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Abstract

Recently, [3], it was shown that Special Relativity is in fact based
just about on one single physical axiom which is that of Reciprocity.
Originally, Einstein, [1], established Special Relativity on two physi-
cal axioms, namely, the Galilean Relativity and the Constancy of the
Speed of Light in inertial reference frames. Soon after, [2,4,5], it was
shown that the Galilean Relativity alone, together with some implicit
mathematical type conditions, is sufficient for Special Relativity. The
references in [7,3] can give an idea about the persistence over the
years, even if not the popularity, of the issue of minimal axiomatic
foundation of Special Relativity. Here it is important to note that,
implicitly, three more assumptions have been used on space-time co-
ordinate transformations, namely, the homogeneity of space-time, the
isotropy of space, and certain mathematical condition of smoothness
type on the coordinate transformations. In [3], a weaker boundedness
type condition on space-time coordinate transformations is used in-
stead of the usual mathematical smoothness type conditions. In this
paper it is shown that the respective boundedness condition is related
to the Principle of Local Transformation Increment Ratio Limitation,
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or in short, PLTIRL, a principle introduced here, and one which has
an obvious physical meaning. It is also shown that PLTIRL is not a
stronger assumption than that of the mentioned boundedness in [3],
and yet it can also deliver the Lorentz Transformations. Of interest is
the fact that, by formulating PLTIRL as a physical axiom, the pos-
sibility is opened up for the acceptance, or on the contrary, rejection
of this physical axiom PLTIRL, thus leading to two possible theories
of Special Relativity. And to add further likelihood to such a pos-
sibility, the rejection of PLTIRL leads easily to effects which involve
unlimited time and/or space intervals, thus are not accessible to usual
experimentation for the verification of their validity, or otherwise. A
conclusion is that a more careful consideration of the assumptions
underlying Special Relativity is worth pursuing. In this regard, a cor-
responding trend has lately been observable in Quantum Mechanics
and General Relativity. In the former, the respective analysis is more
involved than has so far been the case for Special Relativity. As for
the latter, the technical and conceptual difficulties are considerable.
Regarding Quantum Field Theory, the situation is, so far, unique in
Physics since, to start with, there is not even one single known rigor-
ous and comprehensive enough mathematical model. This paper is a
new version of [20].

“Of all things, good sense is the most fairly dis-
tributed : everyone thinks he is so well supplied
with it that even those who are the hardest to
satisfy in every other respect never desire more
of it than they already have.” :-) :-) :-)

R Descartes
Discourse de la Méthode

“... creativity often consists of finding hidden
assumptions. And removing those assumptions
can open up a new set of possibilities ...”
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Henry R Sturman

“History is written with the feet ...”

Chinese Ex-Chairman Mao,
of the Long March fame ...

Science is not done scientifically, since it is mostly
done by non-scientists ...

Anonymous

Physics is too important to be left to
physicists ...

Anonymous

Is the claim about the validity of the so called
“physical intuition” but a present day version of
medieval claims about the sacro-sanct validity of
theological revelations ?

Anonymous

0. Prologue

In recent times, there has been a remarkable amount of research re-
garding the foundations of Quantum Mechanics and General Relativ-
ity, with many such ventures, especially regarding quanta, searching
for axioms of a manifestly physical nature. Often the attention is
focused not only on possible reformulations of the usually accepted
theories, but as well on their possible extensions, some of them quite
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daring as such. As for Quantum Field Theory, the foundational situ-
ation is still at its beginnings since the theory is not yet at the stage
to have a rigorous and widely enough accepted formulation, let alone
an axiomatic one.
Needless to say, the conceptual complexities involved in such foun-
dational research are considerable in Quantum Mechanics, while in
General Relativity tremendous technical difficulties come to be added
in such ventures.
All such challenges seem, however, to pale in comparison to those one
faces when it comes to Quantum Field Theory.

Special Relativity in this regard seems to be in a surprisingly conve-
nient easy situation. Indeed, as first formulated in 1905 by Einstein, it
is based on not more than two axioms, each of which has a clear phys-
ical meaning, namely, the Galilean Relativity and the Constancy of
the Speed of Light in inertial reference frames. Soon after, see [2,4,5],
and ever since, see for instance [7,3] and the references cited there, a
number of attempts have been made in order to find a minimal ax-
iomatic setup. The present paper has as one of its aims to further
contribute to that venture.

A remarkable fact which emerges along that study of a possibly min-
imal axiomatic formulation of Special Relativity is what may be seen
as a significant disconnect between physical type axioms, and on the
other hand, the accepted mathematical models. Indeed, as seen below,
and already pointed out earlier in the literature, see [2,4,5] and [7,3]
and the references cited there, the Lorentz Transformations can be
obtained without the axiom of the Constancy of the Speed of Light.
And as far as the axiom of the Galilean Relativity is concerned, a
clearly weaker form of it, namely the axiom of Reciprocity, [7,3], is
sufficient, together with certain mathematical type conditions on the
coordinate transformations involved. By the way, this axiom of Reci-
procity merely asks that in inertial reference frames the laws of Physics
remain the same when a velocity v is replaced with the velocity −v.

It seems therefore that, at least as far as Special Relativity is con-
cerned, its mathematical core - which is given by the Lorentz Trans-
formations - is in fact overstated by its two usual axioms, the second
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of which is not even needed, while the first one is only used in an
obviously weaker form.

It appears that such a disconnect should be of concern in Physics since
it seems naturally more easy to have physical intuition come up with
some axioms, than to guarantee that those axioms will as well be min-
imal. And in such a foundational situation the issue of minimality of
physical type axioms is not reduced merely to the avoidance of redun-
dancy. Indeed, when setting up physical type axioms the objective
is clearly the achievement of a precise model of the part of physics
intended for study. And then it may - and why not, also should -
be considered as problematic the choice of a system of axioms which
happens to overstate the case, and it does so without any other justi-
fication, except for being the product of some physical intuition ...

Last, and not least, regarding axiomatic approaches to Physics, var-
ious theories of Physics are also based on the general mathematical
assumptions upon which corresponding mathematical models of such
theories happen to be built during a given historical period in the de-
velopment of science. And such assumptions are, of course, so deeply
embedded in the mathematical culture of any such historical period as
to be taken tacitely for granted, and thus not being subjected to any
widely enough practiced questioning, let alone to the more systematic
development of the consequences of alternative assumptions.

In this regard, a basic and general mathematical assumption for more
than two millennia is about the scalars used in Physics. Namely, ever
since Euclid set up Geometry in ancient Egypt, it is assumed that the
geometric straight line, which since Descartes is identified with what
in modern Mathematics is the field R of usual real numbers - and thus
gives the scalars upon which all else is constructed in Physics, includ-
ing the complex numbers in C - does satisfy the Archimedean Axiom,
[8-21]. This tacit and long accepted assumption on scalars, however,
does not have any known motivation in modern Physics, albeit in an-
cient Egypt was of obvious practical importance in measuring the land
after the yearly flood of the Nile.
And the remarkable fact is that, by setting aside the Archimedean
Axiom, a large variety of considerably more rich and complex versions
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of the geometric straight line - and thus of scalars - can be constructed
quite easily, [20,21]. In other words, one can obtain a large variety of
scalars which extend R, and thus correspondingly, the complex num-
bers in C as well. And these scalar extensions can give mathematical
models of space-time, as well as of manifolds, Hilbert spaces, and other
mathematical structures used in Physics, and do so with possible ad-
vantages due to their more rich and complex structure, advantages
some of which are mentioned in [8-21].

As it happens, the Lorentz Transformations can also be deduced in
such extensions, [18], along lines similar to those presented in this pa-
per. Thus Special Relativity has a second relativity property, namely,
it is independent also of a wide class of scalars which can be used in
Physics, and not only of the inertial reference frames.
Regarding the possible validity of such a second relativity for other
branches of Physics, the problem is still open. Further details in this
regard can be found in [14].

1. A Most General Setup

For convenience, we briefly review the main result in [3]. Let S and
S ′ be two reference frames with space-time coordinates (x, y, z, t), re-
spectively, (x ′, y ′, z ′, t ′). Further, let S ′ move with constant velocity
v with respect to S, and do so parallel with the x-axis in S. Lastly,
let assume the property

(1.1) x = y = z = t = 0 =⇒ x ′ = y ′ = z ′ = t ′ = 0

which means that at t = t ′ = 0, the origins of coordinates in S and
S ′ coincide.

Let us now consider the most general possible space-time coordinate
transformation, [3], namely, of the form
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(1.2)

x ′ = X(x, y, z, t, v)
y ′ = Y (x, y, z, t, v)
z ′ = Z(x, y, z, t, v)
t ′ = T (x, y, z, t, v)

where (x, y, z, t), (x ′, y ′, z ′, t ′) ∈ R4 and v ∈ R.

For ease of notation, and following [3], for each v ∈ R, let us define a
mapping

(1.3) fv : R4 −→ R4

where for (x, y, z, t) ∈ R4, we have

(1.4)
fv(x, y, z, t) =

= (X(x, y, z, t, v), Y (x, y, z, t, v), Z(x, y, z, t, v), T (x, y, z, t, v))

Then (1.2) takes the form

(1.5) u ′ = fv(u), u, u ′ ∈ R4, v ∈ R

Let us now take any u0 = (x0, y0, z0, t0), ∆u = (∆x, ∆y, ∆z, ∆t) ∈ R4,
and then define u0

′ = (x0
′, y0

′, z0
′, t0

′), ∆u ′ = (∆x ′, ∆y ′, ∆z ′, ∆t ′) ∈
R4 by

(1.6) u0
′ = fv(u0)

(1.7) ∆u ′ = fv(u0 + ∆u)− fv(u0)

We note that (1.6), (1.7) can be interpreted as follows. We have a
reference frame S0 which is identical with S, except that it has its
origin at the point u0 in S. Similarly, we have a reference frame S ′

0

which is identical with S ′, except that it has its origin at the point u0
′

in S ′.

Then clearly, S0 and S ′
0 relate to one another in the same way as S

and S ′ do. Namely, S ′
0 moves with velocity v with respect to S0, and,
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see (1.1)

(1.8) ∆u = 0 =⇒ ∆u ′ = 0

Hence due to the homogeneity of space-time, we have, see (1.5)

(1.9) ∆u ′ = fv(∆u)

And then, (1.7), (1.9) give

(1.10) fv(u0 + ∆u) = fv(u0) + fv(∆u)

Thus the functions fv, with v ∈ R, are additive, namely

(1.11) fv(u + w) = fv(u) + fv(w), u, w ∈ R4

On the other hand, (1.1) implies

(1.12) fv(0) = 0

hence

(1.13) fv(−u) = −fv(u), u ∈ R4

Consequently, it is easy to show that, see (18)-(20) in [3]

(1.14) fv(ru) = rfv(u), r ∈ Q, u ∈ R4

Now it is precisely here that one needs the assumption of certain math-
ematical properties on the functions fv, that is, on the coordinate
transformations (1.2) - (1.5), in order to be able to make the tran-
sition from property (1.14) of the homogeneity of fv with respect to
arbitrary rational scalars, to the stronger property

(1.15) fv(cu) = cfv(u), c ∈ R, u ∈ R4

which is that of the homogeneity of fv with respect to arbitrary real
scalars.
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Obviously, if one assumes that fv is continuous on R4, then (1.14) im-
plies (1.15), since Q is a dense subset of R. In [7], a stronger property
of fv is assumed, namely, its differentiability on R4.

On the other hand, in [3] it is shown that the following boundedness
property of fv - which obviously is a weaker condition than the conti-
nuity of fv - is sufficient in order to obtain (1.15) from (1.14). Namely,
we only need that

(1.16)

∀ v ∈ R :

∃ M > 0 :

∀ u ∈ R4 :

||u || ≤ 1 =⇒ || fv(u) || ≤ M

where for a = (a1, a2, a3, a4) ∈ R4, we define the norm || a || = | a1 | +
| a2 |+ | a3 |+ | a4 |.

And as is shown in [3], this boundedness condition (1.16) implies the
following continuity property

(1.17)

∀ v ∈ R, ε > 0 :

∃ δ > 0 :

∀ u ∈ R4 :

||u || ≤ δ =⇒ || fv(u) || ≤ ε

Indeed, if ||u || ≤ 1
n , for some n ∈ N, then ||nu || ≤ 1, hence (1.16)

implies || fv(nu) || ≤ M , which in view of (1.15), yields || fv(u) || ≤ M
n .

But for a given ε > 0, we have M
n ≤ ε, as soon as 1

n ≤ ε
M . Hence in

(1.17), we can take δ ≤ 1
n .
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Now we recall (1.11), and then the continuity property (1.17) implies
the following stronger uniform continuity

(1.18)

∀ v ∈ R, ε > 0 :

∃ δ > 0 :

∀ u, w ∈ R4 :

||w − u || ≤ δ =⇒ || fv(w)− fv(u) || ≤ ε

Last, we recall that based on (1.15), one can obtain the Lorentz Trans-
formations, as shown in [7,3].

2. The Principle of Local Transformation Increment Ratio
Limitation, or PLTIRL

The idea in [3] to use the weaker boundedness condition (1.16) on the
coordinate transformations (1.2) - (1.5), instead of usual stronger con-
tinuity or smoothness conditions, such as for instance in [7], brings to
attention the possible role certain other possibly weaker boundedness
conditions may play in the axiomatic foundation of Special Relativity,
conditions which may also lend themselves in an easier manner to a
physical interpretation.

In this regard, here we introduce the following Principle of Local
Transformation Increment Ratio Limitation, or in short, PLTIRL, for-
mulated in terms of the coordinate transformations (1.2) - (1.5). And
as seen in this section, PLTIRL is not a stronger condition than (1.16),
and yet, it can still lead to the Lorentz Transformations.
The interest in PLTIRL is in the fact that, unlike condition (1.16), it
lends itself easier to a physical interpretation, as seen in the sequel, in
section 3.

Consequently, the main point in this paper is to replace the bound-
edness condition (1.16) with PLTIRL in the axiomatic foundation of
Special Relativity, and thus obtain the double advantage of using a

10



weaker condition than (1.16) in [3], plus having in PLTIRL a condition
which lends itself easier to a physical interpretation.
Furthermore, as sen in section 4, this physical interpretation seems to
open up the possibility of two versions of Special Relativity, namely,
according to having the physical PLTIRL accepted, or on the contrary,
rejected.

And now, to the formulation of PLTIRL. Given a velocity v ∈ R and
two sets of space-time coordinates (x0, y0, z0, t0), (x, y, z, t) ∈ R4, with
their corresponding transformed coordinates (x ′

0, y
′
0, z

′
0, t

′
0), (x

′, y ′, z ′, t ′) ∈
R4 through (1.2) - (1.5), then the boundedness condition PLTIRL asks
that there exist K, ρ > 0, such that

||P − P0 || ≤ ρ =⇒ ||P ′ − P ′
0 || ≤ K||P − P0 ||

where P0 = (x0, y0, z0, t0), P = (x, y, z, t), P ′
0 = (x ′

0, y
′
0, z

′
0, t

′
0), P

′ =
(x ′, y ′, z ′, t ′).

We note that K and ρ may depend on v and P0 = (x0, y0, z0, t0), which
are supposed to be given. As for P ′

0, it results from v and P0 through
the coordinate transformations (1.2) - (1.5). Further, P is arbitrary,
and then P ′ is given by (1.2) - (1.5) applied to v and P .

Consequently, a more detailed formulation of PLTIRL is as follows :

(PLTIRL)

∀ v ∈ R, P0 ∈ R4 :

∃ K, ρ > 0 :

∀ P ∈ R4 :

||P − P0 || ≤ ρ =⇒ ||P ′ − P ′
0 || ≤ K||P − P0 ||

Obviously, the point in the above condition is the implication

(2.1) ||P − P0 || ≤ ρ, P 6= P0 =⇒ ||P ′ − P ′
0 ||

||P − P0 ||
≤ K

which is precisely about a local transformation increment ratio limita-
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tion, where the transformation increment is ||P ′−P ′
0 ||, the increment

is ||P−P0 ||, and then their ratio is limited by K, while the local aspect
is due to the fact that one can only deal with increments ||P − P0 ||
which are limited by an appropriate ρ.

Here we can note that the transformation increment ratio
||P ′ − P ′

0 ||
||P − P0 ||

can in fact be seen as a certain kind of local velocity around the space-
time event P0. More precisely, it can be seen as the local velocity of
the reference frame S ′ with respect to the reference frame S. Indeed,
when for simplicity, one considers that transformation increment in
terms of the one dimensional Lorentz Transformation

x ′ = x− vt√
1− (

v

c
)2

, t ′ =
t− v

c2 x√
1− (

v

c
)2

and assumes, see (1.1), (1.2), that P0 = (x0, t0) = (0, 0), P = (x, t), P0
′ =

(x0
′, t0

′) = (0, 0), P ′ = (x ′, t ′), then

||P − P0 || = |x− x0 |+ | t− t0 | = |x |+ | t |

||P ′ − P ′
0 || = |x ′ − x0

′|+ | t ′ − t0
′| = |x ′ |+ | t ′ |

hence

||P ′ − P ′
0 ||

||P − P0 ||
=
|x ′ |+ | t ′ |
|x |+ | t | =

|x− vt |+ | t− v

c2 x |
|x |+ | t |

1√
1− (

v

c
)2

thus for x = 0, v, t > 0, one obtains

(2.2)
||P ′ − P ′

0 ||
||P − P0 ||

= v + 1√
1− (

v

c
)2

while for t = 0, x, v > 0, results
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(2.3)
||P ′ − P ′

0 ||
||P − P0 ||

=

v

c2
+ 1√

1− (
v

c
)2

and clearly, (2.2), (2.3) are closely related to the velocity v of the ref-
erence frame S ′ with respect to the reference frame S.

And now let us show that this boundedness condition PLTIRL is not
stronger than (1.16).

In this respect, first we note that PLTIRL can also be seen as a local
Lipschitz type continuity property, while (1.18) is a uniform continuity
property. Thus as they stand, none of them is in general stronger, or
for that matter, weaker than the other one.

However, the assumption in [3] is not (1.18), and instead of it, it is
(1.16). Yet clearly, (1.16) leads to the following global uniform Lip-
schitz property

(2.4)

∀ v ∈ R :

∃ L > 0 :

∀ u, w ∈ R4 :

|| fv(w)− fv(u) || ≤ L||w − u ||

Indeed, in view of (1.14), we can proceed as follows. Let s ∈ R, s > 0,

be such that r = ||u ||+ s ∈ Q, then for w = 1
r u, we have ||w || < 1,

thus (1.16) gives || fv(w) || ≤ M . However fv(w) = 1
r fv(u), hence

|| fv(u) || ≤ M(||u ||+s), and since s can be arbitrary small, we obtain

(2.5) || fv(u) || ≤ M ||u ||, v ∈ R, u ∈ R4

from which (2.4) follows obviously, with L = M .

We can now conclude that PLTIRL is not a stronger assumption than
the boundedness assumption (1.16) in [3], since the latter implies (2.4)
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which is obviously at least as strong as PLTIRL.

Lastly, since PLTIRL is also a local Lipschitz continuity property, it
follows that, together with (1.14), it still implies (1.15), thus again
gives the Lorentz Transformations.

3. Accepting, or Rejecting, the Physical Axiom PLTIRL

Let us show now that PLTIRL can indeed be associated with a phys-
ical interpretation in a more obvious manner than condition (1.16) in
[3].

For that purpose, let us further clarify the meaning of PLTIRL by
assuming that it does not hold. This means that we have

(Non-PLTIRL)

∃ v ∈ R, P0 ∈ R4 :

∀ K, ρ > 0 :

∃ P ∈ R4 :

||P − P0 || ≤ ρ

||P ′ − P ′
0 || > K||P − P0 ||

These two inequalities above mean, respectively, that we have

(3.1) |x− x0 |+ | y − y0 |+ | z − z0 |+ | t− t0 | ≤ ρ

as well as

(3.2)
|x ′ − x ′

0 |+ | y ′ − y ′
0 |+ | z ′ − z ′

0 |+ | t ′ − t ′
0 | >

> K( |x− x0 |+ | y − y0 |+ | z − z0 |+ | t− t0 | )

Clearly, (3.2) means that at least one of the following four relations
holds

14



(3.3)

|x ′ − x ′
0 | > K( |x− x0 |+ | y − y0 |+ | z − z0 |+ | t− t0 | )/4

| y ′ − y ′
0 | > K( |x− x0 |+ | y − y0 |+ | z − z0 |+ | t− t0 | )/4

| z ′ − z ′
0 | > K( |x− x0 |+ | y − y0 |+ | z − z0 |+ | t− t0 | )/4

| t ′ − t ′
0 | > K( |x− x0 |+ | y − y0 |+ | z − z0 |+ | t− t0 | )/4

Consequently, the negation of PLTIRL means the existence of a finite
velocity v ∈ R and of a space-time event P0 ∈ R4, such that, no matter
how near to P0, there exist space-time events P for which at least one
of the ratios between, on one hand, the space-time coordinates of the
increments between the transformations of P and P0, and on the other
hand, the increment between P and P0, can become arbitrarily large.

Indeed, in view of (3.3), the negation of PLTIRL takes the form

(Non-PLTIRL)

∃ v ∈ R, P0 ∈ R4 :

∀ K, ρ > 0 :

∃ P ∈ R4, P 6= P0 :

|x− x0 |+ | y − y0 |+ | z − z0 |+ | t− t0 | ≤ ρ

and at least one of the following four relations holds

|x ′ − x ′
0 |

|x− x0 |+ | y − y0 |+ | z − z0 |+ | t− t0 |
> K

| y ′ − y ′
0 |

|x− x0 |+ | y − y0 |+ | z − z0 |+ | t− t0 |
> K

| z ′ − z ′
0 |

|x− x0 |+ | y − y0 |+ | z − z0 |+ | t− t0 |
> K

| t ′ − t ′
0 |

|x− x0 |+ | y − y0 |+ | z − z0 |+ | t− t0 |
> K
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4. Two Alternative Theories of Special Relativity ?

The above considerations open up two alternatives in Special Relativ-
ity. Namely, one can - as a physical axiom - accept PLTIRL, that is,
the Principle of Transformation Increment Ratio Limitation, or on the
contrary, based on certain physical arguments, one can reject it.

Now, since one of the essential features of Special Relativity is the
limitation on the velocity of propagation of any physical phenomenon,
it appears to be more natural not to reject PLTIRL.

However, it is well known, see [3,7] and the literature cited there,
that the mentioned velocity limitation is not a perfectly independent
axiom of Special Relativity, since it follows from the physical axiom
of Galilean Relativity, and in fact, from the physical axiom of Reci-
procity, under rather general conditions, as shown in [3].

And here, one can note an interesting fact.

Namely, what one adds in [3] to Galilean Relativity, more precisely,
to Reciprocity, in order to obtain the Lorentz Transformations, and
thus the relativistic rule of velocity addition, as well as the mentioned
velocity limitation, is a boundedness condition from which a continuity
property results, a property closely related to PLTIRL, as seen above.

Thus in a way, velocity limitation is assumed, for instance, in the sense
of (2.2), (2.3), in order to obtain velocity limitation in the sense of the
Axiom of Constancy of the Speed of Light ...

This remark is not a criticism of the approach in [3], and instead,
points out the fact that, to a certain extent the Galilean Relativity,
or for that matter, Reciprocity - taken all alone and in itself - is not
sufficient in order to obtain Special Relativity.

In this regard it may be of interest to recall that Einstein himself kept
on numerous occasions presenting Special Relativity as being based on
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two physical axioms, namely, the Galilean Relativity and the velocity
limitation, in which the highest possible one is of light in void.

We can, therefore, conclude that to the extent one is not rejecting
highly discontinuous physical processes, there can be two rather dis-
tinct theories of Special Relativity, namely, the usual one, obtainable
under PLTIRL, for instance, and on the other hand, one that obeys
Galilean Relativity, and in fact, merely Reciprocity, and also assumes
the homogeneity of space-time and isotropy of space, yet it is de-
scribed by space-time coordinate transformations more general than
the Lorentz ones.

In case PLTIRL is, however, rejected, then as seen above in (Non-
PLTIRL), at least one of the four ratios

|x ′ − x ′
0 |

|x− x0 |+ | y − y0 |+ | z − z0 |+ | t− t0 |

| y ′ − y ′
0 |

|x− x0 |+ | y − y0 |+ | z − z0 |+ | t− t0 |

| z ′ − z ′
0 |

|x− x0 |+ | y − y0 |+ | z − z0 |+ | t− t0 |

| t ′ − t ′
0 |

|x− x0 |+ | y − y0 |+ | z − z0 |+ | t− t0 |

becomes arbitrarily large in any neighbourhood of at least one space-
time event P0.

Here however, it is worth noting that the last of the above ratios in-
volves the unboundedness of time, and not of space, as is the case with
the first three ratios. And such time unboundedness is a phenomenon
not so easy to detect under usual experiments.

Consequently, an unorthodox kind of Special Relativity, one whose
possibility was mentioned above in case PLTIRL is rejected, may es-
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cape the means of detection by usual experiments which, as a rule, do
not involve arbitrarily large time intervals.

Needless to say, the detection by usual experiments of the space un-
boundedness which may result from the first three ratios above is,
similarly, not an easy task, in case Non-PLTIRL is accepted.

5. Further Possibilities in Non-Archimedean Space-Times

As seen in [18], the Lorentz Transformations of Special Relativity can
be obtained within far larger space-times than the usual four dimen-
sional Minkowski one. Consequently, the above arguments in which
the formulation of PLTIRL opens up the possibility of two rather
different theories of Special Relativity may lead to a yet richer such
possibility which will be dealt with elsewhere, since it goes consider-
ably beyond the usual Euclidean framework, thus of that of Minkowski
as well, and as such, it requires a suitable preliminary mathematical
setup.

6. Comment on the Disconnect between Physics and
the Mathematical Models

As it may often happen, physicists would expect that, in the study of
various disciplines of Physics, good physical intuition leads to phys-
ically meaningful axioms which can then be formulated in suitable
mathematical models. And needless to say, a close connection is sup-
posed to be exhibited between the physically meaningful axioms and
the respective discipline of Physics, close in the sense that the axioms
are not supposed to model only a part of the discipline under study, as
much as they are not supposed to contain redundancy by overlapping
with one another. Therefore, in a certain sense - and as with every
better axiomatic system - the axioms should satisfy two rather con-
flicting criteria, namely, to be sufficiently inclusive, and at the same
time, to be minimal.
Here however, one should realize that the possible failure of a certain
system of axioms in Physics to satisfy these two conflicting demands
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shows up more clearly in the resulting mathematical model, and less
so in other ways.
Therefore, this failure, although one between a certain discipline of
Physics as such, and on the other hand, a given system of physi-
cally meaningful axioms which is supposed to describe it, ends up
manifested as a disconnect between Physics and one or another of its
mathematical models.

As seen above, and in the references cited, the two usual axioms of
Special Relativity happen not to satisfy such a requirement of being
at the same time inclusive and minimal. Thus in the sense just men-
tioned, we witness here a disconnect between Special Relativity and
its mathematical models. And this situation is of interest due to the
following :

• In order to obtain the Lorentz Transformations, which are con-
sidered to contain the essence of Special Relativity, one needs
less than both usual axioms of Special Relativity, namely, the
Galilean Relativity and the Constancy of the Speed of Light in
inertial reference frames. Indeed, only the axiom of Reciprocity,
plus condition (1.16), or alternatively, (PLTIRL) are needed.

• The second above axiom is thus nearly a consequence of the
axiom of Reciprocity.

Thus the questions arise :

• Are the mentioned two usual axioms of Special Relativity too
much for that theory of Physics ?

• And if not, then what are those parts of Special Relativity which
have not yet been found, since the Lorentz Transformations do
not need the full use of both usual axiom ?

In short :

• Which is a system of axioms for Special Relativity which is both
sufficient and minimal ?
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Also as seen above, the crux of the issue is the following. Property
(1.14), which is the homogeneity property of the coordinate transfor-
mations (1.2) - (1.5) with respect to rational scalars, can be obtained
from considerably less than the two usual axioms of Special Relativity,
namely, Galilean Relativity and the Constancy of the Speed of Light.
And then, in order to obtain property (1.15), which is the homogeneity
property of the coordinate transformations (1.2) - (1.5) with respect
to real scalars, one needs certain additional mathematical assumptions.

Now the obvious such assumption is that, for each velocity v ∈ R, the
coordinate transformations (1.2) - (1.5) are continuous with respect
to the space-time events (x, y, z, t) ∈ R4.

However, on the way of obtaining (1.14), one also obtained (1.11)
which is the additivity of the coordinate transformations (1.2) - (1.5).

And then, we are already in a significantly particular situation regard-
ing the coordinate transformations (1.2) - (1.5). Indeed, in the case of
additive mappings there is a close connection between continuity and
boundedness.
This is precisely why in [3] it was possible to ask for the boundedness
condition (1.16), in order to obtain (1.15) from (1.14).

It could therefore at first sight appear that, given the additivity of the
coordinate transformations (1.2) - (1.5), there is not much interest
in distinguishing between continuity and boundedness conditions on
such transformations.

Nevertheless, at a more careful consideration, it appears that there
may indeed be such an interest. Namely, and as seen above, by choos-
ing various conditions, say (C), which may have not only a mathemat-
ical, but also a physical meaning, and choosing them such that

(1.14) + (C) =⇒ (1.15)

one can open up the possibility for a better insight into Special Rel-
ativity, and insight which may help in dealing with the mentioned
disconnect.
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