have the same subsolutions at level a. As a
consequence, they have the same Mané potential at level a. This is also reflected in
the following proposition by the fact that the involved orbits are contained in the
set {H = a}.

PROPOSITION 8.2. Given qg # q1, there exist T € ]0,00] and an orbit
(a(s).p()): (=7,0] = R? x R™*
such that ¢(0) = q1, A%qo,q(s)) — as = P*(q(s), q1),
®*(q0,q(s)) +2*(4(s), 1) = P*(q0, 01
and H(q(s),p(s)) = a for each s € (—,0]. If, moreover, T is finite, then q(—7) = qq.

Proof. 1If qo # q1, then either the functions t — A*(qo, ¢1) + at reach their minimum
at some finite time 7 > 0, or they have a minimizing sequence 7,, — oo. This follows
from lemma 3.3.
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In the first case, there exists an orbit (q(t),p(t)): [-7,0] — R? x R% such that
9(=7) = q0, q(0) = q1, and

0
/ p-¢—H(q,p)dt = AT (q0,q1) = (g0, 1) — Ta.

We obtain, for each s € [—7,0], that

0
p-¢—H(q,p)dt

/.
/ p- qu)dt+/sop-q—H(q,p)dt

P“(qo, q1) — a7 =

> A% (qo, q(s)) + A%(q(s), q1)
> 9%(qo,q(s)) —a(s + 1) + P*(q(s),q1) + as
Z@G(QOa(h)_aT

We conclude that all these inequalities are equalities; hence,

D(qo,q(s)) +D“(q(s),q1) = Y*(q0, q1)-

We also deduce from the above chain of inequalities that A=°(q(s),q1) — as =
@%(q(s),q1), which implies that the function ¢ — A%(q(s),q1) + at is minimal for
t = —s. Taking s € |—0, 0], we can differentiate with respect to t at t = —s and get

Nji——sS"(a(s),q1) +a = 0.

Recalling the equality
atS_S(q(s)v (II) + H(qlap(o)) =0

(because p(0) = p1(—s,q(s),q1) in the notation of §2), we conclude that

H(q1,p(0)) =a

and, since the Hamiltonian is constant on Hamiltonian orbits, H(q(t), p(t)) = a for
each t.

In the second case, there exists a sequence of orbits (¢, (t), pn(t)) on [—7,, 0] such
that

0
/ Dn  Gn — H(Qnypn) dt +ar, = A™ (QO7q1) +ar, < QG(QO, ql) + 0n,

Tn

where d,, — 0. Let us denote h,, := H(gn(s),pn(s)); this does not depend on s. By
lemma 3.4 and the above inequality, we have

0
m
2 Tl = (M M) < / Pn - OpH (qnspn) — H(qn, pn) dt < 2%(qo, q1) + 0n;
hence, the sequence h,, is bounded. As a consequence, the curves p, (s) are uniformly
bounded; hence, so is ¢, (s) = OpH(gn(s),pn(s)). On each compact interval of time
[s,0], the curves z,(t) = (gn(t),pn(t)) are thus uniformly bounded, and hence
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uniformly Lipschitz. Up to taking a subsequence, we can thus assume that the
curves ,(t) converge, uniformly on compact time intervals, to a Hamiltonian orbit
z(t) = (q(t),p(t)): (=00, 0] = RY x R, Passing to the limit in the inequality

¢a<q0,qn(s)> + dja(Qn(S)aCh) < qja(QO,CIl) + 671’

which holds for each s € [—7,,0], yields

2%(qo,q(s)) +2"(q(s), q1) < ?*(q0, 1),

which must actually be an equality. We prove as in the first case that H (g1, p(0)) =
a, thus H(q(s),p(s)) = a. O

The projected Aubry set A can be characterized in terms of the Mané potential
(see also [13]).

PROPOSITION 8.3. The following statements are equivalent for a point gy and a real
number a, where we denote by u the function ®*(qo,-):

(i) g € A and a = «;

(i) T u(qo) + ta = u(qo) = 0 for each t > 0;
(i) the function u is a weak KAM solution at level a;
(iv) wu is differentiable at qq.

Proof. (i) = (ii). This follows from proposition 7.10, since u is a subsolution
at level a = a.

(i) = (iii). Let us fix ¢ > 0 and ¢;. We have to prove that there exists  such
that u(q1) > u(0) + A'(0, q1) + ta (this inequality is then an equality). If ¢; = qo,
the existence of this point follows from the equality T u(qo) + ta = u(qo).

If ¢1 # qo, we can apply proposition 8.2 to this pair of points. With the notation
of proposition 8.2, if 7 > ¢, then the point § = ¢(—t) fulfils our demand. If 7 < ¢,
then we set s = t — 7. We have ¢(—7) = qo and A" (qo,q1) + a7 = u(q1). Since
T5u(qo) + sa = u(qo), there exists 6 such that u(6) + A%(6,qo) + sa = u(qo) = 0.
The infimum in the definition of T¥u(qo) exists because u is Lipschitz. We conclude
that

U’(G) + At(ea ql) +at < u(ﬁ) + AS(G’ qo) + sa + AT(QOa 91) +ar = U(Ql)

(ili) = (iv). If u is a weak KAM solution, then it has a proximal superdifferential
at each point. Conversely, if v is a C' subsolution, then u — v has a minimum at
qo; hence, dv(qo) is a subdifferential of u at gp. The function u both has a super-
differential and a subdifferential at qg; hence, it is differentiable at ¢q.

(iv) = (i). If a > a, or if gy does not belong to A, then there exists a C*
subsolution v at level a that is strict near gy. We can then slightly perturb the
function v near g¢o and build a subsolution w such that dw(qg) # dv(qo). In view
of the characterization of u as the largest subsolution vanishing at ¢, we conclude
that dv(go) and dw(qo) are subdifferentials of u at go; hence, u is not differentiable
at this point. O
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The Mané potential also allows us to build weak KAM solutions in the non-
periodic case by the Busemann method (see [10,13]). Let ¢,, be a sequence of points
of R? such that |g,| > n. We consider the sequence of functions

un(q) = D% (qn, q) — P*(qn, ).

By construction, u,(qo) = 0, and it follows from the triangle inequality that the
functions w,, are equi-Lipschitz. We can then assume, without loss of generality, that
the functions u,, converge, uniformly on compact sets, to a Lipschitz limit u(q).

PROPOSITION 8.4. The limit function u(q) is a weak KAM solution at level a.

Proof. The functions w,, are all subsolutions at level a, which means that w,(q1) —
un(qo) < A¥(qo, q1) + ta for each t > 0, qo, g1. At the limit n — oo, we obtain that
Ttu +ta > u for each t > 0.

We have to prove that T?u +ta < u for all ¢t > 0. Let us fix a point ¢ and a time
t > 0, and consider a sequence t,, such that

Alr (QNa Q) + aty, < Qsa(%u Q) =+ 1/77,.

This inequality implies that

1
Mwn —q* <1+ (M —a)t, +2v/2m(M + a)|g, — q

and, since |q, — ¢| — oo, that ¢, — oo. When n is large enough, we have ¢,, > t and
there exists 6,, € R? such that A (g,,q) = A" (g, 0,) + A*(0,,q). This implies
that

> A" (¢n,q) +at, —1/n

> A" g, 0,) + alt, —t) + AY0,,q) +at — 1/n

> (g, 0,) + A (0,,q) +at —1/n.

This inequality implies that
un(Q) P un(en) + At(en, q) + at — 1/’/l

Since the functions wu, are equi-Lipschitz, this implies that the sequence 0, is
bounded, by lemma 3.3. By taking a subsequence, we assume that 6,, has a limit
0, and, at the limit, we obtain

ulq) = u(®) + A'(6,9) + at,
which implies that u(q) > Ttu(q) + ta. O

9. A return to the periodic case

A more precise link can be established between the contents of §§6 and 7 under
the assumption that H is periodic (see hypothesis 6.2). It is useful first to expose
a variant of § 7 adapted to the periodic case. We leave as exercises the proofs that
are direct adaptations of those given above. From now on, we assume hypotheses
1.8, 2.1, 3.2, 5.1 and 6.2 hold.
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THEOREM 9.1. If (HJa) admits a periodic subsolution, then it admits a periodic
CY1 subsolution. Moreover, the set of periodic C*' subsolutions is dense in the set
of all periodic subsolutions for the uniform topology.

DEFINITION 9.2. The periodic critical value of H is the real number «(0), defined
as the infimum of all real numbers a such that (HJa) has a periodic subsolution.
The periodic subsolutions at level «(0) are called critical periodic subsolutions.

DEFINITION 9.3. The projected periodic Aubry set is the set A(0) C T¢ of points
q such that the equality H(q,du(q)) = «(0) holds for all C* periodic critical sub-
solutions u.

LEMMA 9.4. If g € A(0), then all C* critical periodic subsolutions u have the same
differential at q. In other words, the restriction I', 4 does not depend on the ot
critical periodic subsolution u.

PROPOSITION 9.5. There exists a C%' periodic critical subsolution ug such that
H(q,dug(q)) < «(0) outside of A(0).

Without surprise, we define the periodic Aubry set .4*(0) as
A*(0) == Lyg)a,

with ug given by the proposition (there is not a single ug, but the Aubry set is well
defined).

PROPOSITION 9.6. The set A*(0) C T¢ x R¥ is compact, non-empty and invari-
ant.

Proof. Let us prove that 4(0); hence, A*(0) is not empty. Assuming by contra-
diction that it is empty, then the equality H (g, dup(q)) < «(0) would hold for all
q € RY. Since the function ¢ — H(q,dug(q)) is periodic, we could conclude that
sup, H(q,duo(q)) < a(0), which is contradicts the definition of «/(0). O

We are now in a position to specify the connection with the invariant sets intro-
duced in §6.

PROPOSITION 9.7. In the periodic case, we have the equality
A*(0) = (T (w),

where the intersection is taken on all periodic weak KAM solutions.

Proof. The inclusion A*(0) C (), Z*(u) is proved as in § 7. Our goal is to prove the
other inclusion. Let ug be a C! periodic subsolution that is strict outside of .A(0).
The map t — T ug+ta(0) is non-decreasing. In addition, the functions T ug+ta(0)
are equi-Lipschitz, and they coincide with ug on A; hence, they are equi-bounded.
As a consequence, T ug + tar — U uniformly as t — oo.

CLAIM 9.8. The limit us is a periodic weak KAM solution such that ug < Uese
outside of A(0).
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In order to prove that us, is a weak KAM solution, it is enough to notice that
the function T 3ug + (t + s)a(0) converges both to s and to T®ue. + sa(0) when
t — oo. This implies, as desired, that T5uq + sa(0) = us for each s > 0.

We know that us, = up, with equality on .A(0). Conversely, let us consider a
point ¢ such that ue(q) = uo(q). The point ¢ is minimizing the difference uq — ug.
Since o is semi-concave and ug is C*, the function u., must be differentiable at ¢
with dus(q) = dug(q). Since uq solves the Hamilton—Jacobi equation at its points
of differentiability, we conclude that H(q,duo(q)) = H(q,dus(q)) = a(0); hence,
q € A(0). We have proved the claim.

Let us now establish that Z(us) = A(0), which implies the proposition. By
Lemma 7.11, we have T uq — tor = s on Z(ueg) for each ¢ > 0. Setting e(t) =
sup(uoo — Ttug — ta(0)), we have

Uso = g = T 0T ug = T (oo — €(t) — ta(0)) = Tluse — €(t) — ta(0) = us — €(t)

on Z (). Since this holds for all ¢ > 0, and since lim;_, €(t) = 0, we conclude
that wg = teo 01 Z (s ). On the other hand, we have seen that uy < us outside of
A(0); hence, Z(us) C A(0). O

We finish with a simple remark, which is specific to the periodic case.
PROPOSITION 9.9. All periodic weak KAM solutions have level a(0).

Proof. Let ug be a critical periodic subsolution, and let v be a periodic weak KAM
solution at level a. Since w is a periodic subsolution at level a, the definition of
a(0) implies that a > «(0). On the other hand, there exists a constant C' such that
u— C < ug <u—+ C, which implies

u=T"u+ta>T'uy— C+ta>uy+tla—a0))—C=u+tla—al))—2C.

We obtain that t(a — a(0)) < 2C for each ¢t > 0; hence, a — a(0) < 0. O

10. The Lagrangian

In most expositions of weak KAM theory (see, for example, [3,5,11,20]), the Lagran-
gian plays an important role. In this section, we relate it to our main objects in
order to facilitate the connection with the core of the literature, where what we
state here as properties are usually taken as definitions. We define the Lagrangian
as

L:RxR*xR? - R,

(taQ7U) — sup (pv_H(taQ7p))
pe(R)~

By standard results on convex analysis (see, for example, [21]) we then have

H(tv qap) = sup (p ‘U= L(ta q,U))~
veERC

We obviously have the Legendre inequality

H(t7Q7p) +L(t’Q7U) 2])1}
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for all ¢, q, p,v. This inequality is an equality if and only if

p = 0,L(t,q,v) or, equivalently, v = 0,H(t,q,p).

Let q(t): Jto, t1] be a curve, The action of ¢ is the number

t1
| wtao.den
to

We can also call it Lagrangian action if we want to distinguish from the previously
defined Hamiltonian action. The Lagrangian and Hamiltonian actions are related
as follows.

The Hamiltonian action of a curve (¢(t),p(t)) is smaller than the Lagrangian
action of its projection ¢(t), with equality if and only if p(t) = 9, L(t, q(t),4(t)). In
particular, the Hamiltonian action of an orbit is equal to the Lagrangian action of
its projection.

LEMMA 10.1. Let qo and g1 be two points of R?, and let to and t; be two times,
with 0 < t1 —to < o. If (q(s),p(s)) is the orbit satisfying q(to) = qo, q(t1) = q1, we
have

%@wna/iwﬁw«mM=my/E@w$mmm,

tO 9(3) t[)
where the minimum is taken on the set of Lipschitz curves 0: [to,t;] — R that
satisfy 0(to) = qo and 8(t1) = q1.

Proof. Since S} (qo, ¢1) is the Hamiltonian action of the unique orbit (q(t),p(t)), it
is also the Lagrangian action of the curve g(t):

Sit(qo, q1) = / 1 L(s,q(s),q(s))ds.

to

The function u(t,q) := S} (qo,q) solves (HJ) on Jto,t1[. Let us now consider any
Lipschitz curve 6(s): [to,t1] — R? satisfying 0(to) = qo and 6(¢;) = ¢1, and write

/tlL(s,G(s),é(s))ds > | " Dgu(s, 0(s)) - 6(s) — H(s,0(s), dyu(s, 0(s))) ds
=/ 18qu(s,9(s)) -0(s) — Qyu(s,6(s)) ds

=u(t1,q1) — u(to, qo)
= Sfé(Qqul)'

The following proposition is usually taken as the definition of A.

PROPOSITION 10.2. Given two points qo and q1 and two times tg < t1, we have

Afgé(qo, q1) = min/ 1 L(s,0(s),0(s)) ds,

S to
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where the minimum is taken on the set of Lipschitz curves 0: [to,t;] — RY that
satisfy 0(to) = qo and 0(t1) = ¢1.

It is part of the statement that the minimum is achieved. This is usually called
Tonelli’s theorem. The statement can be extended to absolutely continuous curves
instead of Lipschitz curves, but this setting is not useful for our discussion.

Proof. For n large enough, we have (t; — tg)/n < o; hence, setting
T = to + i(tl - to)/n,
we obtain

Aié (CIO7 q1)

2(0 mien )(S[J(qo,ﬁl)+S;2(01,92)+---+Sﬁ;71(9n_1,q1))
LyeesOn—1

— (min/ﬁL(s,@(s),é(s))ds+-~-+min/tl L(s,e(s),é(s))ds>

(01, 0n-1) \ 0(s) Jy, 0(s) Jr .

t1 .
:min/ L(s, 0(s), 6(s)) ds.
0(s) Ji,
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Appendix A. Some technical results

PROPOSITION A.1. A Lipschitz map F: R® — RY that satisfies Lip(F — 1d)
is a bi-Lipschitz homeomorphism of R%. Its inverse is Lipschitz, and Lip(F~
(1—k)~L If F is O, then so is F~1.

<
0]

1
<

Proof. The equation F'(q) = 0 can be rewritten

0—(F(qg) —q)=q

The map on the left being contracting, we conclude that F' is invertible. We now
write

|z1 — xo| — [F(71) — F(20)| < [(F(21) — 1) — (F(20) — @0)| < klz1 — T0
and deduce that |F(z1) — F(x2)| = (1 — k)|z1 — xol- O

PROPOSITION A.2. Let F: R — R? be a C, c-monotone map on R?, with ¢ > 0.
Then F is a diffeomorphism from R onto itself.

Proof. Let us consider a point # € R, and the line 6(s) = F(0) + s(6 — F(0)).
Since F' is a local diffeomorphism around 0, the points 6(s) for small s have a



The Lax—Oleinik semi-group 1175

unique preimage p(s). Let S be the infimum of the positive real numbers s such
that the equation F(p) = 6(s) does not have a solution in R%. The curve p(s) is
well defined, C' and Lipschitz on [0, S[; hence, if S is finite, it extends at S with
F(p(S)) = 0(S). Since F is a local diffeomorphism at p(S), the points near 0(S)
have preimages, which contradicts the definition of S. Hence, S cannot be finite. [

LEMMA A.3. Let A be a d X d matriz, such that A > ald in the sense of quadratic
forms, and ||A|| < b. Then A= > (a/b?)I in the sense of quadratic forms.

Proof. We have
(A7, v) = (AA o, A7 ) > a|A™ 1| > a(jv]/b)?.
O

The following important result appears in Fathi’s book (see [14]) on weak KAM
theory (the proof is also his).

PROPOSITION A.4. Let u: RY — R be a function and K be a positive number.
Let T € RY be the set of points where u has both a K-superdifferential and a K-
subdifferential. Then, the function u is differentiable at each point of T, and the
function q — du(q) is 6 K-Lipschitz on T.

Proof. For each q € Z, there exists a unique [(q) € R such that
u(g +6) —u(q) —U(q) - 0] < K[|6]>.

We conclude that I(q) is the differential of u at g, and we have to prove that the
map ¢ +— [(q) is Lipschitz on Z. We have, for each ¢, § and y in H:

q)- (y+0) — Klly+0]* <ulg+y+0) —ulq) <Uq) - (y+0)+ Klly+0]|°
g+y) - (—y) — Klyll> <ulg) —ulg+y) <lg+y) - (—y) + Ky,
Wg+y) - (—=0) — K[|0]]> < ulg+y) —u(g+y+0) <lg+y) - (—0)+ K|[0]>

Taking the sum, we obtain
(1 +y) = 1(a) - (y + O) < Klly +0]* + K|ly||* + K]|=]*.
By a change of variables, we get
(g +y) = U(a) - 0] < K[I6]* + K ly||* + K6 — y|*.
Taking ||0|| = ||y||, we obtain
(g +y) — 1)) - ()] < 6K]|0]][y]
for each @ such that ||0|| = ||y||. We conclude that
11 +v) = Ug)| < 6K|lyl|.
O

LEMMA A.5. Let u be a finite-valued function which is the infimum of a family F
of equi-semi-concave functions: u = infsex f. Then the function u is semi-concave.
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It is important in the statement to assume that u is really finite valued at each
point.

Proof. Let us assume that the functions in F are k-semi-concave. Given a point
q0 € R let f,,(q) = an +pn - q+k/2||q||* be a sequence of functions of F such that

fulg0) — u(go). We have f,(q) < fa(qo) +pn - (¢ — o) + k/2[lg — qol|* for some
sequence p, € R*. If the sequence p,, is bounded, then we can take the limit along
a subsequence and get the inequality

u(q) < u(qo) +p- (¢ — qo) +k/2]lg — o]

If this holds for each gy, we conclude that u is k-semi-concave. Let us now prove that
D is bounded. If this is not true, there would exist a point ¢ such that p, - (¢ — qo)
is not bounded from below. This would imply that

u(q) = }gfff(Q) < inf fo(g) < 0f(fn(g0) +pn - (4= q0) +K/2[lg — wl?) = —o0,

which would contradict the finiteness of u at q. O
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