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The weak KAM theory was developed by Fathi in order to study the dynamics of
convex Hamiltonian systems. It somehow makes a bridge between viscosity solutions
of the Hamilton–Jacobi equation and Mather invariant sets of Hamiltonian systems,
although this was fully understood only a posteriori. These theories converge under
the hypothesis of convexity, and the richness of applications mostly comes from this
remarkable convergence. In this paper, we provide an elementary exposition of some
of the basic concepts of weak KAM theory. In a companion paper, Albert Fathi
exposed the aspects of his theory which are more directly related to viscosity
solutions. Here, on the contrary, we focus on dynamical applications, even if we also
discuss some viscosity aspects to underline the connections with Fathi’s lecture. The
fundamental reference on weak KAM theory is the still unpublished book Weak
KAM theorem in Lagrangian dynamics by Albert Fathi. Although we do not offer
new results, our exposition is original in several aspects. We only work with the
Hamiltonian and do not rely on the Lagrangian, even if some proofs are directly
inspired by the classical Lagrangian proofs. This approach is made easier by the
choice of a somewhat specific setting. We work on R

d and make uniform hypotheses
on the Hamiltonian. This allows us to replace some compactness arguments by
explicit estimates. For the most interesting dynamical applications, however, the
compactness of the configuration space remains a useful hypothesis and we retrieve it
by considering periodic (in space) Hamiltonians. Our exposition is centred on the
Cauchy problem for the Hamilton–Jacobi equation and the Lax–Oleinik evolution
operators associated to it. Dynamical applications are reached by considering fixed
points of these evolution operators, the weak KAM solutions. The evolution
operators can also be used for their regularizing properties; this opens an alternative
route to dynamical applications.

1. The method of characteristics, existence and uniqueness of regular
solutions

We consider a C2 Hamiltonian

H(t, q, p) : R × R
d × R

d∗ → R

and study the associated Hamiltonian system

q̇(t) = ∂pH(t, q(t), p(t)), ṗ(t) = −∂qH(t, q(t), p(t)), (HS)
∗This paper is a late addition to the papers surveying active areas in partial differential equa-

tions, published in issue 141.2, which were based on a series of mini-courses held in the Interna-
tional Centre for Mathematical Sciences (ICMS) in Edinburgh during 2010.

1131
c© 2012 The Royal Society of Edinburgh



1132 P. Bernard

and Hamilton–Jacobi equation

∂tu + H(t, q, ∂qu(t, q)) = 0. (HJ)

We denote by XH(x) = XH(q, p) the Hamiltonian vector field XH = J dH, where
J is the matrix

J =
[

0 I

−I 0

]
.

The Hamiltonian system can be written in condensed terms ẋ(t) = XH(t, x(t)). We
shall always assume that the solutions extend to R. We denote by

ϕt
τ = (Qt

τ , P t
τ ) : R

d × R
d∗ → R

d × R
d∗

the flow map which associate to a point x ∈ T ∗
R

d the value at time t of the solution
x(s) of (HS) which satisfies x(τ) = x.

If u(t, q) solves (HJ), and if q(s) is a curve in R
d, then the formula

u(t1, q(t1))−u(t0, q(t0)) =
∫ t1

t0

∂qu(s, q(s)) · q̇(s)−H(s, q(s), ∂qu(s, q(s))) ds (1.1)

follows from an obvious computation. The integral on the right-hand side is the
Hamiltonian action of the curve s �→ (q(s), ∂qu(s, q(s))). The Hamiltonian action
of the curve (q(s), p(s)) on the interval [t0, t1] is the quantity∫ t1

t0

p(s) · q̇(s) − H(s, q(s), p(s)) ds.

A classical and important property of the Hamiltonian actions is that orbits are
critical points of this functional. More precisely, we have the following.

Proposition 1.1. The C2 curve x(t) = (q(t), p(t)) : [t0, t1] → R
d×R

d∗ solves (HS)
if and only if the equality

d
ds

∣∣∣∣
s=0

( ∫ t1

t0

p(t, s) · q̇(t, s) − H(t, q(t, s), p(t, s)) dt

)
= 0

(where the dot is the derivative with respect to t) holds for each C2 variation
x(t, s) = (q(t, s), p(t, s)) : [t0, t1] × R → R

d × R
d∗ fixing the endpoints, which means

that x(t, 0) = x(t) for each t and that q(t0, s) = q(t0) and q(t1, s) = q(t1) for each s.

Proof. We set θ(t) = ∂sq(t, 0), ζ(t) = ∂sp(t, 0) and compute

d
ds

∣∣∣∣
s=0

( ∫ t1

t0

p(t, s)q̇(t, s) − H(t, q(t, s), p(t, s)) dt

)

=
∫ t1

t0

p(t)θ̇(t) + ζ(t)q̇(t) − ∂qH(t, q(t), p(t))θ(t) − ∂pH(t, q(t), p(t))ζ(t) dt

= p(t1)θ(t1) − p(t0)θ(t0) +
∫ t1

t0

(q̇(t) − ∂pH(t, q(t), p(t)))ζ(t) dt

−
∫ t1

t0

(ṗ(t) + ∂qH(t, q(t), p(t)))θ(t) dt.
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As a consequence, the derivative of the action vanishes if (q(t), p(t)) is a Hamiltonian
trajectory and if the variation q(t, s) fixes the boundaries. Conversely, this compu-
tation can be applied to the variation q(t, s) = q(t) + sθ(t), p(t, s) = p(t) + sζ(t),
and implies that∫ t1

t0

(q̇(t) − ∂pH(t, q(t), p(t)))ζ(t) dt −
∫ t1

t0

(ṗ(t) + ∂qH(t, q(t), p(t)))θ(t) dt = 0

for each C2 curve θ(t) vanishing on the boundary and each C2 curve ζ(t). This
implies that q̇(t) − ∂pH(t, q(t), p(t)) ≡ 0 and ṗ(t) + ∂qH(t, q(t), p(t)) ≡ 0.

We now return to the connections between (HS) and (HJ). A function is said to
be of class C1,1 if it is differentiable and if its differential is Lipschitz. It is said to be
of class C1,1

loc if it is differentiable with a locally Lipschitz differential. Rademacher’s
theorem states that a locally Lipschitz function is differentiable almost everywhere.

Theorem 1.2. Let Ω ⊂ R × R
d be an open set, and let u(t, q) : Ω → R be a C1,1

loc
solution of (HJ). Let q(t) : [t0, t1] → R

d be a C1 curve such that (t, q(t)) ∈ Ω and

q̇(t) = ∂pH(t, q(t), ∂qu(t, q(t)))

for each t ∈ [t0, t1]. Then, setting p(t) = ∂qu(t, q(t)), the curve (q(t), p(t)) is C1

and it solves (HS).

The curves q(t) satisfying the hypothesis of the theorem as well as the associated
trajectories (q(t), p(t)) are called the characteristics of u.

Proof. Let θ(t) : [t0, t1] → R
d be a smooth curve vanishing on the boundaries. We

define q(t, s) := q(t) + sθ(t) and p(t, s) := ∂qu(t, q(t, s)). Our hypothesis is that
q̇(t) = ∂pH(t, q(t), p(t)), which is the first part of (HS). For each s, we have

u(t1, q(t1)) − u(t0, q(t0)) =
∫ t1

t0

p(t, s) · q̇(t, s) − H(t, q(t, s), p(t, s)) dt;

hence
d
ds

∣∣∣∣
s=0

( ∫ t1

t0

p(t, s)q̇(t, s) − H(t, q(t, s), p(t, s)
)

dt) = 0.

We now claim that∫ t1

t0

∂qH(t, q(t), p(t)) · θ(t) − p(t)θ̇(t) dt

=
d
ds

∣∣∣∣
s=0

( ∫ t1

t0

p(t, s)q̇(t, s) − H(t, q(t, s), p(t, s)) dt

)
.

Assuming the claim, we obtain the equality∫ t1

t0

∂qH(t, q(t), p(t)) · θ(t) − p(t) · θ̇(t) dt = 0

for each smooth function θ vanishing at the boundary. In other words, we have

ṗ(t) = −∂qH(t, q(t), p(t))
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in the sense of distributions. Since the right-hand side is continuous, this implies
that p is C1 and that the equality holds for each t. We have proved the theorem,
assuming the claim.

The claim can be proved by an easy computation in the case where u is C2.
Under the assumption that u is only C1,1

loc , the map p is only locally Lipschitz, and
some care is necessary. For each fixed θ, we have

∂qH(t, q(t, s), p(t, s)) · θ(t) − p(t, s) · θ̇(t)

= ∂qH(t, q(t), p(t)) · θ(t) − p(t) · θ̇(t) + O(s),

∂tq(t, s) − ∂pH(t, q(t, s), p(t, s)) = q̇ − ∂pH(t, q(t), p(t)) + O(s)
= O(s),

where O(s) is uniform in t. We then have, for small S > 0,∫ t1

t0

∂qH(t, q(t), p(t)) · θ(t) − p(t) · θ̇(t) dt

= O(S) +
1
S

∫ t1

t0

∫ S

0
∂qH(t, q(t, s), p(t, s)) · θ(t) − p(t, s) · θ̇(t) ds dt

= O(S) +
1
S

∫ t1

t0

∫ S

0
∂qH · ∂sq − p · ∂stq + (∂tq − ∂pH) · ∂sp ds dt

= O(S) +
1
S

∫ t1

t0

[p · ∂tq − H]S0 dt

= O(S) +
1
S

[ ∫ t1

t0

p · ∂tq − H dt

]S

0
.

We obtain the claimed equality at the limit S → 0.

The following restatement of theorem 1.2 has a more geometric flavour.

Corollary 1.3. Let Ω ⊂ R × R
d be an open set, and let u(t, q) : Ω → R be a C1,1

loc
solution of the Hamilton–Jacobi equation (HJ). Then the extended Hamiltonian
vector field YH = (1, XH) is tangent to the graph

G := {(t, q, ∂qu) : (t, q) ∈ Ω}.

Proof. Let us fix a point (t0, q0) in Ω. By the Cauchy–Lipschitz theorem, there exists
a solution q(t) of the ordinary differential equation q̇ = ∂pH(t, q(t), ∂qu(t, q(t))),
defined on an open time interval containing t0 and such that q(t0) = q0. Let us, as
above, define p(t) := ∂qu(t, q(t)). The curve (t, q(t), p(t)) is contained in the graph
G, and we deduce from theorem 1.2 that it solves (HS). As a consequence, the
derivative YH of the curve (t, q(t), p(t)) is tangent to G.

Corollary 1.4. Let u(t, q) be a C1,1
loc solution of (HJ) defined on the open set

Ω =]t0, t1[. Then, for each s and t in ]t0, t1[ we have

Γt = ϕt
s(Γs),

where Γt is defined by
Γt := {(q, dut(q)) : q ∈ R

d}.
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Proof. Let (qs, ps) be a point in Γs. Let us consider the Lipschitz map

F (t, q) := ∂pH(t, q, ∂qu(t, q)),

and consider the differential equation q̇(t) = F (t, q(t)). By the Cauchy–Peano theo-
rem, there exists a solution q(t) of this equation, defined on the interval ]t−, t+[, and
such that q(s) = qs. Setting p(t) = ∂qu(t, q(t)), theorem 1.2 implies that the curve
(q(t), p(t)) solves (HS). We can choose t+ such that either t+ = t1 or the curve q(t)
is unbounded on [s, t+[. The second case is not possible, because (q(t), p(t)) is a
solution of (HS), which is complete; hence, we can take t+ = t1. Similarly, we can
take t− = t0. We have proved that (q(t), p(t)) is the Hamiltonian orbit of the point
(qs, ps). Then, for each t ∈ ]t0, t1[, we have

ϕt
s(qs, ps) = (q(t), p(t)) = (q(t), ∂qu(t, q(t))) ∈ Γt.

Since this holds for each (qs, ps) ∈ Γs, we conclude that ϕt
s(Γs) ⊂ Γt for each

s, t ∈ ]t0, t1[. By symmetry, this inclusion is an equality.

Let us now consider an initial condition u0(q) and study the Cauchy problem
consisting of finding a solution u(t, q) of (HJ) such that u(0, q) = u0(q).

Proposition 1.5. Given a time interval ]t0, t1[ containing the initial time t = 0
and a C1,1

loc initial condition u0, there is at most one C1,1
loc solution u(t, q) : ]t0, t1[

of (HJ) such that u(0, q) = u0(q) for all q ∈ R
d.

Proof. Let u and ũ be two solutions of this Cauchy problem. Let us associate to
them the graphs Γt and Γ̃t, t ∈ ]t0, t1[. Since ũ(τ, q) = u(τ, q), we have Γτ = Γ̃τ ;
hence, by corollary 1.4,

Γt = ϕt
τ (Γτ ) = ϕt

τ (Γ̃τ ) = Γ̃t.

We conclude that ∂qu = ∂qũ, and then, from (HJ), that ∂tu = ∂tũ. The functions
u and ũ thus have the same differential on ]t0, t1[; hence, they differ by a constant.
Finally, since these functions have the same value on {τ} × R

d, they are equal.

To study the existence problem, we lift the function u0 to the surface Γ0 by
defining w0 = u0 ◦ π, where π is the projection (q, p) �→ q (later we shall also use
the symbol π to denote the projection (t, q, p) �→ (t, q)). It is then useful to work in
a more general setting.

A geometric initial condition is the data of a subset Γ0 ⊂ R
d × R

d∗ and of a
function w0 : Γ0 → R such that dw0 = p dq on Γ0. More precisely, we require
that the equality ∂s(w0(q(s), p(s))) = p(s)∂sq(s) holds almost everywhere for each
Lipschitz curve (q(s), p(s)) on Γ0. We shall consider mainly two types of geometric
initial conditions:

(i) the geometric initial condition (Γ0, w0 = u0 ◦ π) associated to the C1 initial
condition u0;

(ii) the geometric initial condition (Γ0 = {q0} × R
d∗, w0 = 0), for q0 ∈ R

d.
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Given the geometric initial condition (Γ0, w0), we define

G :=
⋃

t∈ ]t0,t1[

{t} × ϕt
0(Γ0) (G)

and, denoting by Q̇s
t (x) the derivative with respect to s, the function

w : G → R,

(t, x) �→ w0(ϕ0
t (x)) +

∫ t

0
P s

t (x)Q̇s
t (x) − H(s, ϕs

t (x)) ds. (w)

The pair (G, w) is called the geometric solution emanating from the geometric
initial condition (Γ0, w0).

This definition is motivated by the following observation: assume that a C2 solu-
tion u(t, q) of (HJ) emanating from the genuine initial condition u0 exists. Let
(Γ0, w0) be the geometric initial condition associated to u0. Let G be the graph of
∂qu, as defined in corollary 1.4, and let w be the function defined on G by w := u ◦ π.
Then, (G, w) is the geometric solution emanating from the geometric initial condi-
tion Γ0. This follows immediately from corollary 1.4 and equation (1.1). In general,
we have the following.

Proposition 1.6. Let (Γ0, w0) be a geometric initial condition, and let (G, w) be
the geometric solution emanating from (Γ0, w0). Then, the function w satisfies dw =
p dq −H dt on G. More precisely, for each Lipschitz curve Y (s) = (T (s), θ(s), ζ(s))
contained in G, then for almost every s,

d
ds

(w(T (s), θ(s), ζ(s))) = ζ(s)
dθ

ds
− H(Y (s))

dT

ds
.

Proof. Let us first consider a C2 curve Y (s) = (T (s), θ(s), ζ(s)) on G. We set
q(t, s) = Qt

T (s)(θ(s), ζ(s)) and p(t, s) = P t
T (s)(θ(s), ζ(s)) and, finally, x(t, s) =

(q(t, s), p(t, s)). We have

w(T (s), θ(s), ζ(s)) = w0(q(0, s), p(0, s)) +
∫ T (s)

0
p(t, s)q̇(t, s) − H(t, x(t, s)) dt.

Since dw0 = p dq on Γ0, the calculations in the proof of proposition 1.1 imply that

d
ds

(w ◦ Y ) = p(0, s) · ∂sq(0, s) + p(T (s), s) · ∂sq(T (s), s) − p(0, s) · ∂sq(0, s)

+ (p(T (s), s) · ∂tq(T (s), s) − H(T (s), x(T (s), s)))
dT

ds

= ζ(s)
(

∂sq(T (s), s) + ∂tq(T (s), s)
dT

ds

)
+ H(Y (s))

dT

ds
.

The desired equality follows from the observation that

dθ

ds
= ∂tq(T (s), s)

(
dT

ds

)
+ ∂sq(T (s), s),

which can be seen by differentiating the equality θ(s) = q(T (s), s).
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These computations, however, cannot be applied directly in the case where Y (s)
is only C1, or, even worse, Lipschitz. In this case, we shall prove the desired equality
in integral form:

[w ◦ Y ]S1
S0

=
∫ S1

S0

ζ(s) · ∂sθ(s) − H ◦ Y (s) · ∂sT (s) ds

for each S0 < S1. Fixing S0 and S1, we can approximate uniformly the curve Y (s)
by a sequence Yn(s) : [S0, S1] → R × R

d × R
d∗ of equi-Lipschitz smooth curves

such that Yn(S0) = Y (S0) and Yn(S1) = Y (S1). To the curves Yn, we associate
xn(t, s) = (pn(t, s), qn(t, s)) as above. The functions xn are equi-Lipschitz and con-
verge uniformly to x. In general, we do not have Yn(s) ∈ G on ]S0, S1[; hence, we do
not have xn(0, s) ∈ Γ0, and we cannot express ∂sw(xn(0, s)) as we did above. Since
this is the only part of the above computation which used the inclusion Y (s) ∈ G,
we can still get

d
ds

(w ◦ Yn) =
d
ds

(w0(xn(0, s)) − pn(0, s) · ∂sqn(0, s)

+ ζn(s) · ∂sθn(s) + H(Yn(s))∂sTn(s)).

Noting that [w ◦ Y ]S1
S0

= [w ◦ Yn]S1
S0

and that [w0(x(0, ·))]S1
S0

= [w0(xn(0, ·))]S1
S0

, we
obtain

[w ◦ Y ]S1
S0

= [w0(x(0, ·))]S1
S0

+
∫ S1

S0

−pn(0, s) · ∂sqn(0, s) + ζn(s)∂sθn(s) + H(Yn(s))∂sTn(s) ds

=
∫ S1

S0

p(0, s) · ∂sq(0, s) − pn(0, s) · ∂sqn(0, s) ds

+
∫ S1

S0

ζn(s)∂sθn(s) + H(Yn(s))∂sTn(s) ds.

We derive the desired formula at the limit n → ∞, along a subsequence such that

∂sqn(0, ·) ⇀ ∂sq(0, ·), ∂sθn ⇀ ∂sθ, ∂sTn ⇀ ∂sT

weakly-∗ in L∞, taking into account that

pn(0, ·) → p(0, ·), ζn(s) → ζ(s), H(Yn(s)) → H(Y (s))

uniformly, and hence strongly in L1. Recall that a sequence of curves fn : [t0, t1] →
R

d is said to converge to f weakly-∗ in L∞ if∫ t1

t0

fng dt →
∫ t1

t0

fg dt

for each L1 curve g : [t0, t1] → R
d. We have used two classical properties of the

weak-∗ convergence:

(i) a uniformly bounded sequence of functions has a subsequence which has a
weak-∗ limit;
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(ii) the convergence ∫ t1

t0

fngn dt →
∫

fg dt

holds if fn ⇀ f weakly-∗ in L∞ and if gn → g strongly in L1.

Corollary 1.7. If there exists a locally Lipschitz map χ : Ω → R
d∗ on some open

subset Ω of ]t0, t1[ such that (t, q, χ(t, q)) ⊂ G for all (t, q) ∈ Ω, then the function

u(t, q) := w(t, q, χ(t, q))

is C1 and it solves (HJ) on Ω. Moreover, we have ∂qu = χ.

Proof. For each C1 curve (T (s), Q(s)) in Ω, the curve

Y (s) = (T (s), Q(s), χ(T (s), Q(s)))

is Lipschitz; hence, by proposition 1.6, we have

∂su(T (s), Q(s)) = ∂sw(T (s), Q(s), χ(T (s), Q(s)))
= χ(T (s), Q(s)) · ∂sQ(s) − H(T (s), Q(s), χ(T (s), Q(s)))∂sT (s)

almost everywhere. Since the right-hand side in this expression is continuous, we
conclude that the Lipschitz functions u(T (s), Q(s)) is actually differentiable at each
point, the equality above being satisfied everywhere. Since this holds for each C1

curve (T (s), Q(s)), the function u has to be differentiable, with ∂qu(t, q) = χ(t, q)
and ∂tu(t, q) + H(t, q, χ(t, q)) = 0.

We have reduced the existence problem to the study of the geometric solution
G. We need an additional hypothesis to obtain a local existence result. We shall
use the following one, which it is stronger than would really be necessary, but will
allow us to rest on simple estimates in this course.

Hypothesis 1.8. There exists a constant M such that

‖d2H(t, q, p)‖ � M

for each (t, q, p).

This hypothesis implies that the Hamiltonian vector field is Lipschitz, and hence
that the Hamiltonian flow is complete. The hypothesis can be exploited further to
estimate the differential

dϕt
0 =

[
∂qQ

t
0(x) ∂pQ

t
0(x)

∂qP
t
0(x) ∂pP

t
0(x)

]

using the variational equation[
∂qQ̇

t
0(x) ∂pQ̇

t
0(x)

∂qṖ
t
0(x) ∂pṖ

t
0(x)

]
=

[
∂qpH(t, x) ∂ppH(t, x)

−∂qqH(t, x) −∂pqH(t, x)

] [
∂qQ

t
0(x) ∂pQ

t
0(x)

∂qP
t
0(x) ∂pP

t
0(x)

]
.
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We obtain the following estimate:

‖dϕt
τ − I‖ � eM |t−τ | − 1,

which implies, for |t − τ | � 1/M , that

‖dϕt
τ − I‖ � 2M |t − τ |, (M)

or componentwise (taking τ = 0, and assuming that |t| � M):

‖∂qQ
t
0 − I‖ � 2M |t|, ‖∂pP

t
0 − I‖ � 2M |t|, ‖∂qP

t
0‖ � 2M |t|, ‖∂pQ

t
0‖ � 2M |t|.

We can now prove the following.

Theorem 1.9. Let H : R × R
d × (Rd)∗ be a C2 Hamiltonian satisfying hypothe-

sis 1.8. Let u0 be a C1,1 initial condition. There exist a time T > 0 and a C1,1
loc

solution u(t, q) : ]−T, T [ of (HJ) such that u(0, q) = u0(q). Moreover, we can take

T = (4M(1 + Lip(du0)))−1,

and we have
Lip(dut) � Lip(du0) + 4|t|M(1 + Lip(du0))2,

when |t| � T . If the initial condition u0 is C2, then so is the solution u(t, q).

Proof. Let (Γ0, w0) be the geometric initial condition associated to u0, and let
(G, w) be the geometric solution emanating from (Γ0, w0). We first prove that the
restriction of G to ]−T, T [ is a graph. It is enough to prove that the map

F (t, q) := (t, Qt
0(q, du0(q)))

is a bi-Lipschitz homeomorphism of ]−T, T [. By (M), we have

Lip(F − Id) � 2|t|M(1 + Lip(du0)) < 1,

provided |t| < (2M(1 + Lip(du0)))−1. We conclude using the classical proposi-
tion A.1 that F is a bi-Lipschitz homeomorphism of ]−T, T [. Moreover, if u0 is C2,
then F is a C1 diffeomorphism. Since F is a homeomorphism preserving t, we can
denote by (t, Z(t, q)) its inverse. By proposition A.1, we have

Lip(Z) � 1
1 − 2|t|M(1 + Lip(du0))

,

and, under the assumption that |t| � T (as defined in the statement), we obtain

Lip(Z) � 1 + 4M |t|(1 + Lip(du0)) � 2.

We have just used here that (1 − a)−1 � 1 + 2a for a ∈ [0, 1
2 ]. We set

χ(t, q) = P t
0(Z(t, q), du0(Z(t, q)))

in such a way that G is the graph of χ on ]−T, T [. Observing that χ is Lipschitz, we
conclude from corollary 1.7 that the function u(t, q) := w(t, q, χ(t, q)) solves (HJ).
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Moreover, we have u(0, q) = u0(q). Corollary 1.7 also implies that dut = χt; hence,
in view of (M), we have

Lip(dut) = Lip(χt) � 2M |t| Lip(Zt) + (1 + 2M |t|) Lip(du0) Lip(Zt)
� 4M |t| + Lip(du0) + Lip(du0)(4M |t|(1 + Lip(du0))) + 4M |t| Lip(du0)
� Lip(du0) + 4M |t|(1 + Lip(du0))(1 + Lip(du0)).

1.1. Exercise

Take d = 1, H(t, q, p) = 1
2p2 and u0(q) = −q2, and prove that the C2 solution

cannot be extended beyond t = 1
2 .

2. Convexity, the twist property, and the generating function

We make an additional assumption on H. Once again, we make the assumption in a
stronger form than would be necessary; this allows us to obtain simpler statements.

Hypothesis 2.1. There exists m > 0 such that

∂2
ppH � m Id

for each (t, q, p), in the sense of quadratic forms.

Let us first study the consequences of this hypothesis on the structure of the flow.

Proposition 2.2. There exists σ > 0 such that the map p �→ Qt
0(q, p) is ( 1

2mt)-
monotone when t ∈ ]0, σ], in the sense that the inequality

(Qt
0(q, p

′) − Qt
0(q, p)) · (p′ − p) � 1

2mt|p′ − p|2

holds for each q ∈ R
d and each t ∈ [0, σ]. As a consequence, it is a C1 diffeomor-

phism onto R
d.

We say that the flow has the twist property.

Proof. Fix a point q and denote by F t the map p �→ Qt
0(q, p). We have dF t(p) =

∂pQ
t
0(q, p). In order to estimate this linear map, we recall the variational equation

∂pQ̇
t
0(x) = ∂2

qpH(t, ϕt
0(x))∂pQ

t
0(x) + ∂2

ppH(t, ϕt
0(x))∂pP

t
0(x).

We deduce that

∂pQ̇
t
0(x)− ∂2

ppH(t, ϕt
0(x)) = ∂2

qpH(t, ϕt
0(x))∂pQ

t
0(x)+ ∂2

ppH(t, ϕt
0(x))(∂pP

t
0(x)− Id)

and then that
‖∂pQ̇

t
0(x) − ∂2

ppH(t, ϕt
0(x))‖ � 2M2t.

As a consequence, for t � σ = m/(4M2), we have

∂pQ̇
t
0 � (m − 2M2t)I � ( 1

2m) Id
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in the sense of quadratic forms (note that the matrix ∂pQ̇
t
0 is not necessarily sym-

metric). Since

∂pQ
t
0(x) =

∫ t

0
∂pQ̇

s
0(x) ds,

we conclude that
dF t(p) = ∂pQ

t
0(q, p) � ( 1

2m) Id,

which means that (dF t(p)z, z) � ( 1
2m)|z|2 for each z ∈ R

d∗. This estimate can be
integrated, and implies the monotony of the map F t:

(Qt(q, p′) − Qt(q, p)) · (p′ − p)

=
( ∫ 1

0
∂pQ

t(q, p + s(p′ − p)) · (p′ − p) ds

)
· (p′ − p)

=
∫ 1

0
(∂pQ

t(q, p + s(p′ − p)) · (p′ − p)) ds

�
∫ 1

0
( 1
2m)t(p′ − p) · (p′ − p) ds

� ( 1
2m)t(p′ − p) · (p′ − p).

It is then a classical result that the map F t is a C1 diffeomorphism; see proposi-
tion A.2.

Corollary 2.3. The map (t, q, p) �→ (t, q, Qt
0(q, p)) is a C1 diffeomorphism from

]0, σ[ onto its image ]0, σ[.

We denote by ρ0(t, q0, q1) the unique momentum p such that

Qt
0(q0, ρ0(t, q0, q1)) = q1.

In other words, ρ0(t, q0, q1) is the initial momentum p(0) of the unique orbit

(q(s), p(s)) : [0, t] → R
d × R

d∗

of (HS) that satisfies q(0) = q0 and q(t) = q1. By the corollary 2.3, the map
ρ0 is C1. Similarly, we denote by ρ1(t, q0, q1) the unique momentum p such that
Q0

t (q1, ρ1(t, q0, q1)) = q0. We can equivalently define ρ1 by

ρ1(t, q0, q1) = P t
0(q0, ρ0(t, q0, q1)).

Considering the geometric initial condition (Γ0 = {q0} × R
d∗, w0 = 0), and the

associated geometric solution (G, w), we see that

G = {(t, q, ρ1(t, q0, q)), (t, q) ∈ ]0, σ[ × R
d}.

We conclude from corollary 1.7 that there exists a genuine solution of (HJ) ema-
nating from the geometric initial condition ({q0}× R

d∗, 0). We denote this solution
by St(q0, q). We have

St(q0, q) = w(t, p, ρ1(t, q0, q))
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and

∂qS
t(q0, q) = ρ1(t, q0, q).

In view of the definition of geometric solutions, the function S can be written more
explicitly:

St(q0, q1) =
∫ t

0
P s

0 (q0, ρ0(t, q0, q1))Q̇s
0(q0, ρ0(t, q0, q1))−H(s, ϕs

0(q0, ρ0(t, q0, q1))) ds.

In words, St(q0, q1) is the action of the unique trajectory (q(s), p(s)) : [0, t] → R
d ×

R
d∗ of (HS) that satisfies q(0) = q0 and q(t) = q1.
We have defined the function St(q0, q1) as the action of the unique orbit joining

q0 and q1 between time 0 and time t. We can similarly define the function St
τ (q0, q1)

as the action of the unique orbit joining q0 to q1 between time τ and time t, all this
being well defined, provided 0 < t − τ < σ. It is possible to prove as above that the
function (s, q) �→ St

s(q, q1) solves the Hamilton–Jacobi equation

∂su + H(t, q, −∂qu) = 0,

on s < t, and that

∂qS
t(q, q1) = ∂qS

t
0(q, q1) = −ρ0(t, q, q1).

Convention. We shall from now on denote by ∂0S
t the partial differential with

respect to the first variable (which in our notation is often q0), and by ∂1S
t the

partial differential with respect to the second variable (which in our notation is
often q1).

The relations ∂0S = −ρ0, ∂1S = ρ1, ∂tS = −H(t, q1, ρ1) = −H(0, q0, ρ0) that we
have proved imply that the function S is C2. Moreover, since ϕt

0(q0, ρ0(t, q0, q1)) =
(q1, ρ1(t, q0, q1)), we have

ϕt
0(q0,−∂0S(q0, q1)) = (q1, ∂1S

t(q0, q1)).

We say that St is a generating function of the flow map ϕt
0. See [18, ch. 9] for more

material on generating functions. It is useful to estimate the second differentials
of S.

Lemma 2.4. The function S is C2 on ]0, σ[, and the estimates

∂2
00S

t � c

t
Id,

∂2
11S

t � c

t
Id,

‖∂2
00S

t‖ + ‖∂2
01S

t‖ + ‖∂2
01S

t‖ � C

t

hold, with constants c and C which depend only on m and M .

Proof. Let us first observe that

∂2
11S

t(q0, q1) = (∂pP
t
0(q0, ρ0(t, q0, q1)))(∂pQ

t
0(q0, ρ0(t, q0, q1)))−1,



The Lax–Oleinik semi-group 1143

and recall the estimates

‖∂pP
t
0 − Id ‖ � 2Mt, ‖∂pQ

t
0‖ � 2Mt, ∂pQ

t
0 � ( 1

2mt) Id .

We conclude that (see lemma A.3)

(∂pQ
t
0)

−1 � m

8M2t
Id, ‖(∂pQ

t
0)

−1‖ � 2
mt

.

Finally, we obtain that

∂2
11S(q0, q1) �

(
m

8M2t
− 4M

m

)
Id � m

16M2t
Id

provided t � m2/(64M3). The other estimates can be proved similarly, using the
expressions

∂2
00S

t(q0, q1) = −(∂pP
0
t (q1, ρ1(t, q0, q1)))(∂pQ

0
t (q1, ρ1(t, q0, q1)))−1,

∂2
10S

t(q0, q1) = (∂pQ
t
0(q0, ρ0(t, q0, p0)))−1.

Proposition 2.5. Given times t1 and t2 such that 0 < t1 < t2 < σ, we have the
triangle inequality

St2
0 (q0, q2) � St1

0 (q0, q1) + St2
t1 (q1, q2)

for each q0, q1, q2. Moreover, St2
0 (q0, q2) = minq(St1

0 (q0, q) + St2
t1 (q, q2)).

Proof. Let us consider the map

q �→ f(q) = St1
0 (q0, q) + St2

t1 (q, q2).

We have d2f � 2c; hence, the map f is convex. Now let us denote by

(q(s), p(s)) : [0, t2] → R
d × R

d∗

the unique orbit that satisfies q(0) = q0 and q(t2) = q2. We can compute

df(q(t1)) = ∂1S
t1
0 (q0, q(t1)) + ∂0S

t2
t1 (q(t1), q2) = p(t1) − p(t1) = 0.

The point q(t1) is thus a critical point of the convex function f ; hence, it is a
minimum of this function. We conclude that

St1
0 (q0, q) + St2

t1 (q, q2) � St1
0 (q0, q(t1)) + St2

t1 (q(t1), q2) = St2
0 (q0, q2)

for all q.

Under the convexity hypothesis (hypothesis 2.1), theorem 1.2 can be extended
to C1 solutions, as follows.

Theorem 2.6. Let Ω ⊂ R × R
d be an open set, and let u(t, q) : Ω → R be a C1

solution of the Hamilton–Jacobi equation (HJ). Let q(t) : [t0, t1] → R
d be a C1 curve

such that (t, q(t)) ∈ Ω and

q̇(t) = ∂pH(q(t), ∂qu(t, q(t)))

for each t ∈ [t0, t1]. Then, on setting p(t) = ∂qu(t, q(t)), the curve (q(t), p(t)) solves
(HS).
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Proof. As in the proof of theorem 1.2, we consider a variation q(t, s) = q(t) + sθ(t)
of q(t), where θ is smooth and vanishes on the endpoints. We choose the vertical
variation p(t, s) in such a way that the equation

q̇(t, s) = ∂pH(t, q(t, s), p(t, s))

holds. The map p(t, s) defined by this relation is differentiable in s, because q and
q̇ are differentiable in s and because the matrix ∂2

ppH is invertible. It is also useful
to consider the other vertical variation:

P (t, s) := ∂qu(t, q(t, s)).

Our hypothesis is that q̇(t) = ∂pH(t, q(t), p(t)), which is the first part of (HS). We
start as in the proof of theorem 1.2 with the following equality:

d
ds

∣∣∣∣
s=0

( ∫ t1

t0

p(t, s) · q̇(t, s) − H(t, q(t, s), p(t, s)) dt

)
= 0. (2.1)

We deduce this equality from the observation that s = 0 is a local minimum of the
function

s �→ F (s) :=
∫ t1

t0

p(t, s) · q̇(t, s) − H(t, q(t, s), p(t, s)) dt.

This claim follows from the equality

F (0) = u(t1, q(t1)) − u(t0, q(t0)) =
∫ t1

t0

P (t, s) · q̇(t, s) − H(t, q(t, s), P (t, s)) ds,

which holds for all s, and from the inequality

F (s) �
∫ t1

t0

P (t, s) · q̇(t, s) − H(t, q(t, s), P (t, s)) ds

that results, in view of the convexity of H, from the computation

H(t, q(t, s), P (t, s))
� (P (t, s) − p(t, s)) · ∂pH(t, q(t, s), p(t, s)) + H(t, q(t, s), p(t, s))
� (P (t, s) − p(t, s)) · q̇(t, s) + H(t, q(t, s), p(t, s)).

We have proved (2.1). As in the proof of theorem 1.2, we develop the left-hand side
and, after a simplification, we get∫ t1

t0

p(t) · θ̇(t) − ∂qH(t, q(t), p(t)) · θ(t) dt = 0.

In other words, we have proved that ṗ(t) = ∂qH(t, q(t), p(t)) in the sense of distri-
butions. Since the right-hand side is continuous, p is C1 and the equality holds in
the genuine sense.

As in the C2 case, we have the following corollary (see [12]).
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Corollary 2.7. Let u(t, q) : ]t0, t1[ be a C1 solution of (HJ). Then, for each s and
t in ]t0, t1[ we have

Γt = ϕt
s(Γs),

where Γt is defined by

Γt := {(q, dut(q)) : q ∈ R
d}.

Proof. This corollary follows from theorem 2.6 in the same way as corollary 1.4
follows from theorem 1.2. The only difference here is that the map

F (t, q) := ∂pH(t, q, ∂qu(t, q))

is only continuous. By the Cauchy–Peano theorem, this is sufficient to imply the
existence of solutions to the associated differential equation, which is what we need
to develop the argument.

Another property of the functions S will be useful. Assume that we are consid-
ering a family Hµ, µ ∈ I of Hamiltonians, where I ⊂ R is an interval, such that
the whole function H(µ, t, q, p) is C2 and such that each of the Hamiltonians Hµ

satisfy our hypotheses 1.8 and 2.1, with uniform constants m and M . Then, for
each value of µ, we have the function St(µ; q0, q1), which is defined for t ∈ ]0, σ],
the bound σ > 0 being independent of µ. Since everything we have done so far
has been based on the local inversion theorem, the function St(µ; q0, q1) is C1 in
µ, or, more precisely, the function (µ, t, q0, q1) �→ St(µ; q0, q1) is C1. Moreover, a
computation similar to the proof of proposition 1.1 yields

∂µSt(µ; q0, q1) = −
∫ t

0
∂µHµ(s, q(µ, s), p(µ, s)) ds,

where s �→ (q(µ, s), p(µ, s)) is the only Hµ-trajectory satisfying q(µ, 0) = q0 and
q(µ, t) = q1. We can exploit this remark when Hµ is the linear interpolation Hµ =
H0+µ(H1−H0) between two Hamiltonians H0 and H1, and conclude the important
monotony property:

H0 � H1 =⇒ St(0; q, q′) � St(1; q, q′). (monotone)

2.1. Exercise

If H(t, q, p) = h(p) is a function of p, then

St(q0, q1) = th∗
(

q1 − q0

t

)
,

where h∗ is the Legendre transform of h. As an example, when H(t, q, p) = 1
2a|p|2,

we have

St(q0, q1) =
1

2ta
|q1 − q0|2.
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3. Extension of the generating function: the minimal action

A classical problem consists in finding an orbit (q(t), p(t)) of the Hamiltonian system
such that q(t0) = q0 and q(t1) = q1, for given [t0, t1] ⊂ R, q0, q1 ∈ R

d. We have seen,
under hypotheses 1.8 and 2.1, that this problem has a unique solution, provided
t0 < t1 < t0 + σ, where σ is a constant depending only on m and M . The situation
is more subtle for larger values of t1 − t0. In order to study it, it is useful to consider
the function

S : (θ1, . . . , θn−1) �→ S
t/n
0 (q0, θ1) + S

2t/n
t/n (θ1, θ2) + · · · + St

(n−1)t/n(θn−1, q1),

where we have taken t0 = 0 and t1 = t to simplify notation, and where n is an integer
such that t/n � σ. The critical points of S are in one-to-one correspondence with
the solutions of our problem.

Lemma 3.1. The point (θ1, . . . , θn−1) is a critical point of S if and only if there
exists an orbit (q(s), p(s)) : [0, t] → R

d × R
d∗ such that q(0) = q0, q(t) = q1, and

q(it/n) = θi for i = 1, . . . , n − 1. This orbit is then unique, and its action is
S(θ1, . . . , θn−1).

Proof. Let (q(s), p(s)) be the piecewise orbit defined on [it/n, (i + 1)t/n] by the
constraints q(it/n) = θi and q((i+1)t/n) = θi+1. The action of this piecewise orbit
is S(θ1, . . . , θn−1). The statement follows from the simple computation

∂θiS = ∂1S
t/n(θi−1, θi) + ∂0S

t/n(θi, θi+1) = p−(it/n) − p+(it/n).

Using this finite-dimensional variational functional is usually called the method
of broken geodesics (see [9]). The function S can be minimized under additional
assumptions, for example, as follows.

Hypothesis 3.2.
1
2m|p|2 − M � H(t, q, p) � 1

2M |p|2 + M.

By exploiting the monotony property (monotone), this hypothesis implies that

1
2tM

|q1 − q0|2 − Mt � St(q0, q1) � 1
2tm

|q1 − q0|2 + Mt,

and then that

S(θ1, . . . , θn−1) � n

2tM
(|θ1 − q0|2 + |θ2 − θ1|2 + · · · + |q1 − θn−1|2) − Mt.

As a consequence, the function S is coercive and C2; hence, it has a minimum.
Note that, although S is convex separately in each of its variables, it is not jointly
convex. It can have critical points which are not minima, and it can have several
different minima. We denote by At the value function

At(q0, q1) = minS = min
θ1,θ2,...,θn−1

(St/n
0 (q0, θ1) + S

2t/n
t/n (θ1, θ2) + St

(n−1)t/n(θn−1, q1))

(A)
where n is any integer such that t/n < σ. The functions At

τ (q0, q1) are defined
similarly for each t � τ . This notation is legitimate in view of the following.
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Lemma 3.3. The value of At does not depend on n provided t/n < σ. Moreover,
we have

1
2Mt

|q1 − q0|2 − Mt � At(q0, q1) � 1
2tm

|q1 − q0|2 + Mt.

This statement implies that At = St when t < σ; hence, At can be seen as an
extension of St beyond t = σ.

Proof. Since we have not yet proved the independence of n, we temporarily denote
by At(q0, q1; n) the value of the minimum. We have

At(q0, q1; n) � min
θ1,θ2,...,θn−1

(
n

2Mt
(|θ1 − q0|2 + · · · + |q1 − θn−1|2) − Mt

)

=
1

2Mt
|q1 − q0|2 − Mt.

If t < σ, then the equality St(q0, q1) = At(q0, q1; n) can be proved by recurrence for
each n using proposition 2.5. For general t, let us prove that At(n) is independent
of n. We take two integers n and m such that t/n < σ, t/m < σ and want to
prove that At(n) = At(m). We shall prove that At(n) = At(nm) = At(m). Since
t/m < σ, we have

Aτ+t/m
τ (q0, q1; n) = Sτ+t/m

τ (q0, q1)

for each τ and n; hence,

At(q0, q1; nm)

= min
θ1,θ2,...,θnm−1

[St/nm
0 (q0, θ1) + S

2t/mn
t/nm (θ1, θ2) + · · · + S

t/m
(n−1)t/nm(θn−1, θn)

+ S
(n+1)t/nm
t/m (θn, θn+1) + · · · + S

2t/m
(2n−1)t/nm(θ2n−1, θ2n) + · · ·

+ S
(m−1)t/m+t/nm
(m−1)t/m (θ(m−1)n, θ(m−1)n+1) + · · ·

+ St
(1−1/nm)t(θmn−1, q1)]

= min
θ2n,θ3n,...,θ(m−1)n

[St/m
0 (q0, θn) + S

2t/m
t/m (θn, θ2n) + · · · + St

(m−1)t/m(θ(m−1)n, q1)]

= At(q0, q1; m).

We have proved that At(nm) = At(m); by symmetry we also have At(nm) = At(n).
Hence, At(n) = At(m). Finally, we have

S(θ1, . . . , θn−1) � n

2mt
(|θ1 − q0|2 + |θ2 − θ1|2 + |q1 − θn−1|2) + Mt;

hence,

At(q0, q1) � min
θ1,θ2,...,θn−1

n

2mt
(|θ1 − q0|2 + |θ2 − θ1|2 + |q1 − θn−1|2) + Mt

=
1

2mt
|q1 − q0|2 + Mt.
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The following property concerning A follows easily from the definition:

At2
t0(q0, q2) = min

q1
(At1

t0(q0, q1) + At2
t1(q1, q2)), (T)

when 0 � t0 � t1 � t2. The following consequence of hypothesis 3.2 will also be
useful.

Lemma 3.4.

p · ∂pH(t, q, p) − H(t, q, p) � m

M
H(t, q, p) − (m + M).

Proof. We deduce from hypothesis 2.1 that

H(t, q, 0) � H(t, q, p) − p · ∂pH(t, q, p) + 1
2m|p|2.

We deduce that

p · ∂pH(t, q, p) − H(t, q, p) � 1
2m|p|2 − H(t, q, 0) � m

M
(H(t, q, p) − M) − M.

The minimal action At(q0, q1) is not necessarily C1; we need some definitions
before we can study its regularity. The linear form l is called a K-superdifferential
of the function u at point q if the inequality

u(θ) � u(q) + l(θ − q) + K|θ − q|2

holds in a neighbourhood of q. The linear form l is a proximal superdifferential of u
at point q if it is a K-superdifferential for some K. The form l is a proximal super-
differential of u at q if and only if there exists a C2 function v such that dv(q) = l
and such that the difference v − u has a minimum at q. More generally, we shall
say that l is a superdifferential of u at q if there exists a C1 function v such that
dv(q) = l and such that the difference v−u has a minimum at q. A superdifferential
is not necessarily a proximal superdifferential.

A function u : R
d → R is called K-semi-concave if it admits a K-superdifferential

at each point. It is equivalent to requiring that the function θ �→ u(θ) − K|θ|2 is
concave. A function is called semi-concave if it is K-semi-concave for some K. If u
is a K-semi-concave function, and if l is a superdifferential at u, then the inequality

u(θ) � u(q) + l(θ − q) + K|θ − q|2

holds for each θ. In particular, l is a K-superdifferential.

Lemma 3.5. The function At is C(1 + 1/t)-semi-concave, with some constant C
that depends only on m and M .

Proof. Let us first assume that t ∈ ]0, σ[. In this case, At
0 = St

0, this function is
C2 and its second derivative was estimated in lemma 2.4. Let us now assume that
t � σ. Then, there exists n ∈ N such that t/n ∈ [ 13σ, 1

2σ[. We have

At
0(q, q

′) = min
θ,θ′

(St/n
0 (q, θ) + A

t−t/n
t/n (θ, θ′) + St

t−t/n(θ′, q′)).
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Considering a minimizing pair (θ0, θ1) in the expression above at (q0, q1), we see
that the C2 function

(q, q′) �→ S
t/n
0 (q, θ0) + A

t−t/n
t/n (θ0, θ1) + St

t−t/n(θ1, q
′)

is touching from above the function At
0 at point (q0, q1). In view of lemma 2.4, this

provides a uniform (for t � σ) semi-concavity constant for At
0.

4. The Lax–Oleinik operators

Given t0 < t1, we define the Lax–Oleinik operators T t1
t0 and Ť t0

t1 , which, to each
function u : R

d → R, associate the functions

T t1
t0 u(q) := inf

θ∈Rd
(u(θ) + At1

t0(θ, q)), Ť t0
t1 u(q) := sup

θ∈Rd

(u(θ) − At1
t0(q, θ)).

We have the Markov (or semi-group) property:

T t2
t1 ◦ T t1

t0 = T t2
t0 , Ť t0

t1 ◦ Ť t1
t2 = Ť t0

t2

for t0 < t1 < t2. Note, however, that T t1
t0 ◦ Ť t0

t1 and Ť t0
t1 ◦ T t1

t0 are not the identity.
Concerning these operators, we only have the inequalities

Ť t0
t1 ◦ T t1

t0 (u) � u, T t1
t0 ◦ Ť t0

t1 (u) � u,

the easy proof of which is left to the reader. Each property concerning the Lax–
Oleinik operator T has a counterpart for the dual operator Ť , which we shall
not always bother to state but never hesitate to use. The family of operators T t1

t0
is characterized by the fact that T t1

t0 u(q) = infθ(u(θ) + St1
t0 (q0, q1)) when t0 � t1 �

t0+σ and by the Markov property. The Lax–Oleinik operators solve (HJ) in various
important ways that will be detailed in this section. It is useful first to settle some
regularity issues.

Lemma 4.1. There exists a constant C, depending only on m and M , such that for
each t ∈ ]0, σ], the function T tu is (C/t)-semi-concave provided it is finite at each
point.

Proof. The function T tu is the infimum of the functions f = u(θ) + St(θ, ·), which
are C2 with the uniform bound ‖d2f‖ � C/t. It is then an easy exercise to conclude
that the function T tu is C/t-semi-concave; see lemma A.5.

Given an arbitrary function u0, the infimum in the definition of T t
0u0 is not

necessarily finite, and, even if it is finite, it is not necessarily a minimum. It is clear
from proposition 3.3 that the infimum is a finite minimum under the assumption
that u0 is continuous and Lipschitz in the large, which means that there exists a
constant k such that

u0(q′) − u0(q) � k(1 + |q′ − q|)
for each q and q′.

Lemma 4.2. If u0 is Lipschitz in the large, then so are the functions T t
0u0 for all

t � 0. The function (t, q) �→ u(t, q) = T t
0u0(q) is locally semi-concave, and hence

locally Lipschitz on ]0,∞) × R
d. The function u solves (HJ) at all its points of

differentiability (hence almost everywhere).
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Proof. Since u0 is Lipschitz in the large, the function T t
0u0 −u0 is bounded for each

t > 0, as follows from the inequalities

inf
θ

(u0(q) − k − k|θ − q| + St(θ, q)) � T t
0u0 � u0(q) + St(q, q),

which imply (setting ∆ = θ − q) that

inf
∆∈Rd

(
− k − k|∆| +

1
2tM

|∆|2 − tM

)
� T t

0u0(q) − u0(q) � Mt.

We conclude that the function T t
0u0 = (T t

0u0 − u0) + u0 is Lipschitz in the large.
In the computations above, we also see that the infimum can be taken on |∆| � K,
where K is a constant independent from q.

Let us now prove that the function u(t, q) := T t
0u0(q) is locally Lipschitz on

t > 0. In view of the Markov property, it is enough to prove that the function u is
Lipschitz on ]τ, 1

2σ[ for each closed ball B ⊂ R
d and each time τ ∈ ]0, 1

2σ[. Since
u(q) is Lipschitz in the large, there exists a radius R > 0 such that

u(t, q) = inf
|θ|�R

u(θ) + St(θ, q)

for (t, q) ∈ ]τ, 1
2σ[. Since S is C2, the functions (t, q) �→ u(θ) + St(θ, q), |θ| � R

have uniform C2 bounds on ]τ, 1
2σ[. Their infimum u(t, q) is then semi-concave, and

hence Lipschitz on that set; see lemma A.5.
Finally, let (t, q) be a point of differentiability of u, and let τ ∈ ] max(0, t−σ), t[ be

given. Since uτ is Lipschitz in the large and locally Lipschitz, there exists θ such that
T t

τ uτ (q) = uτ (θ) + St
τ (θ, q). For a different point (s, y), we have T s

τ uτ (y) � uτ (θ) +
St

τ (θ, y); hence, the function (s, y) �→ u(s, y) − Ss
τ (θ, y) has a maximum at (t, q),

which implies that the functions u(s, y) and Ss
τ (θ, y), each of which is differentiable

at (t, q), have the same differential at (t, q). Since the functions (s, y) �→ Ss
τ (θ, y)

solve (HJ), the function u also solves (HJ) at (t, q).

Let us now establish the relation of our operators with regular solutions.

Proposition 4.3. Let u(t, q) : ]t0, t1[ be a C1 solution of HJ. Then T t
τ uτ = ut and

Ť τ
t ut = uτ for each τ � t in ]t0, t1[. The function u is locally C1,1.

This property is one of the main motivations to introduce the Lax–Oleinik opera-
tors. The observation that C1 solutions are actually locally C1,1 comes from Fathi’s
paper [12], itself inspired by anterior works of Herman. Another consequence of this
Theorem is that uniqueness extends to C1 solutions under the convexity assump-
tion.

Proof. In view of the Markov property, it is enough to prove the result for 0 <
t − τ < σ. Given q and θ in T

d, we consider the unique orbit (q(s), p(s)) such that
q(τ) = θ and q(t) = q. By the convexity of H, we have

H(q(s), ∂qu(s, q(s))) � H(q(s), p(s)) + (∂qu(s, q(s)) − p(s)) · ∂pH(s, q(s), p(s)).
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Noting that q̇(s) = ∂pH(s, q(s), p(s)) and integrating gives

St
τ (θ, q) =

∫ t

τ

p(s) · q̇(s) − H(s, q(s), p(s)) ds

�
∫ t

τ

∂qu(s, q(s)) · q̇(s) − H(s, q(s), ∂qu(s, q(s))) ds

= u(t, q) − u(τ, θ),

with equality if p(s) = ∂qu(s, q(s)) for each s. We conclude that

T t
τ uτ (q) � ut(q),

with equality if there exists an orbit (q(s), p(s)) : [τ, t] → R
d ×R

d∗ such that p(s) =
∂qu(s, q(s)) and q(t) = q. By corollary 2.7, the orbit of the point (q, ∂qu(t, q))
satisfies this property; hence, the equality holds.

To prove the regularity of u we consider a subinterval [t̃0, t̃1] ⊂]t0, t1[, and prove
that u is locally C1,1 on ]t̃0, t̃1[. We have

u(t, q) = T t
t̃0

ut̃0
(q) = Ť t̃1

t ut̃1
(q)

for each t ∈ ]t̃0, t̃1[. If the functions ut were Lipschitz in the large, we could apply
lemma 4.2 and deduce that u is both locally semi-concave and locally semi-convex,
and hence locally C1,1, on ]t̃0, t̃1[. Here we do not make any growth assumption, so
we need a slightly different argument to prove the semi-concavity of u (and, simi-
larly, its semi-convexity). We have seen that the infimum in the definition T t

t̃0
ut̃0

(q)
is a minimum, which is attained at the point θ = Qt̃0

t (q, ∂qu(t, q)). This gives us an
a priori bound on θ, and we can continue the proof as in lemma 4.2.

Let us sum up some properties of the Lax–Oleinik operators T t
τ associated to a

Hamiltonian satisfying hypotheses 1.8, 2.1 and 3.2.

Property 4.4.

Markov property: T t
s ◦ T s

τ = T t
τ when τ � s � t.

Monotony: u � v ⇒ T t
τ u � T t

τ v for each t � τ .

Compatibility with (HJ): if u(t, q) : ]t0, t1[ is a C2 solution of (HJ), then
T t

τ uτ = ut when t0 < τ < t < t1.

Boundedness: if uτ is Lipschitz in the large, then the functions T t
τ uτ , t ∈ [τ, T ],

are uniformly Lipschitz in the large for each T � τ .

Regularity: if uτ is Lipschitz in the large, the function (t, q) �→ T t
τ uτ (q) is

locally Lipschitz on ]τ, ∞) × R
d.

Translation invariance: T t
τ (c + u) = c + T t

τ u for each constant c ∈ R.

The Lax–Oleinik operators solve the Cauchy problem for (HJ) in the viscosity
sense. Actually, this follows from property 4.4.
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Proposition 4.5. Let H be a Hamiltonian satisfying hypothesis 1.8. Assume that
there exists a family T t

τ , 0 � τ � t of operators satisfying the Markov property,
the monotony, the compatibility with (HJ) and the boundedness as expressed in
property 4.4. Then if u0 is an initial condition which is Lipschitz in the large, the
function

(t, q) �→ u(t, q) = T t
0u0(q)

is a viscosity solution of (HJ) on ]0,∞) × R
d.

Note that we did not make any convexity assumption. This kind of axiomatic
characterization of viscosity solutions is reminiscent of [1] (see also [8]). It may also
help to understand the links between viscosity solutions and variational solutions
in the non-convex setting. Such links were suggested by Claude Viterbo and Marc
Chaperon, and established in [22].

Proof of proposition 4.5. Let us prove that u is a viscosity subsolution, a similar
proof yields that it is also a supersolution. We consider a point (T, Q) ∈ ]0,∞) ×
R

d and a superdifferential (h, p) of the function u at (T, Q). To prove that h +
H(T, Q, p) � 0, we assume, by contradiction, that

h + H(T, Q, p) > 0.

As is usual for viscosity solutions we shall use a test function φ. We shall assume
that φ : R × R

d → R is smooth and satisfies the following properties:

(i) φ(T, Q) = u(T, Q), ∂tφ(T, Q) = h, ∂qφ(T, Q) = p;

(ii) φ � u on [− 1
2T, 2T ] × R

d;

(iii) there exists a constant C > 0 such that φ(t, q) = C
√

1 + |q|2 when |q| + |t| �
C.

Note that d2φ is bounded. Such a test function exists because the functions ut,
t ∈ [ 12T, 2T ], are uniformly Lipschitz in the large, as follows from the boundedness
property assumed on the operators.

Claim 4.6. There exist S > 0 and a C2 function w(τ, t, q) defined on the open set

{(τ, t, q) ∈ R × R × R
d : τ − S < t < τ + S} ⊂ R × R × R

d

such that, for each fixed τ , the function wτ : (t, q) �→ w(τ, t, q) is the solution of the
Cauchy problem

∂twτ + H(t, q, ∂qwτ ) = 0,

wτ (τ, q) = φ(τ, q).

}
(4.1)

The existence of a solution wτ to this problem follows from theorem 1.9. However,
to see that w is C2 in all its variables, we find it more convenient to consider the
Cauchy problem

∂su + (∂zu + H(z, q, ∂qu(s, z, q))) = 0,

u(0, z, q) = φ(z, q).

}
(4.2)
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By theorem 1.9, applied to the Hamiltonian

Ĥ(s, z, q, ξ, p) : R × (R × R
d) × (R × R

d)∗ → R,

(s, z, q, ξ, p) �→ ξ + H(z, q, p),

there exists S > 0 and a C2 solution u(s, z, q) : ]−S, S[ of this Cauchy problem.
Setting

w(τ, t, q) := u(t − τ, t, q),

we verify that

∂tw(t, q) + H(t, q, ∂qw(t, q))
= ∂su(t − τ, t, q) + ∂zu(t − τ, t, q) + H(t, q, ∂qu(t − τ, t, q))
= 0

and that w(τ, τ, q) = u(0, τ, q) = φ(τ, q).

Claim 4.7. There exists τ ∈ ]T − S, T [ such that w(τ, T, Q) < φ(T, Q).
Since w(T, T, q) = φ(T, q), we have

∂tw(T, T, Q) = −H(T, Q, ∂qw(T, Q)) = −H(T, Q, ∂qφ(T, Q)) < ∂tφ(T, Q).

As a consequence, there exists δ > 0 such that

∂tw(τ, t, Q) − ∂tφ(t, Q) < 0

for τ, t ∈ ]T − δ, T [. Since w(τ, τ, Q) = φ(τ, Q), we deduce by integration that

w(τ, T, Q) − φ(T, Q) =
∫ T

τ

∂tw(τ, t, Q) − ∂tφ(t, Q) dt < 0

provided τ ∈ ]T − δ, T [, which proves our claim.

Since we are considering monotone operators compatible with (HJ) we have

w(τ, T, Q) = T T
τ wτ (Q) = T T

τ φτ (Q) � T T
τ uτ (Q) = u(T, Q);

hence φ(T, Q) > u(T, Q), which is a contradiction.

This aside through viscosity solutions being complete, let us turn our attention to
more geometric aspects of the Lax–Oleinik operators. We denote by Γu the graph
of the differential of u on its domain of definition,

Γu := {(q, du(q)) : q ∈ R
d, du(q) exists}.

Proposition 4.8. Let u be a semi-concave and Lipschitz function. The set

ϕ0
t (Γ̄T t

0u)

is contained in Γu for each t > 0, and it is a Lipschitz graph.
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Proof. In view of the Markov property, it is enough to prove the result for t ∈ ]0, σ].
Let (q, p) be a point of ΓT t

0u, which means that the function T t
0u is differentiable at

q and that d(T t
0u)(q) = p. Let Θ be a minimizing point in the expression T t

0u(q) =
minθ u(θ) + St

0(θ, q). Since each of the functions u and St
0(·, q) are semi-concave,

this implies that they are both differentiable at Θ, and that du(Θ) + ∂0S
t
0(Θ, q) =

0. Moreover, this implies that the function u(Θ) + St
0(Θ, ·) touches the function

T t
0u from above at point q, and hence that St

0(Θ, ·) is differentiable at q, with a
differential equal to p. We then have

ϕ0
t (q, p) = ϕ0

t (q, ∂1S
t
0(Θ, q)) = (Θ,−∂0S

t
0(Θ, q)) = (Θ,du(Θ)) ⊂ Γu.

We have proved that ϕ0
t (ΓT t

0u) ⊂ Γu. Moreover, we have Q0
t (ΓT t

0u) ⊂ I, where
I ⊂ R

d is the set of points θ that are minimizing in the definition of T t
0u(q) for

some point q.

Claim 4.9. The function u is C1,1 on I. This means that u is differentiable at
each point of I, and that the map θ �→ du(θ) is Lipschitz on I. In other words, the
projection of Γu to R

d contains I, and the set

Γu|I := {(θ, du(θ)), θ ∈ I}

is a Lipschitz graph.

To prove the claim, we first prove that u has C-superdifferentials and C-sub-
differentials at each point of I, where C is a common semi-concavity constant of all
the functions −St

0(·, q) and of the function u. The existence of a C-superdifferential
follows from the C-semi-concavity of u. To prove the existence of a C-subdifferential
at a point Θ ∈ I, we consider a point q such that u(Θ)+St

0(Θ, q) = T t
0u(q). Such a

point exists by definition of I. This implies that the function θ �→ u(θ)+St
0(θ, q) has

a minimum at θ = Θ; hence, each C-subdifferential of −St
0(·, q) is a C-subdifferential

of u. The claim then follows from a result of Fathi (see proposition A.4).
Let now (q, p) be a point in the closure Γ̄T t

0u of ΓT t
0u. There exists a sequence

(qn, pn) of points of ΓT t
0u that converges to (q, p). By definition, the function T t

0u

is differentiable at qn, and pn = d(T t
0u)(qn). Let Θn = Q0

t (qn, pn) be the sequence
of points such that

T t
0u(qn) = u(Θn) + St

0(Θn, qn).

The sequence Θn is converging to Θ = Q0
t (q, p), and, at the limit, we see that

T t
0u(q) = u(Θ) + St

0(Θ, q).

We conclude that Θ ∈ I. Since we have already proved the Lipschitz regularity of
du on I, we deduce that

ϕ0
t (q, p) = lim(ϕ0

t (qn, pn)) = lim(Θn, du(Θn)) = (Θ,du(Θ)) ∈ Γu|I ⊂ Γu.

The action of the Lax–Oleinik operators on semi-convex functions also has a
remarkable property; see [4]. It is useful to denote by Lu the set of point (Q, P )
such that P is a subdifferential of u at Q. Note that Γu ⊂ Lu.
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Proposition 4.10. If u is K-semi-convex, then for each δ ∈ ]0, 1[ there exists
T > 0 such that T t

0u is (K + δ)-semi-convex, and hence C1,1, for each t ∈ ]0, T ].
One can take

T =
δ

2M(3 + 2K)2
.

Proof. Since u is K-semi-convex, for each (Q, P ) ∈ Lu, we have

u(q) � u(Q) + P (q − Q) − K|q − Q|2.

We denote by lQ,P (q) the function on the right in this inequality, so that

u = max
(Q,P )∈Lu

lQ,P .

Taking T as in the statement, it follows from theorem 1.9 that the functions
T t

0(lQ,P ), t ∈ [−T, T ], are C2 with a second derivative bounded by 2K + 4tM(1 +
2K)2 � 2K + 2δ. We claim that

T t
0u = max

(Q,P )∈L
T t

0(lQ,P ),

for t ∈ [0, T ] ∩ [0, σ], which implies that T t
0u is (K + 4tM(1 + 2K)2)-semi-convex.

We prove the claim in two steps. First, the inequality

T t
0u � max

(Q,P )∈L
T t

0(lQ,P )

follows immediately from the fact that u � lQ,P for each (Q, P ) ∈ L in view of the
monotony of T t

0 (see property 4.4). Let us fix a point (t, q) and prove the converse
inequality at this point. Since

u(θ) + St
0(θ, q) � u(q) + P (θ − q) − K(θ − q)2 +

1
2tM

|θ − q|2 − tM

and since K � 1/2tM , there exists a point θ such that T t
0u(q) = u(θ) + St

0(θ, q).
Assuming that t � σ, this implies that the point (θ, ζ) = (θ, −∂0S

t
0(θ, q)) belongs

to Lu, and that q = Qt
0(θ, ζ). Then, we have

T t
0(lθ,ζ)(q) = lθ,ζ(θ) + St

0(θ, q) = u(θ) + St
0(θ, q) = T t

0u(q);

hence
T t

0u(q) � max
(Q,P )∈L

T t
0(lQ,P )(q),

provided t � σ. We conclude that T t
0u is semi-concave with constant K + 2tM(1 +

2K)2 for t ∈ [0, σ] ∩ [0, T ]. We can then apply this result to T σ
0 u, and, since K +

tM(1 + 2K)2 � K + 1, we conclude that the function T t
σT σ

0 u is semi-concave with
constant

K + 2σM(1 + 2K)2 + 2tM(3 + 2K)2 � K + 2(σ + t)M(3 + 2K)2 � K + 1

for t ∈ [0, σ] ∩ [0, T − σ]. In other words, the functions T t
0u are semi-concave with

constant K + 2tM(3 + 2K)2 for t ∈ [0, 2σ] ∩ [0, T ]. We can apply this argument as
many times as necessary and obtain that the functions T t

0u are semi-concave with
constant K + 2tM(3 + 2K)2 for each t ∈ [0, T ].
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The following was first stated explicitly by Arnaud in [2].

Addendum 4.11. Under the hypotheses of proposition 4.10, we have

Lu = ϕ0
t (ΓT t

0u)

for each t ∈ ]0, T [. Moreover, for each q, we have T t
0u(q) = u(θ) + St

0(θ, q), with
θ = Q0

t (q, d(T t
0u)(q)).

Proof. For each q ∈ R
d, we have seen that there exists (θ, ζ) ∈ Lu such that

T t
0u(q) = u(θ) + St

0(θ, q) and ζ = −∂0S
t
0(θ, q). Since we know that T t

0u is C1,
the first of these equalities implies that d(T t

0u)(q) = ∂1S
t
0(θ, q), while the second

implies that ϕt
0(θ, ζ) = (q, ∂1S

t
0(θ, q)). We conclude that ϕ0

t (ΓT t
0u) ⊂ Lu. Moreover,

θ = Q0
t (q, d(T t

0u)(q)).
Conversely, let us consider a point (θ, ζ) ∈ L, and denote by l the associated

function lθ,ζ . By proposition 4.3, the function (t, q) �→ T t
0 l(q) is the restriction to

]0, T [ of the C2 solution of (HJ) emanating from l. As a consequence, we have

T t
0 l(Qt

0(θ, ζ)) = l(θ) + St
0(θ, Q

t
0(θ, ζ)) = u(θ) + St

0(θ, Q
t
0(θ, ζ)) � T t

0u(Qt
0(θ, ζ)).

Since we know from the monotony property that T t
0 l � T t

0u, we conclude that this
last inequality is actually an equality. Setting q1 = Qt

0(θ, ζ), this implies that

(θ, ζ) = (θ, −∂0S
t
0(θ, q1)) = ϕ0

t (q1, ∂1S
t
0(θ, q1)) = ϕ0

t (q1, dT t
0u(q1)) ⊂ ϕ0

t (ΓT t
0u).

We conclude that Lu ⊂ ϕ0
t (ΓT t

0u).

Addendum 4.12. Under the hypotheses of proposition 4.10, we have Ť 0
t ◦ T t

0u = u
for each t ∈ ]0, T [.

Proof. Let us define the map F : q �→ Q0
t (q, d(T t

0u(q))). By addendum 4.11, the
image of F is equal to the projection of Lu on R

d; hence, the map F is onto. Given
a point θ ∈ R

d, we consider a preimage q of θ by F , and write

Ť 0
t ◦ T t

0u(θ) � T t
0u(q) − St

0(θ, q) = u(θ)

where the last equality comes from addendum 4.11. We conclude that Ť 0
t ◦ T t

0u � u;
hence, Ť 0

t ◦ T t
0u = u.

The following extrapolates the ideas in [7]. For t0 ∈ R and δ, t > 0, let us define
the operators

Rt := Ť t0
t0+δt ◦ T t0+δt

t0−t ◦ Ť t0−t
t0 , Řt := T t0

t0−δt ◦ Ť t0−δt
t0+t ◦ T t0+t

t0 .

Theorem 4.13. There exists δ ∈ ]0, 1[, which depends only on m and M such that
the operators Rt, Řt have the following properties:

(i) for each t0 ∈ R and t ∈ ]0, 1[, the finite-valued functions in the images of Rt

and Řt are uniformly C1,1;

(ii) for each semi-concave function u, there exists T > 0 such that Rtu � u and
Řtu � u for each t0 ∈ R and t ∈ ]0, T [;
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(iii) for each semi-convex function u, there exists T > 0 such that Rtu � u and
Řtu � u for each t0 ∈ R and t ∈ ]0, T [;

(iv) for each C1,1 function u, there exists T > 0 such that Rtu = u and Řtu = u
for each t0 ∈ R and t ∈ ]0, T [.

Proof. The finite-valued functions in the image of T t0+δt
t0−t are C/t-semi-concave, by

lemma 4.1 (we assume that t ∈ ]0, 1[). Then, by proposition 4.10, the finite-valued
functions in the image of Ť t0

t0+δt ◦ T t0+δt
t0−t are (2C/t)-semi-concave, provided

δt � C

tM(3 + 2C/t)2
=

Ct

M(3t + 2C)2
,

which holds if δ � C/(M(3 + 2C)). For such a δ, the finite-valued functions in the
image of Rt are uniformly semi-concave. They are also uniformly semi-convex, and
hence uniformly C1,1. The proof is similar for Ř. Let us now write

Rt := (Ť t0
t0+δt ◦ T t0+δt

t0 ) ◦(T t0
t0−t ◦ Ť t0−t

t0 ),

which implies, using the monotony, that

Rtu � Ť t0
t0+δt ◦ T t0+δt

t0 u and Rtu � T t0
t0−t ◦ Ť t0−t

t0 u.

By addendum 4.12 we conclude that Rtu � u for small t when u is semi-convex.
All the statements of (ii) and (iii) follow by similar considerations. Statement (iv)
follows from (ii) and (iii).

5. Subsolutions of the stationary Hamilton–Jacobi equation

We assume from now on that the Hamiltonian does not explicitly depend on time.
Then, in addition to (HJ), we can consider the stationary Hamilton–Jacobi equation

H(q, du(q)) = a, (HJa)

for each real parameter a. This stationary equation is the main character of Fathi’s
companion lecture (see also [16]). Formally, a function u(q) solves (HJa) if and only
if the function (t, q) �→ u(q) − at solves (HJ). It is not hard to check that this also
holds in the sense of viscosity solutions: the function u(q) is a viscosity solution
of (HJa) if and only if the function (t, q) �→ u(q)−at is a viscosity solution of (HJ).
Let us give a summary for later reference.

Hypothesis 5.1. We say that H is autonomous if it does not depend on the time
variable.

In this autonomous context, we have T τ+t
τ = T t

0 . We shall denote this operator
by T t. The Markov property becomes the equality T t ◦ T s = T t+s. In other words,
the Lax–Oleinik operators form a semi-group, the famous Lax–Oleinik semi-group.
Another important specificity of the autonomous context is that the Hamiltonian
H is constant along Hamiltonian orbits, as can be checked by an easy computation.
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Proposition 5.2. Given a Hamiltonian H satisfying hypotheses 1.8, 2.1, 3.2 and
5.1, the following properties are equivalent for a function u:

(i) the function u is Lipschitz and it solves the inequality H(q, du(q)) � a almost
everywhere;

(ii) the inequality u(q1) − u(q0) � At(q0, q1) + at holds for each q0 ∈ R
d, q1 ∈

R
d, t > 0;

(iii) the inequality u � T tu + ta holds for each t � 0;

(iv) the function u is a viscosity subsolution of the Hamilton–Jacobi equation
H(q, du(q)) = a;

(v) the function u is Lipschitz and the inequality H(q, du(q)) � a holds at each
point of differentiability q of u (by Rademacher’s theorem, the set of points of
differentiability has full measure).

The function u is called a subsolution at level a, or a subsolution of (HJa), if it
satisfies these properties.

Proof. It is tautological that (v) =⇒ (i) and easy that (ii) ⇐⇒ (iii). Let us prove
that (i) =⇒ (ii), following Fathi. If (i) holds, then there exists a set M ⊂ R

d of full
measure composed of points of differentiability q of u such that H(q, du(q)) � a.
We first assume that t < σ and prove (ii) (recall that At = St). Let us consider the
map

(q0, q1, τ) �→ (q(τ), q1, τ),

where q(τ) is the value at time τ of the unique orbit (q(s), p(s)) that satisfies
q(0) = q0 and q(t) = q1. This map is a diffeomorphism of R

d ×R
d×]0, t[, the inverse

diffeomorphism being
(θ, q1, τ) �→ (q(0), q1, τ),

where (q(s), p(s)) is the unique orbit such that q(τ) = θ and q(t) = q1. As a
consequence, for almost every pair (q0, q1), the function u is differentiable at the
point q(s) for almost every s ∈ ]0, t[. If (q0, q1) is such a pair, we have, using the
convexity of H in p,

u(q1) − u(q0) = u(q(t)) − u(q(0))

=
∫ t

0
duq(s) · q̇(s) ds

=
∫ t

0
duq(s) · ∂pH(q(s), p(s)) ds

�
∫ t

0
H(q(s), duq(s)) + ∂pH(q(s), p(s)) · p(s) − H(q(s), p(s)) ds

� at + St(q(0), q(t))

= at + At(q0, q1).

We have proved the desired inequality for almost every pair (q0, q1), and hence on a
dense subset of pairs. Since both sides of the inequality are continuous, we deduce
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that the inequality holds for all pairs (q0, q1), provided t < σ. In order to deduce
the inequality when t � σ, we write, for n large enough,

At(q0, q1) + at = min
θ1,...,θn−1

(St/n(q0, θ1) + at/n + · · · + St/n(qn−1, q1) + at/n)

� min
θ1,...,θn−1

(u(θ1) − u(q0) + · · · + u(q1) − u(θn−1))

= u(q1) − u(q0).

Let us now prove that 3 ⇒ 4. Let u be a function satisfying (iii). This function then
satisfies (ii); hence, it is Lipschitz. We consider a C2 function v(q) that touches u
from above at some point θ, which means that v − u has a global minimum at θ.
Since the function u is Lipschitz, we can modify v at infinity and assume that it
has bounded second differential. Then, there exists a C2 solution V (t, q) of (HJ)
defined on ]−T, T [ with T > 0, and such that V (0, q) = v(q). For t � 0, we have
Vt = T tv, by proposition 4.3. Since v � u, we obtain that

V (t, q) = T tv(q) � T tu(q) � u(q) − at

for t ∈ ]0, T [; hence, ∂tV (0, θ) � −a (recall that θ is the point of contact between
u and v). Since we know that V solves (HJ), we conclude that

H(θ, ∂qV (0, θ)) = H(θ, dv(θ)) � a.

The proof that (iv) =⇒ (v) is classical and can be found in [13], but we recall
it here for completeness. If q is a point of differentiability of u, then du(q) is a
superdifferential (but not necessarily a proximal superdifferential) of u at q; hence,
H(q, du(q)) � a. We shall now prove that the function u is locally Lipschitz. The
estimate H(q, du(q)) � a, which holds at each point of differentiability of u, then
implies that it is globally Lipschitz in view of hypothesis 3.2.

Let B(Q, 1) be a closed ball, of radius 1. Let us set

r = max
θ∈B(Q,2),q∈B(Q,1)

(u(θ) − u(q)).

Let k be a positive number greater than r and such that |p| � k ⇒ H(q, p) > a for
each q. Such a k exists by hypothesis 3.2. Given q in B(Q, 1), the function

θ �→ k|θ − q| − u(θ)

then has a local minimum in the interior of the ball B(Q, 2). If this minimum is
reached at a point q1 
= q, then the function v(θ) := k|θ − q| is smooth at q1 and,
since u is a viscosity subsolution, we have H(q1, dv(q1)) � a, which contradicts the
fact that |dv(q1)| = k. Hence, the minimum must be reached at q, which implies
that k|θ − q| − u(θ) � −u(q) or, equivalently, that

u(θ) − u(q) � k|θ − q|

for each θ ∈ B(Q, 2) and all q ∈ B(Q, 1). We conclude that u is k-Lipschitz on
B(Q, 1).

Corollary 5.3. If u is a subsolution of (HJa), then, for each t � 0, T tu is a
subsolution of (HJa), and so is Ť tu.
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Proof. The function u is a subsolution if and only if T su + as � u for each t � 0.
Applying T t, we obtain T tT su + as = T sT tu + as � T tu. Since this inequality
holds for each s � 0, we conclude that T tu is a subsolution.

Corollary 5.4. If the function u is Lipschitz, and if the Hamiltonian is auto-
nomous, then the functions T tu, t � 0 are equi-Lipschitz.

Proof. If the function u is k-Lipschitz, then du(q) � k almost everywhere; hence,
u is a subsolution to (HJa) for some a (one can take a = sup|p|�k H(q, p)). As a
consequence, the functions T tu, t � 0 are all subsolutions to (HJa); hence, they are
K-Lipschitz, with K = sup{|p|, H(q, p) � a}.

6. Weak KAM solutions and invariant sets

We derive here the first dynamical consequences from the theory.

Definition 6.1. The function u is called a weak KAM solution at level a if T tu +
ta = u for each t � 0. Weak KAM solutions at level a are viscosity solutions
of (HJa). We say that the function u is a weak KAM solution if it is a weak KAM
solution at some level a.

If u is a weak KAM solution, then it is semi-concave (with a semi-concavity
constant that depends only on M and m). By theorem 4.8, for t > 0, we have the
inclusion

ϕ−t(Γ̄u) ⊂ Γu,

and this set is a Lipschitz graph. The set

I∗(u) :=
⋂
n∈N

ϕ−n(Γ̄u)

is a closed invariant set contained in a Lipschitz graph. It would be a very nice
result to have obtained a distinguished closed invariant subset of our Hamiltonian
system contained in a Lipschitz graph. Unfortunately, at this point, we cannot prove
(because it is not necessarily true) that the set I∗(u) is not empty. In order to
obtain interesting dynamical consequences from this theory, we need an additional
assumption.

Hypothesis 6.2. We say that the Hamiltonian H is periodic if H(q + w, p) =
H(q, p) for each w ∈ Z

d, q ∈ R
d and p ∈ R

d∗.

Under this hypothesis, we should see the Hamiltonian system as defined on the
phase space T

d × R
d∗, with T

d = R
d/Z

d. Indeed, the flow ϕt commutes with the
translations (q, p) �→ (q + w, p), w ∈ Z

d. The compactness of this new configura-
tion space has remarkable consequences, summed up in the following Theorem. We
assume in the rest of this section that the Hamiltonian H satisfies hypotheses 1.8,
2.1, 3.2, 5.1 and 6.2.

Theorem 6.3. If the Hamiltonian is autonomous and periodic, then there exists a
periodic weak KAM solution. The corresponding set I∗(u) is a non-empty closed
invariant set that is contained in a Lipschitz graph and is invariant under the
translations (q, p) �→ (q + w, p), w ∈ Z

d.
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This latter property on the invariance under translations means that I∗(u) nat-
urally gives rise to an invariant space on the quotient phase space T

d × R
d∗.

Proof. Let us first prove the second part of the theorem. If u is a periodic weak
KAM solution, then the set Γ̄u is contained in {|p| � C} for some constant C,
and it is invariant under the integral translations; hence, it descends to a compact
subset of T

d × R
d∗, which we still denote by Γ̄u. Then the sets ϕ−n(Γ̄u) form a

decreasing sequence of non-empty compact sets; hence, their intersection is a non-
empty compact set.

Let us now prove that there exists a periodic weak KAM solution. We follow the
proof of [6], which is slightly different from the original proof of Fathi. Observe first
that the functions At(q0, q1) are periodic in the sense that At(q0 + w, q1 + w) =
At(q0, q1) for each w ∈ Z

d. This implies that T tu is periodic when u is periodic.
Considering the Cauchy problem for (HJ) with initial condition equal to zero, we
define v(t, q) := T t0(q). The quantities a+(t) = maxq vt(q) and a−(t) = minq vt(q)
will be useful. Since the functions vt, t � 0 are equi-Lipschitz, there exists a constant
K such that a+(t) − a−(t) � K for all t � 0. We have

a+(t + s) = max T t+s0

= max T t(T s0)

� T t(a+(s))

= a+(s) + T t(0)

� a+(s) + a+(t),

and, similarly,
a−(t + s) � a−(t) + a−(s).

By standard results on subadditive functions, we conclude that a+(t)/t and a−(t)/t
converge, respectively, to inft�0 a+(t)/t and supt�0 a−(t)/t. Since a+−a− is bound-
ed, these two limits have the same value: let us call it −a. We have

K − ta � a−(t) + K � a+(t) � −ta � a−(t) � a+(t) − K � K − at

for all t � 0; hence,
K � v(t, q) + ta � −K.

We can now define
u(q) := lim inf

t→∞
(v(t, q) + ta).

We claim that u is a weak KAM solution at level a. Since the functions vt + ta are
equi-Lipschitz and equi-bounded, the function u is well defined and Lipschitz. We
have to prove that T tu + ta = u for all t � 0.

We have

v(t + s, q1) + (t + s)a � v(s, q0) + sa + At(q0, q1) + ta

for each q0, q1 and t � 0, s � 0. Taking the infimum limit in s yields

u(q1) � u(q0) + At(q0, q1) + ta.

We have proved that u is a subsolution to (HJa).
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Conversely, we have to prove that T tu+ta � u. Let us pick a point q and consider
a sequence tn such that v(tn, q) + tna → u(q). Fixing t > 0, we consider a sequence
qn in R

d such that

v(tn, q) + tna = v(tn − t, qn) + (tn − t)a + At(qn, q) + ta.

This equality implies that the sequence qn is bounded, and we assume by taking
a subsequence that it has a limit q′. We can also assume that the sequence v(tn −
t, q′) + (tn − t)a has a limit, which we denote by l. Note that l � u(q′). Since the
functions vt are equi-Lipschitz, we have v(tn − t, qn) + (tn − t)a → l; hence, taking
the limit in the equality above,

u(q) = l + At(q′, q) + at � u(q′) + At(q′, q) + at � T tu(q) + at.

We have proved that u is a periodic weak KAM solution at level a.

The periodic weak KAM solutions at level a are the periodic viscosity solutions
of (HJa), as is proved in Fathi’s companion paper. The existence of periodic vis-
cosity solutions was first obtained by Lions et al . in a famous unpublished preprint
(see [17]). The most important aspect of Fathi’s weak KAM theorem that we just
exposed is that these viscosity solutions have a dynamical relevance and give rise
to invariant sets.

Let us comment a bit further in that direction, and explain the name ‘weak
KAM’. Consider a periodic Lipschitz function u, and the associated set Γu, which
we consider here as a subspace of T

d × R
d∗.

Assume first that u is C2, so that Γu is a C1 graph. This graph is invariant
if and only if there exists a such that u solves (HJa). This follows from § 1: if u
solves (HJa), then the function U(t, q) = u(q) − at solves (HJ); hence,

ϕt(Γu) = ΓUt
= Γu.

Conversely, if Γu is invariant, then ΓT tu = ϕt(Γu) = Γu, by corollary 1.4; hence,
T tu is equal to u up to an additive constant a(t). Since T t is a semi-group, it is
easy to deduce that a(t) = at for some a ∈ R. As a consequence, u is a C2 weak
KAM solution; hence, a classical solution of (HJa).

The classical KAM theorem gives the existence, in certain very specific settings, of
some invariant C1 graphs of the form Γu. From what we just explained, the theorem
can be interpreted as giving the existence of C2 solutions of (HJa), although this
point of view is not the right one to obtain its proof. It is natural to expect that the
Hamilton–Jacobi equation could be used to produce invariant sets in more general
situations. Since we do not know any direct method to prove the existence of C2

solutions of (HJa), we should deal with some kind of weak solutions. However, if
u is just a Lipschitz solution almost everywhere, we cannot say much about the
dynamical properties of Γu. It is remarkable that the inclusion ϕt(Γu) ⊃ Γ̄u holds
for viscosity solutions (or, equivalently, weak KAM solutions) in the convex case.
This is the starting point of Fathi’s construction of the invariant set I∗(u) that we
have presented in this section.
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7. Regular subsolutions and the Aubry set

We abandon for a moment hypothesis 6.2, and consider a Hamiltonian satisfying
hypotheses 1.8, 2.1, 3.2 and 5.1. We describe a new construction of invariant sets
based on the study of regular subsolutions, and define the Aubry set. We mostly
follow [4] in this section. The following result is the basis of our constructions
(see [2, 4, 15]).

Theorem 7.1. If (HJa) admits a subsolution, then it admits a C1,1 subsolution.
Moreover, the set of C1,1 subsolutions is dense in the set of all subsolutions for the
uniform topology.

Proof. Let u be a subsolution at level a. We use the operator Rt = Ť δt ◦ T (δ+1)t ◦ Ť t

of theorem 4.13 to regularize u. Since the operators T t and Ť t preserve subsolutions,
so does Rt. We claim that

u − (C + a)(1 + δ)t � Rtu � u + (C + a)(1 + δ)t,

with a constant C that depends only on m and M . This implies that the function
Rtu is finite valued. If the parameter δ has been chosen small enough, then, by
theorem 4.13, the functions Rt are C1,1 subsolutions, which converge uniformly to
u as t → 0. The bound on Rtu claimed above follows from the following ones in
view of property 4.4:

v − sa � T sv � v + Cs, v − Cs � Ť sv � v + sa,

which hold for each s � 0 and each subsolution v at level a. The first one can be
seen by writing

u(q) − as � T su(q) � u(q) + As(q, q) � u(q) + Cs.

This ends the proof of theorem 7.1. Observe that we could have used the simpler
operator T̆ δt ◦ T t, as was done in [4], but the operator Rt deserves attention for
some nicer properties.

Definition 7.2. The critical value of H is the real number α (or α(H)) defined as
the infimum of all real numbers a such that (HJa) has a subsolution. The subsolu-
tions of (HJα) are called critical subsolutions.

Lemma 7.3. We have the estimate −M � α � M .

Proof. The function u = 0 is a subsolution at level M ; hence, α � M . Conversely,
since H � −M , there exists no subsolution at level a when a < −M .

Proposition 7.4. There exists a C1,1 subsolution of (HJα).

Proof. Let an be a sequence decreasing to α. Since an > α, the Hamilton–Jacobi
equation at level an has a subsolution un. The sequence un is equi-Lipschitz, and we
can assume by adding constants that it is also equi-bounded. Taking a subsequence,
we can also assume that it converges locally uniformly to a limit u. Taking the limit
n → ∞ in the inequalities un(q1) − un(q0) � At(q0, q1) + tan gives u(q1) − u(q0) �
At(q0, q1)+ tan. This holds for all q0, q1 and t > 0; hence, u is a subsolution at level
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α, or, in other words, a critical subsolution. Since there exists a critical subsolution,
theorem 7.1 implies that there exists a C1,1 critical subsolution.

Definition 7.5. The projected Aubry set is the set A ⊂ R
d of points q such that

the equality H(q, du(q)) = α holds for all C1 critical subsolutions u.

We point out that A might be empty without additional hypotheses.

Lemma 7.6. If q ∈ A, then all C1 critical subsolutions u have the same differen-
tial at q. In other words, the restriction Γu|A does not depend on the C1 critical
subsolution u.

Proof. Let u and v be two critical subsolutions, and q a point in A. We have to
prove that du(q) = dv(q). Assume, by contradiction, that this equality does not hold
and consider the subsolution w = 1

2 (u + v). Since H(q, du(q)) = H(q, dv(q)) = α,
the strict convexity of H(q, ·) implies that H(q, dw(q)) < α, which contradicts the
definition of A.

Lemma 7.7. There exists a C1,1 subsolution u0 that satisfies the strict inequality
H(q, du0(q)) < α for all q in the complement of A.

Proof. The set of C1 functions is separable for the topology of uniform C1 conver-
gence on compact sets. This topology can be defined, for example, by the distance

d(u, v) =
∑

n

sup|q|�n arctan(|u(q)| + |du(q)|)
2n

.

Since a subset of a separable space is separable, there exists a sequence un of C1

critical subsolutions which is dense for this topology in the set of all C1 critical
subsolutions. Let us set

an =
a0

2n supk�n,|q|�n(1 + |uk(q)| + |duk(q)|)

and choose a0 such that
∑

n�1 an = 1. The sum
∑

n�1 anun converges uniformly
with its differentials on each compact sets to a C1 limit v0. The function v0 is a
critical subsolution, and we claim that H(q, dv0(q)) = α if and only if q belongs to
A. Indeed, this equality holds only if all the inequalities H(q, dun(q)) � α are equal-
ities, which, in view of the density of the sequence un, implies that H(q, du(q)) = α
for all C1 subsolutions u. By definition, this implies that q belongs to A. We have
constructed a C1 subsolution v0 such that

H(q, dv0(q)) < α

outside of A. We have to prove the existence of a C1,1 critical subsolution with
the same property. We consider a smooth function V (q), bounded in C2, which is
positive outside of A and such that

0 � V (q) � α − H(q, dv0(q))

for all q ∈ R
n. The modified Hamiltonian H̃(q, p) = H(q, p) + V (q) satisfies all our

hypotheses. Since H̃ � H, the corresponding critical value α̃ satisfies α̃ � α. Since
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v0 is a subsolution of the inequality

H̃(q, dv0(q)) � α,

we can apply theorem 7.1 to H̃ at level α, and obtain the existence of a C1,1

subsolution u0 to the same inequality. The inequality

H(q, du0(q)) � α − V (q)

implies that u0 is a critical subsolution for H that is strict on the set {V > 0},
which, from our construction of V , is the complement of A.

Definition 7.8. The Aubry set A∗ is defined as

A∗ =
⋂
u

Γu|A =
⋂
u

Γu,

where the intersections are taken on the set of C1 critical subsolutions.

In view of lemma 7.6 we have A∗ = Γu|A for each C1 subsolution u; hence,
π(A∗) = A, where π : R

d × R
d∗ → R

d is the projection on the first factor. To check
the second inequality, it is sufficient to prove that

⋂
u Γu ⊂ A∗. Let u0 be a C1

critical subsolution such that H(q, du0(q)) < α outside of A. Given a point (q0, p0)
in Γu0 − A∗, we can slightly perturb the critical subsolution u0 around q0 to a
critical subsolution u1 such that du1(q0) 
= du0(q0) (we use the strict inequality
H(q, du0(q)) < α). The point (q0, p0) does not belong to Γu1 ; hence, it does not
belong to

⋂
u Γu, which ends our proof.

The set A∗ is contained in the Lipschitz graph Γu0 for each C1,1 subsolution u0.
As in § 6, we have obtained an invariant set contained in a Lipschitz graph, but
which may be empty in general.

Proposition 7.9. The Aubry set is a closed invariant set.

Proof. Let u0 be a C1,1 critical solution such that H(q, du0(q)) < α outside of A. By
proposition 4.10, there exists T > 0 such that T tu0 is still C1,1 for t ∈ [−T, T ]. Given
(q, p) ∈ A∗, we conclude that, for t ∈ [0, T ], we have p = d(T tu0)(q). Setting θ =
Q−t(q, p), the addendum to proposition 4.10 implies that T tu0(q) = u0(θ)+St(θ, q),
and that

ϕt(θ, du0(θ)) = (q, p).

Since the flow preserves the Hamiltonian, we get that H(θ, du0(θ)) = α; hence, the
point θ belongs to A, and then

ϕ−t(q, p) = (θ, du0(θ)) ∈ A∗.

We have proved that ϕ−t(A∗) ⊂ A∗ for t ∈ [0, T ]. We can prove in a similar way,
using the C1,1 subsolution Ť tu0 instead of T tu0, that ϕt(A∗) ⊂ A∗ for t ∈ [0, T ],
and hence that

ϕt(A∗) = A∗

for each t ∈ [−T, T ], which clearly implies that this equality holds for all t. We have
proved the invariance of A∗.
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Proposition 7.10. The equality

Ť tu(q) − tα = u(q) = T tu(q) + tα

holds for each critical subsolution u, each t � 0 and each q ∈ A. The inclusion
A∗ ⊂ Γu holds for each critical subsolution; hence, the inclusion A∗ ⊂ I∗(u) holds
for each weak KAM solution at level α.

Proof. Let (q(s), p(s)) be a trajectory contained in A∗, and let t � 0 be given. For
each C1 critical subsolution u, we have p(s) = duq(s), and

u(q(t)) − u(q(0)) =
∫ t

0
duq(s)q̇(s) ds

= tα +
∫ t

0
duq(s)q̇(s) − H(q, duq(s)) ds

� At(q(0), q(t)) + tα.

Since u is a critical subsolution, the second point in proposition 5.2 implies that
the last inequality must be an equality; hence,

u(q(t)) − u(q(s)) = At−s(q(s), q(t)) + (t − s)α

for each t � s. In the terminology of Fathi, we have proved that the curve q(s) is
calibrated by the subsolution u. We can now write

u(q(t)) � T tu(q(t)) + tα � u(q(0)) + At(q(0), q(t)) + tα = u(q(t)).

This implies that T tu + tα = u on A, and, similarly, Ť tu − tα = u on A. Let us
now fix t ∈ ]0, σ[. Given an orbit (q(s), p(s)) in A∗, we have

u(q(0)) � u(θ) + St(θ, q(0)) + tα

for each subsolution u and each θ, with equality at θ = q(−t). This implies that
∂1S(q(−t), q(0)) is a superdifferential of u at q(0). This holds, in particular, for
C1 subsolutions, which satisfy du(q(0)) = p(0); hence, ∂1S(q(−t), q(0)) = p(0).
We have proved that p(0) is a superdifferential of u at q(0). Similarly, using the
inequality

u(q(0)) � u(θ) − St(q(0), θ) − tα,

with equality at θ = q(t), we conclude that p(0) is a subdifferential of u at q(0). This
implies that u is differentiable at q(0), and that du(q(0)) = p(0). As a consequence,
A∗ ⊂ Γu for each subsolution u.

In the course of the above proof, we have established the following lemma, which
will be needed later.

Lemma 7.11. Let u be a subsolution at level a, and let (q(s), p(s)) be a Hamiltonian
trajectory contained in Γu ∩{H = a} (note that this set is not necessarily invariant
in general). Then, the equality Ť tu(q(s)) − ta = u(q(s)) = T tu(q(s)) + ta holds for
each t � 0 and each s ∈ R.
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8. The Mañé potential

In this section, we work with a Hamiltonian satisfying hypotheses 1.8, 2.1, 3.2
and 5.1. The Mañé potential at level a is the function

Φa(q0, q1) := inf
t>0

(At(q0, q1) + at).

This function was first introduced by Ricardo Mañé (see [19]). We leave as an easy
exercise for the reader the proof of the triangle inequality

Φa(q0, q1) � Φa(q0, θ) + Φa(θ, q1).

In view of proposition 5.2, each subsolution u at level a satisfies

u(q1) − u(q0) � Φa(q0, q1)

for each q0 and q1. We conclude that Φa is finite if there exists a subsolution at level
a, which holds if and only if a � α. Conversely, If the function Φa is finite, then we
see from the triangle inequality that the function q �→ Φa(q0, q) is a subsolution at
level a, which implies that a � α. The estimates of lemma 3.3 imply that

Φa(q0, q1) � 2
√

2m(M + a)|q1 − q0|

provided a � α (note that α � −M). We have proved that the Mañé potential is
the function called the viscosity semi-distance in [13].

Proposition 8.1. If a � α, then the function q �→ Φa(q0, q) is the maximum of all
subsolutions u at level a that vanish at q0. If a < α, then there is no such subsolution
and Φa is identically equal to −∞.

This statement also implies that the Mañé Potential at level a depends only on
the energy level {H = a}. More precisely, let G be another Hamiltonian satisfying
our hypotheses and such that H = a ⇔ G = a. Then, the sets {H � a} and
{G � a} are equal, which implies, in view of the first characterization of subsolutions
in proposition 5.2, that G and H have the same subsolutions at level a. As a
consequence, they have the same Mañé potential at level a. This is also reflected in
the following proposition by the fact that the involved orbits are contained in the
set {H = a}.

Proposition 8.2. Given q0 
= q1, there exist τ ∈ ]0,∞] and an orbit

(q(s), p(s)) : (−τ, 0] → R
d × R

d∗

such that q(0) = q1, A0
s(q0, q(s)) − as = Φa(q(s), q1),

Φa(q0, q(s)) + Φa(q(s), q1) = Φa(q0, q1)

and H(q(s), p(s)) = a for each s ∈ (−τ, 0]. If, moreover, τ is finite, then q(−τ) = q0.

Proof. If q0 
= q1, then either the functions t �→ At(q0, q1)+at reach their minimum
at some finite time τ > 0, or they have a minimizing sequence τn → ∞. This follows
from lemma 3.3.
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In the first case, there exists an orbit (q(t), p(t)) : [−τ, 0] → R
d × R

d∗ such that
q(−τ) = q0, q(0) = q1, and∫ 0

−τ

p · q̇ − H(q, p) dt = Aτ (q0, q1) = Φa(q0, q1) − τa.

We obtain, for each s ∈ [−τ, 0], that

Φa(q0, q1) − aτ =
∫ 0

−τ

p · q̇ − H(q, p) dt

=
∫ s

−τ

p · q̇ − H(q, p) dt +
∫ 0

s

p · q̇ − H(q, p) dt

� As+τ (q0, q(s)) + A−s(q(s), q1)
� Φa(q0, q(s)) − a(s + τ) + Φa(q(s), q1) + as

� Φa(q0, q1) − aτ.

We conclude that all these inequalities are equalities; hence,

Φa(q0, q(s)) + Φa(q(s), q1) = Φa(q0, q1).

We also deduce from the above chain of inequalities that A−s(q(s), q1) − as =
Φa(q(s), q1), which implies that the function t �→ At(q(s), q1) + at is minimal for
t = −s. Taking s ∈ ]−σ, 0[, we can differentiate with respect to t at t = −s and get

∂t|t=−sS
t(q(s), q1) + a = 0.

Recalling the equality

∂tS
−s(q(s), q1) + H(q1, p(0)) = 0

(because p(0) = ρ1(−s, q(s), q1) in the notation of § 2), we conclude that

H(q1, p(0)) = a

and, since the Hamiltonian is constant on Hamiltonian orbits, H(q(t), p(t)) = a for
each t.

In the second case, there exists a sequence of orbits (qn(t), pn(t)) on [−τn, 0] such
that ∫ 0

−τn

pn · q̇n − H(qn, pn) dt + aτn = Aτn(q0, q1) + aτn � Φa(q0, q1) + δn,

where δn → 0. Let us denote hn := H(qn(s), pn(s)); this does not depend on s. By
lemma 3.4 and the above inequality, we have

m

M
τnhn − (m + M)τn �

∫ 0

−τn

pn · ∂pH(qn, pn) − H(qn, pn) dt � Φa(q0, q1) + δn;

hence, the sequence hn is bounded. As a consequence, the curves pn(s) are uniformly
bounded; hence, so is q̇n(s) = ∂pH(qn(s), pn(s)). On each compact interval of time
[s, 0], the curves xn(t) = (qn(t), pn(t)) are thus uniformly bounded, and hence
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uniformly Lipschitz. Up to taking a subsequence, we can thus assume that the
curves xn(t) converge, uniformly on compact time intervals, to a Hamiltonian orbit
x(t) = (q(t), p(t)) : (−∞, 0] → R

d × R
d∗. Passing to the limit in the inequality

Φa(q0, qn(s)) + Φa(qn(s), q1) � Φa(q0, q1) + δn,

which holds for each s ∈ [−τn, 0], yields

Φa(q0, q(s)) + Φa(q(s), q1) � Φa(q0, q1),

which must actually be an equality. We prove as in the first case that H(q1, p(0)) =
a, thus H(q(s), p(s)) ≡ a.

The projected Aubry set A can be characterized in terms of the Mañé potential
(see also [13]).

Proposition 8.3. The following statements are equivalent for a point q0 and a real
number a, where we denote by u the function Φa(q0, ·):

(i) q0 ∈ A and a = α;

(ii) T tu(q0) + ta = u(q0) = 0 for each t � 0;

(iii) the function u is a weak KAM solution at level a;

(iv) u is differentiable at q0.

Proof. (i) =⇒ (ii). This follows from proposition 7.10, since u is a subsolution
at level a = α.

(ii) =⇒ (iii). Let us fix t > 0 and q1. We have to prove that there exists θ such
that u(q1) � u(θ) + At(θ, q1) + ta (this inequality is then an equality). If q1 = q0,
the existence of this point follows from the equality T tu(q0) + ta = u(q0).

If q1 
= q0, we can apply proposition 8.2 to this pair of points. With the notation
of proposition 8.2, if τ � t, then the point θ = q(−t) fulfils our demand. If τ < t,
then we set s = t − τ . We have q(−τ) = q0 and Aτ (q0, q1) + aτ = u(q1). Since
T su(q0) + sa = u(q0), there exists θ such that u(θ) + As(θ, q0) + sa = u(q0) = 0.
The infimum in the definition of T su(q0) exists because u is Lipschitz. We conclude
that

u(θ) + At(θ, q1) + at � u(θ) + As(θ, q0) + sa + Aτ (q0, q1) + aτ = u(q1).

(iii) =⇒ (iv). If u is a weak KAM solution, then it has a proximal superdifferential
at each point. Conversely, if v is a C1 subsolution, then u − v has a minimum at
q0; hence, dv(q0) is a subdifferential of u at q0. The function u both has a super-
differential and a subdifferential at q0; hence, it is differentiable at q0.

(iv) =⇒ (i). If a > α, or if q0 does not belong to A, then there exists a C1

subsolution v at level a that is strict near q0. We can then slightly perturb the
function v near q0 and build a subsolution w such that dw(q0) 
= dv(q0). In view
of the characterization of u as the largest subsolution vanishing at q0, we conclude
that dv(q0) and dw(q0) are subdifferentials of u at q0; hence, u is not differentiable
at this point.
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The Mañé potential also allows us to build weak KAM solutions in the non-
periodic case by the Busemann method (see [10,13]). Let qn be a sequence of points
of R

d such that |qn| � n. We consider the sequence of functions

un(q) = Φa(qn, q) − Φa(qn, q0).

By construction, un(q0) = 0, and it follows from the triangle inequality that the
functions un are equi-Lipschitz. We can then assume, without loss of generality, that
the functions un converge, uniformly on compact sets, to a Lipschitz limit u(q).

Proposition 8.4. The limit function u(q) is a weak KAM solution at level a.

Proof. The functions un are all subsolutions at level a, which means that un(q1) −
un(q0) � At(q0, q1) + ta for each t � 0, q0, q1. At the limit n → ∞, we obtain that
T tu + ta � u for each t � 0.

We have to prove that T tu + ta � u for all t � 0. Let us fix a point q and a time
t � 0, and consider a sequence tn such that

Atn(qn, q) + atn � Φa(qn, q) + 1/n.

This inequality implies that

1
2Mtn

|qn − q|2 � 1 + (M − a)tn + 2
√

2m(M + a)|qn − q|

and, since |qn − q| → ∞, that tn → ∞. When n is large enough, we have tn � t and
there exists θn ∈ R

d such that Atn(qn, q) = Atn−t(qn, θn) + At(θn, q). This implies
that

Φa(qn, q) � Atn(qn, q) + atn − 1/n

� Atn−t(qn, θn) + a(tn − t) + At(θn, q) + at − 1/n

� Φa(qn, θn) + At(θn, q) + at − 1/n.

This inequality implies that

un(q) � un(θn) + At(θn, q) + at − 1/n.

Since the functions un are equi-Lipschitz, this implies that the sequence θn is
bounded, by lemma 3.3. By taking a subsequence, we assume that θn has a limit
θ, and, at the limit, we obtain

u(q) � u(θ) + At(θ, q) + at,

which implies that u(q) � T tu(q) + ta.

9. A return to the periodic case

A more precise link can be established between the contents of §§ 6 and 7 under
the assumption that H is periodic (see hypothesis 6.2). It is useful first to expose
a variant of § 7 adapted to the periodic case. We leave as exercises the proofs that
are direct adaptations of those given above. From now on, we assume hypotheses
1.8, 2.1, 3.2, 5.1 and 6.2 hold.
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Theorem 9.1. If (HJa) admits a periodic subsolution, then it admits a periodic
C1,1 subsolution. Moreover, the set of periodic C1,1 subsolutions is dense in the set
of all periodic subsolutions for the uniform topology.

Definition 9.2. The periodic critical value of H is the real number α(0), defined
as the infimum of all real numbers a such that (HJa) has a periodic subsolution.
The periodic subsolutions at level α(0) are called critical periodic subsolutions.

Definition 9.3. The projected periodic Aubry set is the set A(0) ⊂ T
d of points

q such that the equality H(q, du(q)) = α(0) holds for all C1 periodic critical sub-
solutions u.

Lemma 9.4. If q ∈ A(0), then all C1 critical periodic subsolutions u have the same
differential at q. In other words, the restriction Γu|A does not depend on the C1

critical periodic subsolution u.

Proposition 9.5. There exists a C1,1 periodic critical subsolution u0 such that
H(q, du0(q)) < α(0) outside of A(0).

Without surprise, we define the periodic Aubry set A∗(0) as

A∗(0) := Γu0|A,

with u0 given by the proposition (there is not a single u0, but the Aubry set is well
defined).

Proposition 9.6. The set A∗(0) ⊂ T
d × R

d∗ is compact, non-empty and invari-
ant.

Proof. Let us prove that A(0); hence, A∗(0) is not empty. Assuming by contra-
diction that it is empty, then the equality H(q, du0(q)) < α(0) would hold for all
q ∈ R

d. Since the function q �→ H(q, du0(q)) is periodic, we could conclude that
supq H(q, du0(q)) < α(0), which is contradicts the definition of α(0).

We are now in a position to specify the connection with the invariant sets intro-
duced in § 6.

Proposition 9.7. In the periodic case, we have the equality

A∗(0) =
⋂
u

I∗(u),

where the intersection is taken on all periodic weak KAM solutions.

Proof. The inclusion A∗(0) ⊂
⋂

u I∗(u) is proved as in § 7. Our goal is to prove the
other inclusion. Let u0 be a C1,1 periodic subsolution that is strict outside of A(0).
The map t �→ T tu0+tα(0) is non-decreasing. In addition, the functions T tu0+tα(0)
are equi-Lipschitz, and they coincide with u0 on A; hence, they are equi-bounded.
As a consequence, T tu0 + tα → u∞ uniformly as t → ∞.

Claim 9.8. The limit u∞ is a periodic weak KAM solution such that u0 < u∞
outside of A(0).



1172 P. Bernard

In order to prove that u∞ is a weak KAM solution, it is enough to notice that
the function T t+su0 +(t+s)α(0) converges both to u∞ and to T su∞ +sα(0) when
t → ∞. This implies, as desired, that T su∞ + sα(0) = u∞ for each s � 0.

We know that u∞ � u0, with equality on A(0). Conversely, let us consider a
point q such that u∞(q) = u0(q). The point q is minimizing the difference u∞ −u0.
Since u∞ is semi-concave and u0 is C1, the function u∞ must be differentiable at q
with du∞(q) = du0(q). Since u∞ solves the Hamilton–Jacobi equation at its points
of differentiability, we conclude that H(q, du0(q)) = H(q, du∞(q)) = α(0); hence,
q ∈ A(0). We have proved the claim.

Let us now establish that I(u∞) = A(0), which implies the proposition. By
Lemma 7.11, we have Ť tu∞ − tα = u∞ on I(u∞) for each t � 0. Setting ε(t) =
sup(u∞ − T tu0 − tα(0)), we have

u∞ � u0 � Ť t ◦ T tu0 � Ť t(u∞ − ε(t) − tα(0)) � Ť tu∞ − ε(t) − tα(0) = u∞ − ε(t)

on I(u∞). Since this holds for all t � 0, and since limt→∞ ε(t) = 0, we conclude
that u0 = u∞ on I(u∞). On the other hand, we have seen that u0 < u∞ outside of
A(0); hence, I(u∞) ⊂ A(0).

We finish with a simple remark, which is specific to the periodic case.

Proposition 9.9. All periodic weak KAM solutions have level α(0).

Proof. Let u0 be a critical periodic subsolution, and let u be a periodic weak KAM
solution at level a. Since u is a periodic subsolution at level a, the definition of
α(0) implies that a � α(0). On the other hand, there exists a constant C such that
u − C � u0 � u + C, which implies

u = T tu + ta � T tu0 − C + ta � u0 + t(a − α(0)) − C � u + t(a − α(0)) − 2C.

We obtain that t(a − α(0)) � 2C for each t � 0; hence, a − α(0) � 0.

10. The Lagrangian

In most expositions of weak KAM theory (see, for example, [3,5,11,20]), the Lagran-
gian plays an important role. In this section, we relate it to our main objects in
order to facilitate the connection with the core of the literature, where what we
state here as properties are usually taken as definitions. We define the Lagrangian
as

L : R × R
d × R

d → R,

(t, q, v) �→ sup
p∈(Rd)∗

(p · v − H(t, q, p)).

By standard results on convex analysis (see, for example, [21]) we then have

H(t, q, p) = sup
v∈Rd

(p · v − L(t, q, v)).

We obviously have the Legendre inequality

H(t, q, p) + L(t, q, v) � p · v
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for all t, q, p, v. This inequality is an equality if and only if

p = ∂vL(t, q, v) or, equivalently, v = ∂pH(t, q, p).

Let q(t) : ]t0, t1[ be a curve, The action of q is the number∫ t1

t0

L(t, q(t), q̇(t)) dt.

We can also call it Lagrangian action if we want to distinguish from the previously
defined Hamiltonian action. The Lagrangian and Hamiltonian actions are related
as follows.

The Hamiltonian action of a curve (q(t), p(t)) is smaller than the Lagrangian
action of its projection q(t), with equality if and only if p(t) ≡ ∂vL(t, q(t), q̇(t)). In
particular, the Hamiltonian action of an orbit is equal to the Lagrangian action of
its projection.

Lemma 10.1. Let q0 and q1 be two points of R
d, and let t0 and t1 be two times,

with 0 < t1 − t0 < σ. If (q(s), p(s)) is the orbit satisfying q(t0) = q0, q(t1) = q1, we
have

St1
t0 (q0, q1) =

∫ t1

t0

L(s, q(s), q̇(s)) ds = min
θ(s)

∫ t1

t0

L(s, θ(s), θ̇(s)) ds,

where the minimum is taken on the set of Lipschitz curves θ : [t0, t1] → R
d that

satisfy θ(t0) = q0 and θ(t1) = q1.

Proof. Since St1
t0 (q0, q1) is the Hamiltonian action of the unique orbit (q(t), p(t)), it

is also the Lagrangian action of the curve q(t):

St1
t0 (q0, q1) =

∫ t1

t0

L(s, q(s), q̇(s)) ds.

The function u(t, q) := St
t0(q0, q) solves (HJ) on ]t0, t1[. Let us now consider any

Lipschitz curve θ(s) : [t0, t1] → R
d satisfying θ(t0) = q0 and θ(t1) = q1, and write∫ t1

t0

L(s, θ(s), θ̇(s)) ds �
∫ t1

t0

∂qu(s, θ(s)) · θ̇(s) − H(s, θ(s), ∂qu(s, θ(s))) ds

=
∫ t1

t0

∂qu(s, θ(s)) · θ̇(s) − ∂tu(s, θ(s)) ds

= u(t1, q1) − u(t0, q0)

= St1
t0 (q0, q1).

The following proposition is usually taken as the definition of A.

Proposition 10.2. Given two points q0 and q1 and two times t0 < t1, we have

At1
t0(q0, q1) = min

θ(s)

∫ t1

t0

L(s, θ(s), θ̇(s)) ds,
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where the minimum is taken on the set of Lipschitz curves θ : [t0, t1] → R
d that

satisfy θ(t0) = q0 and θ(t1) = q1.

It is part of the statement that the minimum is achieved. This is usually called
Tonelli’s theorem. The statement can be extended to absolutely continuous curves
instead of Lipschitz curves, but this setting is not useful for our discussion.

Proof. For n large enough, we have (t1 − t0)/n < σ; hence, setting

τi = t0 + i(t1 − t0)/n,

we obtain

At1
t0(q0, q1)

= min
(θ1,...,θn−1)

(Sτ1
t0 (q0, θ1) + Sτ2

τ1
(θ1, θ2) + · · · + St1

τn−1
(θn−1, q1))

= min
(θ1,...,θn−1)

(
min
θ(s)

∫ τ1

t0

L(s, θ(s), θ̇(s)) ds + · · · + min
θ(s)

∫ t1

τn−1

L(s, θ(s), θ̇(s)) ds

)

= min
θ(s)

∫ t1

t0

L(s, θ(s), θ̇(s)) ds.
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Appendix A. Some technical results

Proposition A.1. A Lipschitz map F : R
d → R

d that satisfies Lip(F − Id) < 1
is a bi-Lipschitz homeomorphism of R

d. Its inverse is Lipschitz, and Lip(F−1) �
(1 − k)−1. If F is C1, then so is F−1.

Proof. The equation F (q) = θ can be rewritten

θ − (F (q) − q) = q.

The map on the left being contracting, we conclude that F is invertible. We now
write

|x1 − x0| − |F (x1) − F (x0)| � |(F (x1) − x1) − (F (x0) − x0)| � k|x1 − x0|

and deduce that |F (x1) − F (x2)| � (1 − k)|x1 − x0|.

Proposition A.2. Let F : R
d → R

d be a C1, c-monotone map on R
d, with c > 0.

Then F is a diffeomorphism from R
d onto itself.

Proof. Let us consider a point θ ∈ R
d, and the line θ(s) = F (0) + s(θ − F (0)).

Since F is a local diffeomorphism around 0, the points θ(s) for small s have a
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unique preimage p(s). Let S be the infimum of the positive real numbers s such
that the equation F (p) = θ(s) does not have a solution in R

d. The curve p(s) is
well defined, C1 and Lipschitz on [0, S[; hence, if S is finite, it extends at S with
F (p(S)) = θ(S). Since F is a local diffeomorphism at p(S), the points near θ(S)
have preimages, which contradicts the definition of S. Hence, S cannot be finite.

Lemma A.3. Let A be a d × d matrix, such that A � a Id in the sense of quadratic
forms, and ‖A‖ � b. Then A−1 � (a/b2)I in the sense of quadratic forms.

Proof. We have

(A−1v, v) = (AA−1v, A−1v) � a|A−1v|2 � a(|v|/b)2.

The following important result appears in Fathi’s book (see [14]) on weak KAM
theory (the proof is also his).

Proposition A.4. Let u : R
d → R be a function and K be a positive number.

Let I ∈ R
d be the set of points where u has both a K-superdifferential and a K-

subdifferential. Then, the function u is differentiable at each point of I, and the
function q �→ du(q) is 6K-Lipschitz on I.

Proof. For each q ∈ I, there exists a unique l(q) ∈ R
d∗ such that

|u(q + θ) − u(q) − l(q) · θ| � K‖θ‖2.

We conclude that l(q) is the differential of u at q, and we have to prove that the
map q �→ l(q) is Lipschitz on I. We have, for each q, θ and y in H:

l(q) · (y + θ) − K‖y + θ‖2 � u(q + y + θ) − u(q) � l(q) · (y + θ) + K‖y + θ‖2,

l(q + y) · (−y) − K‖y‖2 � u(q) − u(q + y) � l(q + y) · (−y) + K‖y‖2,

l(q + y) · (−θ) − K‖θ‖2 � u(q + y) − u(q + y + θ) � l(q + y) · (−θ) + K‖θ‖2.

Taking the sum, we obtain

|(l(q + y) − l(q)) · (y + θ)| � K‖y + θ‖2 + K‖y‖2 + K‖z‖2.

By a change of variables, we get

|(l(q + y) − l(q)) · θ| � K‖θ‖2 + K‖y‖2 + K‖θ − y‖2.

Taking ‖θ‖ = ‖y‖, we obtain

|(l(q + y) − l(q)) · (θ)| � 6K‖θ‖‖y‖

for each θ such that ‖θ‖ = ‖y‖. We conclude that

‖l(q + y) − l(q)‖ � 6K‖y‖.

Lemma A.5. Let u be a finite-valued function which is the infimum of a family F
of equi-semi-concave functions: u = inff∈F f . Then the function u is semi-concave.
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It is important in the statement to assume that u is really finite valued at each
point.

Proof. Let us assume that the functions in F are k-semi-concave. Given a point
q0 ∈ R

d let fn(q) = an + pn · q + k/2‖q‖2 be a sequence of functions of F such that
fn(q0) → u(q0). We have fn(q) � fn(q0) + pn · (q − q0) + k/2‖q − q0‖2 for some
sequence pn ∈ R

∗. If the sequence pn is bounded, then we can take the limit along
a subsequence and get the inequality

u(q) � u(q0) + p · (q − q0) + k/2‖q − q0‖2.

If this holds for each q0, we conclude that u is k-semi-concave. Let us now prove that
pn is bounded. If this is not true, there would exist a point q such that pn · (q − q0)
is not bounded from below. This would imply that

u(q) = inf
f∈F

f(q) � inf
n

fn(q) � inf
n

(fn(q0) + pn · (q − q0) + k/2‖q − q0‖2) = −∞,

which would contradict the finiteness of u at q.
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mizing measures and Mañé’s critical values. Geom. Funct. Analysis 8 (1998), 788–809.
12 A. Fathi. Regularity of C1 solutions of the Hamilton–Jacobi equation. Annales Fac. Sci.

Toulouse Math. 12 (2003), 479–516.
13 A. Fathi. Weak KAM from a PDE point of view: viscosity solutions of the Hamilton–Jacobi

equation and Aubry set. Proc. R. Soc. Edinb. A142 (2012), 1193–1236.
14 A. Fathi. Weak KAM theorem in Lagrangian dynamics. (In preparation.)
15 A. Fathi and A. Siconolfi. Existence of C1 critical subsolutions of the Hamilton–Jacobi

equation. Invent. Math. 155 (2004), 363–388.
16 A. Fathi and A. Siconolfi. PDE aspects of Aubry–Mather theory for quasiconvex Hamilto-

nians. Calc. Var. PDEs 22 (2005), 185–228.
17 P. L. Lions, G. Papanicolaou and S. R. S. Varadhan. Homogenization of Hamilton–Jacobi

equations. Preprint (1988).
18 D. M. McDuff and D. Salamon. Introduction to symplectic topology (Oxford University

Press, 1995).



The Lax–Oleinik semi-group 1177
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