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Two Theories of Special Relativity ?

 can give an idea about the persistence over the years, even if not the popularity, of the issue of minimal axiomatic foundation of Special Relativity. Here it is important to note that, implicitly, three more assumptions have been used on space-time coordinate transformations, namely, the homogeneity of space-time, the isotropy of space, and certain mathematical condition of smoothness type on the coordinate transformations. In [3], a weaker boundedness type condition on space-time coordinate transformations is used instead of the usual mathematical smoothness type conditions. In this paper it is shown that the respective boundedness condition is related to the Principle of Local Transformation Increment Ratio Limitation,

or in short, PLTIRL, a principle introduced here, and one which has an obvious physical meaning. It is also shown that PLTIRL is not a stronger assumption than that of the mentioned boundedness in [START_REF] Gannet | Nothing but Relativity[END_REF], and yet it can also deliver the Lorentz Transformations. Of interest is the fact that, by formulating PLTIRL as a physical axiom, the possibility is opened up for the acceptance, or on the contrary, rejection of this physical axiom PLTIRL, thus leading to two possible theories of Special Relativity. And to add further likelihood to such a possibility, the rejection of PLTIRL leads easily to effects which involve unlimited time and/or space intervals, thus are not accessible to usual experimentation for the verification of their validity, or otherwise. A conclusion is that a more careful consideration of the assumptions underlying Special Relativity is worth pursuing. In this regard, a corresponding trend has lately been observable in Quantum Mechanics and General Relativity. In the former, the respective analysis is more involved than has so far been the case for Special Relativity. As for the latter, the technical and conceptual difficulties are considerable. Regarding Quantum Field Theory, the situation is, so far, unique in Physics since, to start with, there is not even one single known rigorous and comprehensive enough mathematical model. This paper is a new version of [START_REF] Rosinger | Two Theories of Special Relativity[END_REF].

"Of all things, good sense is the most fairly distributed : everyone thinks he is so well supplied with it that even those who are the hardest to satisfy in every other respect never desire more of it than they already have." :-) :-) :-) 
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Physics is too important to be left to physicists ...
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Is the claim about the validity of the so called "physical intuition" but a present day version of medieval claims about the sacro-sanct validity of theological revelations ? Anonymous 0. Prologue In recent times, there has been a remarkable amount of research regarding the foundations of Quantum Mechanics and General Relativity, with many such ventures, especially regarding quanta, searching for axioms of a manifestly physical nature. Often the attention is focused not only on possible reformulations of the usually accepted theories, but as well on their possible extensions, some of them quite daring as such. As for Quantum Field Theory, the foundational situation is still at its beginnings since the theory is not yet at the stage to have a rigorous and widely enough accepted formulation, let alone an axiomatic one. Needless to say, the conceptual complexities involved in such foundational research are considerable in Quantum Mechanics, while in General Relativity tremendous technical difficulties come to be added in such ventures. All such challenges seem, however, to pale in comparison to those one faces when it comes to Quantum Field Theory. Special Relativity in this regard seems to be in a surprisingly convenient easy situation. Indeed, as first formulated in 1905 by Einstein, it is based on not more than two axioms, each of which has a clear physical meaning, namely, the Galilean Relativity and the Constancy of the Speed of Light in inertial reference frames. Soon after, see [START_REF] Frank | The transformation of the space-time coordinates of stationary to moving systems[END_REF][START_REF] Von Ignatowsky | Einige all gemeine Bemerkungen zum Relativittsprinzip[END_REF][START_REF] Von Ignatowsky | Das Relativittsprinzip[END_REF], and ever since, see for instance [START_REF] Pal | Nothing but Relativity[END_REF][START_REF] Gannet | Nothing but Relativity[END_REF] and the references cited there, a number of attempts have been made in order to find a minimal axiomatic setup. The present paper has as one of its aims to further contribute to that venture.

A remarkable fact which emerges along that study of a possibly minimal axiomatic formulation of Special Relativity is what may be seen as a significant disconnect between physical type axioms, and on the other hand, the accepted mathematical models. Indeed, as seen below, and already pointed out earlier in the literature, see [START_REF] Frank | The transformation of the space-time coordinates of stationary to moving systems[END_REF][START_REF] Von Ignatowsky | Einige all gemeine Bemerkungen zum Relativittsprinzip[END_REF][START_REF] Von Ignatowsky | Das Relativittsprinzip[END_REF]] and [START_REF] Pal | Nothing but Relativity[END_REF][START_REF] Gannet | Nothing but Relativity[END_REF] and the references cited there, the Lorentz Transformations can be obtained without the axiom of the Constancy of the Speed of Light. And as far as the axiom of the Galilean Relativity is concerned, a clearly weaker form of it, namely the axiom of Reciprocity, [START_REF] Pal | Nothing but Relativity[END_REF][START_REF] Gannet | Nothing but Relativity[END_REF], is sufficient, together with certain mathematical type conditions on the coordinate transformations involved. By the way, this axiom of Reciprocity merely asks that in inertial reference frames the laws of Physics remain the same when a velocity v is replaced with the velocity -v.

It seems therefore that, at least as far as Special Relativity is concerned, its mathematical core -which is given by the Lorentz Transformations -is in fact overstated by its two usual axioms, the second of which is not even needed, while the first one is only used in an obviously weaker form.

It appears that such a disconnect should be of concern in Physics since it seems naturally more easy to have physical intuition come up with some axioms, than to guarantee that those axioms will as well be minimal. And in such a foundational situation the issue of minimality of physical type axioms is not reduced merely to the avoidance of redundancy. Indeed, when setting up physical type axioms the objective is clearly the achievement of a precise model of the part of physics intended for study. And then it may -and why not, also shouldbe considered as problematic the choice of a system of axioms which happens to overstate the case, and it does so without any other justification, except for being the product of some physical intuition ... Last, and not least, regarding axiomatic approaches to Physics, various theories of Physics are also based on the general mathematical assumptions upon which corresponding mathematical models of such theories happen to be built during a given historical period in the development of science. And such assumptions are, of course, so deeply embedded in the mathematical culture of any such historical period as to be taken tacitely for granted, and thus not being subjected to any widely enough practiced questioning, let alone to the more systematic development of the consequences of alternative assumptions.

In this regard, a basic and general mathematical assumption for more than two millennia is about the scalars used in Physics. Namely, ever since Euclid set up Geometry in ancient Egypt, it is assumed that the geometric straight line, which since Descartes is identified with what in modern Mathematics is the field R of usual real numbers -and thus gives the scalars upon which all else is constructed in Physics, including the complex numbers in C -does satisfy the Archimedean Axiom, [START_REF] Rosinger | What scalars should we use ?[END_REF][START_REF] Rosinger | Solving Problems in Scalar Algebras of Reduced Powers[END_REF][START_REF] Rosinger | From Reference Frame Relativity to Relativity of Mathematical Models : Relativity Formulas in a Variety of Non-Archimedean Setups[END_REF][START_REF] Rosinger | Cosmic Contact : To Be, or Not To Be Archimedean ?[END_REF][START_REF] Rosinger | String Theory: a mere prelude to non-Archimedean Space-Time Structures?[END_REF][START_REF] Rosinger | Mathematics and[END_REF][START_REF] Rosinger | How Far Should the Principle of Relativity Go[END_REF][START_REF] Rosinger | Archimedean Type Conditions in Categories[END_REF][START_REF] Rosinger | Heisenberg Uncertainty in Reduced Power Algebras[END_REF][START_REF] Rosinger | No-Cloning in Reduced Power Algebras[END_REF][START_REF] Rosinger | Special Relativity in Reduced Power Algebras[END_REF][START_REF] Rosinger | Surprising Properties of Non-Archimedean Field Extensions of the Real Numbers[END_REF][START_REF] Rosinger | Two Theories of Special Relativity[END_REF][START_REF] Rosinger | Microscopes and Telescopes for Theoretical Physics : How Rich Locally and Large Globally is the Geometric Straight Line[END_REF]. This tacit and long accepted assumption on scalars, however, does not have any known motivation in modern Physics, albeit in ancient Egypt was of obvious practical importance in measuring the land after the yearly flood of the Nile. And the remarkable fact is that, by setting aside the Archimedean Axiom, a large variety of considerably more rich and complex versions of the geometric straight line -and thus of scalars -can be constructed quite easily, [START_REF] Rosinger | Two Theories of Special Relativity[END_REF][START_REF] Rosinger | Microscopes and Telescopes for Theoretical Physics : How Rich Locally and Large Globally is the Geometric Straight Line[END_REF]. In other words, one can obtain a large variety of scalars which extend R, and thus correspondingly, the complex numbers in C as well. And these scalar extensions can give mathematical models of space-time, as well as of manifolds, Hilbert spaces, and other mathematical structures used in Physics, and do so with possible advantages due to their more rich and complex structure, advantages some of which are mentioned in [START_REF] Rosinger | What scalars should we use ?[END_REF][START_REF] Rosinger | Solving Problems in Scalar Algebras of Reduced Powers[END_REF][START_REF] Rosinger | From Reference Frame Relativity to Relativity of Mathematical Models : Relativity Formulas in a Variety of Non-Archimedean Setups[END_REF][START_REF] Rosinger | Cosmic Contact : To Be, or Not To Be Archimedean ?[END_REF][START_REF] Rosinger | String Theory: a mere prelude to non-Archimedean Space-Time Structures?[END_REF][START_REF] Rosinger | Mathematics and[END_REF][START_REF] Rosinger | How Far Should the Principle of Relativity Go[END_REF][START_REF] Rosinger | Archimedean Type Conditions in Categories[END_REF][START_REF] Rosinger | Heisenberg Uncertainty in Reduced Power Algebras[END_REF][START_REF] Rosinger | No-Cloning in Reduced Power Algebras[END_REF][START_REF] Rosinger | Special Relativity in Reduced Power Algebras[END_REF][START_REF] Rosinger | Surprising Properties of Non-Archimedean Field Extensions of the Real Numbers[END_REF][START_REF] Rosinger | Two Theories of Special Relativity[END_REF][START_REF] Rosinger | Microscopes and Telescopes for Theoretical Physics : How Rich Locally and Large Globally is the Geometric Straight Line[END_REF].

As it happens, the Lorentz Transformations can also be deduced in such extensions, [START_REF] Rosinger | Special Relativity in Reduced Power Algebras[END_REF], along lines similar to those presented in this paper. Thus Special Relativity has a second relativity property, namely, it is independent also of a wide class of scalars which can be used in Physics, and not only of the inertial reference frames. Regarding the possible validity of such a second relativity for other branches of Physics, the problem is still open. Further details in this regard can be found in [START_REF] Rosinger | How Far Should the Principle of Relativity Go[END_REF].

A Most General Setup

For convenience, we briefly review the main result in [START_REF] Gannet | Nothing but Relativity[END_REF]. Let S and S be two reference frames with space-time coordinates (x, y, z, t), respectively, (x , y , z , t ). Further, let S move with constant velocity v with respect to S, and do so parallel with the x-axis in S. Lastly, let assume the property

(1.1) x = y = z = t = 0 =⇒ x = y = z = t = 0
which means that at t = t = 0, the origins of coordinates in S and S coincide.

Let us now consider the most general possible space-time coordinate transformation, [START_REF] Gannet | Nothing but Relativity[END_REF], namely, of the form

(1.2) x = X(x, y, z, t, v) y = Y (x, y, z, t, v) z = Z(x, y, z, t, v) t = T (x, y, z, t, v)
where (x, y, z, t), (x , y , z , t ) ∈ R 4 and v ∈ R.

For ease of notation, and following [START_REF] Gannet | Nothing but Relativity[END_REF], for each v ∈ R, let us define a mapping

(1.3) f v : R 4 -→ R 4
where for (x, y, z, t) ∈ R 4 , we have

(1.4)

f v (x, y, z, t) = = (X(x, y, z, t, v), Y (x, y, z, t, v), Z(x, y, z, t, v), T (x, y, z, t, v))
Then (1.2) takes the form

(1.5) u = f v (u), u, u ∈ R 4 , v ∈ R
Let us now take any u 0 = (x 0 , y 0 , z 0 , t 0 ), ∆u = (∆x, ∆y, ∆z, ∆t) ∈ R 4 , and then define u 0 = (x 0 , y 0 , z 0 , t 0 ), ∆u = (∆x , ∆y , ∆z , ∆t ) ∈ R 4 by

(1.6) u 0 = f v (u 0 ) (1.7) ∆u = f v (u 0 + ∆u) -f v (u 0 )
We note that (1.6), (1.7) can be interpreted as follows. We have a reference frame S 0 which is identical with S, except that it has its origin at the point u 0 in S. Similarly, we have a reference frame S 0 which is identical with S , except that it has its origin at the point u 0 in S .

Then clearly, S 0 and S 0 relate to one another in the same way as S and S do. Namely, S 0 moves with velocity v with respect to S 0 , and, see (

(1.8) ∆u = 0 =⇒ ∆u = 0

Hence due to the homogeneity of space-time, we have, see (1.5)

(1.9) ∆u = f v (∆u)
And then, (1.7), (1.9) give (1.10)

f v (u 0 + ∆u) = f v (u 0 ) + f v (∆u)
Thus the functions f v , with v ∈ R, are additive, namely

(1.11) f v (u + w) = f v (u) + f v (w), u, w ∈ R 4
On the other hand, (

(1.12)

f v (0) = 0 hence (1.13) f v (-u) = -f v (u), u ∈ R 4
Consequently, it is easy to show that, see ( 18)-( 20) in [START_REF] Gannet | Nothing but Relativity[END_REF] (1.14)

f v (ru) = rf v (u), r ∈ Q, u ∈ R 4
Now it is precisely here that one needs the assumption of certain mathematical properties on the functions f v , that is, on the coordinate transformations (1.2) -(1.5), in order to be able to make the transition from property (1.14) of the homogeneity of f v with respect to arbitrary rational scalars, to the stronger property

(1.15) f v (cu) = cf v (u), c ∈ R, u ∈ R 4
which is that of the homogeneity of f v with respect to arbitrary real scalars.

Obviously, if one assumes that f v is continuous on R 4 , then (1.14) implies (1.15), since Q is a dense subset of R. In [START_REF] Pal | Nothing but Relativity[END_REF], a stronger property of f v is assumed, namely, its differentiability on R 4 .

On the other hand, in [START_REF] Gannet | Nothing but Relativity[END_REF] it is shown that the following boundedness property of f v -which obviously is a weaker condition than the continuity of f v -is sufficient in order to obtain (1.15) from (1.14). Namely, we only need that

(1.16) ∀ v ∈ R : ∃ M > 0 : ∀ u ∈ R 4 : || u || ≤ 1 =⇒ || f v (u) || ≤ M where for a = (a 1 , a 2 , a 3 , a 4 ) ∈ R 4 , we define the norm || a || = | a 1 | + | a 2 | + | a 3 | + | a 4 |.
And as is shown in [START_REF] Gannet | Nothing but Relativity[END_REF], this boundedness condition (1.16) implies the following continuity property (1.17)

∀ v ∈ R, > 0 : ∃ δ > 0 : ∀ u ∈ R 4 : || u || ≤ δ =⇒ || f v (u) || ≤ Indeed, if || u || ≤ 1 n , for some n ∈ N, then || nu || ≤ 1, hence (1.16) implies || f v (nu) || ≤ M , which in view of (1.15), yields || f v (u) || ≤ M
n . But for a given > 0, we have M n ≤ , as soon as 1 n ≤ M . Hence in (1.17), we can take δ ≤ 1 n . Now we recall (1.11), and then the continuity property (1.17) implies the following stronger uniform continuity

(1.18) ∀ v ∈ R, > 0 : ∃ δ > 0 : ∀ u, w ∈ R 4 : || w -u || ≤ δ =⇒ || f v (w) -f v (u) || ≤
Last, we recall that based on (1.15), one can obtain the Lorentz Transformations, as shown in [START_REF] Pal | Nothing but Relativity[END_REF][START_REF] Gannet | Nothing but Relativity[END_REF].

The Principle of Local Transformation Increment Ratio Limitation, or PLTIRL

The idea in [START_REF] Gannet | Nothing but Relativity[END_REF] to use the weaker boundedness condition (1.16) on the coordinate transformations (1.2) -(1.5), instead of usual stronger continuity or smoothness conditions, such as for instance in [START_REF] Pal | Nothing but Relativity[END_REF], brings to attention the possible role certain other possibly weaker boundedness conditions may play in the axiomatic foundation of Special Relativity, conditions which may also lend themselves in an easier manner to a physical interpretation.

In this regard, here we introduce the following Principle of Local Transformation Increment Ratio Limitation, or in short, PLTIRL, formulated in terms of the coordinate transformations (1.2) -(1.5). And as seen in this section, PLTIRL is not a stronger condition than (1.16), and yet, it can still lead to the Lorentz Transformations.

The interest in PLTIRL is in the fact that, unlike condition (1.16), it lends itself easier to a physical interpretation, as seen in the sequel, in section 3.

Consequently, the main point in this paper is to replace the boundedness condition (1.16) with PLTIRL in the axiomatic foundation of Special Relativity, and thus obtain the double advantage of using a weaker condition than (1.16) in [START_REF] Gannet | Nothing but Relativity[END_REF], plus having in PLTIRL a condition which lends itself easier to a physical interpretation. Furthermore, as sen in section 4, this physical interpretation seems to open up the possibility of two versions of Special Relativity, namely, according to having the physical PLTIRL accepted, or on the contrary, rejected.

And now, to the formulation of PLTIRL. Given a velocity v ∈ R and two sets of space-time coordinates (x 0 , y 0 , z 0 , t 0 ), (x, y, z, t) ∈ R 4 , with their corresponding transformed coordinates (x 0 , y 0 , z 0 , t 0 ), (x , y , z , t ) ∈ R 4 through (1.2) -(1.5), then the boundedness condition PLTIRL asks that there exist K, ρ > 0, such that

|| P -P 0 || ≤ ρ =⇒ || P -P 0 || ≤ K|| P -P 0 ||
where P 0 = (x 0 , y 0 , z 0 , t 0 ), P = (x, y, z, t), P 0 = (x 0 , y 0 , z 0 , t 0 ), P = (x , y , z , t ).

We note that K and ρ may depend on v and P 0 = (x 0 , y 0 , z 0 , t 0 ), which are supposed to be given. As for P 0 , it results from v and P 0 through the coordinate transformations (1.2) -(1.5). Further, P is arbitrary, and then P is given by (1.2) -(1.5) applied to v and P .

Consequently, a more detailed formulation of PLTIRL is as follows :

(PLTIRL)

∀ v ∈ R, P 0 ∈ R 4 :
∃ K, ρ > 0 :

∀ P ∈ R 4 : || P -P 0 || ≤ ρ =⇒ || P -P 0 || ≤ K|| P -P 0 ||
Obviously, the point in the above condition is the implication

(2.1) || P -P 0 || ≤ ρ, P = P 0 =⇒ || P -P 0 || || P -P 0 || ≤ K
which is precisely about a local transformation increment ratio limita-tion, where the transformation increment is || P -P 0 ||, the increment is || P -P 0 ||, and then their ratio is limited by K, while the local aspect is due to the fact that one can only deal with increments || P -P 0 || which are limited by an appropriate ρ.

Here we can note that the transformation increment ratio || P -P 0 || || P -P 0 || can in fact be seen as a certain kind of local velocity around the spacetime event P 0 . More precisely, it can be seen as the local velocity of the reference frame S with respect to the reference frame S. Indeed, when for simplicity, one considers that transformation increment in terms of the one dimensional Lorentz Transformation

x = x -vt 1 -( v c ) 2 , t = t - v c 2 x 1 -( v c ) 2
and assumes, see (1.1), (1.2), that P 0 = (x 0 , t 0 ) = (0, 0), P = (x, t), P 0 = (x 0 , t 0 ) = (0, 0), P = (x , t ), then

|| P -P 0 || = | x -x 0 | + | t -t 0 | = | x | + | t | || P -P 0 || = | x -x 0 | + | t -t 0 | = | x | + | t | hence || P -P 0 || || P -P 0 || = | x | + | t | | x | + | t | = | x -vt | + | t - v c 2 x | | x | + | t | 1 1 -( v c ) 2
thus for x = 0, v, t > 0, one obtains

(2.2) || P -P 0 || || P -P 0 || = v + 1 1 -( v c ) 2
while for t = 0, x, v > 0, results

(2.3)

|| P -P 0 || || P -P 0 || = v c 2 + 1 1 -( v c ) 2
and clearly, (2.2), (2.3) are closely related to the velocity v of the reference frame S with respect to the reference frame S.

And now let us show that this boundedness condition PLTIRL is not stronger than (1.16).

In this respect, first we note that PLTIRL can also be seen as a local Lipschitz type continuity property, while (1.18) is a uniform continuity property. Thus as they stand, none of them is in general stronger, or for that matter, weaker than the other one.

However, the assumption in [START_REF] Gannet | Nothing but Relativity[END_REF] is not (1.18), and instead of it, it is (1.16). Yet clearly, (1.16) leads to the following global uniform Lipschitz property (2.4)

∀ v ∈ R : ∃ L > 0 : ∀ u, w ∈ R 4 : || f v (w) -f v (u) || ≤ L|| w -u ||
Indeed, in view of (1.14), we can proceed as follows. Let s ∈ R, s > 0, be such that r

= || u || + s ∈ Q, then for w = 1 r u, we have || w || < 1, thus (1.16) gives || f v (w) || ≤ M . However f v (w) = 1 r f v (u), hence || f v (u) || ≤ M (|| u ||+s),
and since s can be arbitrary small, we obtain

(2.5) || f v (u) || ≤ M || u ||, v ∈ R, u ∈ R 4
from which (2.4) follows obviously, with L = M .

We can now conclude that PLTIRL is not a stronger assumption than the boundedness assumption (1.16) in [START_REF] Gannet | Nothing but Relativity[END_REF], since the latter implies (2.4) which is obviously at least as strong as PLTIRL.

Lastly, since PLTIRL is also a local Lipschitz continuity property, it follows that, together with (1.14), it still implies (1.15), thus again gives the Lorentz Transformations.

Accepting, or Rejecting, the Physical Axiom PLTIRL

Let us show now that PLTIRL can indeed be associated with a physical interpretation in a more obvious manner than condition (1.16) in [START_REF] Gannet | Nothing but Relativity[END_REF].

For that purpose, let us further clarify the meaning of PLTIRL by assuming that it does not hold. This means that we have

(Non-PLTIRL) ∃ v ∈ R, P 0 ∈ R 4 :
∀ K, ρ > 0 :

∃ P ∈ R 4 : || P -P 0 || ≤ ρ || P -P 0 || > K|| P -P 0 ||
These two inequalities above mean, respectively, that we have

(3.1) | x -x 0 | + | y -y 0 | + | z -z 0 | + | t -t 0 | ≤ ρ as well as (3.2) | x -x 0 | + | y -y 0 | + | z -z 0 | + | t -t 0 | > > K( | x -x 0 | + | y -y 0 | + | z -z 0 | + | t -t 0 | )
Clearly, (3.2) means that at least one of the following four relations holds

(3.3) | x -x 0 | > K( | x -x 0 | + | y -y 0 | + | z -z 0 | + | t -t 0 | )/4 | y -y 0 | > K( | x -x 0 | + | y -y 0 | + | z -z 0 | + | t -t 0 | )/4 | z -z 0 | > K( | x -x 0 | + | y -y 0 | + | z -z 0 | + | t -t 0 | )/4 | t -t 0 | > K( | x -x 0 | + | y -y 0 | + | z -z 0 | + | t -t 0 | )/4
Consequently, the negation of PLTIRL means the existence of a finite velocity v ∈ R and of a space-time event P 0 ∈ R 4 , such that, no matter how near to P 0 , there exist space-time events P for which at least one of the ratios between, on one hand, the space-time coordinates of the increments between the transformations of P and P 0 , and on the other hand, the increment between P and P 0 , can become arbitrarily large.

Indeed, in view of (3.3), the negation of PLTIRL takes the form (Non-PLTIRL)

∃ v ∈ R, P 0 ∈ R 4 :
∀ K, ρ > 0 :

∃ P ∈ R 4 , P = P 0 : | x -x 0 | + | y -y 0 | + | z -z 0 | + | t -t 0 | ≤ ρ
and at least one of the following four relations holds

| x -x 0 | | x -x 0 | + | y -y 0 | + | z -z 0 | + | t -t 0 | > K | y -y 0 | | x -x 0 | + | y -y 0 | + | z -z 0 | + | t -t 0 | > K | z -z 0 | | x -x 0 | + | y -y 0 | + | z -z 0 | + | t -t 0 | > K | t -t 0 | | x -x 0 | + | y -y 0 | + | z -z 0 | + | t -t 0 | > K 4.
Two Alternative Theories of Special Relativity ?

The above considerations open up two alternatives in Special Relativity. Namely, one can -as a physical axiom -accept PLTIRL, that is, the Principle of Transformation Increment Ratio Limitation, or on the contrary, based on certain physical arguments, one can reject it. Now, since one of the essential features of Special Relativity is the limitation on the velocity of propagation of any physical phenomenon, it appears to be more natural not to reject PLTIRL.

However, it is well known, see [START_REF] Gannet | Nothing but Relativity[END_REF][START_REF] Pal | Nothing but Relativity[END_REF] and the literature cited there, that the mentioned velocity limitation is not a perfectly independent axiom of Special Relativity, since it follows from the physical axiom of Galilean Relativity, and in fact, from the physical axiom of Reciprocity, under rather general conditions, as shown in [START_REF] Gannet | Nothing but Relativity[END_REF].

And here, one can note an interesting fact.

Namely, what one adds in [START_REF] Gannet | Nothing but Relativity[END_REF] to Galilean Relativity, more precisely, to Reciprocity, in order to obtain the Lorentz Transformations, and thus the relativistic rule of velocity addition, as well as the mentioned velocity limitation, is a boundedness condition from which a continuity property results, a property closely related to PLTIRL, as seen above.

Thus in a way, velocity limitation is assumed, for instance, in the sense of (2.2), (2.3), in order to obtain velocity limitation in the sense of the Axiom of Constancy of the Speed of Light ... This remark is not a criticism of the approach in [START_REF] Gannet | Nothing but Relativity[END_REF], and instead, points out the fact that, to a certain extent the Galilean Relativity, or for that matter, Reciprocity -taken all alone and in itself -is not sufficient in order to obtain Special Relativity.

In this regard it may be of interest to recall that Einstein himself kept on numerous occasions presenting Special Relativity as being based on two physical axioms, namely, the Galilean Relativity and the velocity limitation, in which the highest possible one is of light in void.

We can, therefore, conclude that to the extent one is not rejecting highly discontinuous physical processes, there can be two rather distinct theories of Special Relativity, namely, the usual one, obtainable under PLTIRL, for instance, and on the other hand, one that obeys Galilean Relativity, and in fact, merely Reciprocity, and also assumes the homogeneity of space-time and isotropy of space, yet it is described by space-time coordinate transformations more general than the Lorentz ones.

In case PLTIRL is, however, rejected, then as seen above in (Non-PLTIRL), at least one of the four ratios

| x -x 0 | | x -x 0 | + | y -y 0 | + | z -z 0 | + | t -t 0 | | y -y 0 | | x -x 0 | + | y -y 0 | + | z -z 0 | + | t -t 0 | | z -z 0 | | x -x 0 | + | y -y 0 | + | z -z 0 | + | t -t 0 | | t -t 0 | | x -x 0 | + | y -y 0 | + | z -z 0 | + | t -t 0 |
becomes arbitrarily large in any neighbourhood of at least one spacetime event P 0 .

Here however, it is worth noting that the last of the above ratios involves the unboundedness of time, and not of space, as is the case with the first three ratios. And such time unboundedness is a phenomenon not so easy to detect under usual experiments.

Consequently, an unorthodox kind of Special Relativity, one whose possibility was mentioned above in case PLTIRL is rejected, may es-cape the means of detection by usual experiments which, as a rule, do not involve arbitrarily large time intervals.

Needless to say, the detection by usual experiments of the space unboundedness which may result from the first three ratios above is, similarly, not an easy task, in case Non-PLTIRL is accepted.

Further Possibilities in Non-Archimedean Space-Times

As seen in [START_REF] Rosinger | Special Relativity in Reduced Power Algebras[END_REF], the Lorentz Transformations of Special Relativity can be obtained within far larger space-times than the usual four dimensional Minkowski one. Consequently, the above arguments in which the formulation of PLTIRL opens up the possibility of two rather different theories of Special Relativity may lead to a yet richer such possibility which will be dealt with elsewhere, since it goes considerably beyond the usual Euclidean framework, thus of that of Minkowski as well, and as such, it requires a suitable preliminary mathematical setup.

Comment on the Disconnect between Physics and the Mathematical Models

As it may often happen, physicists would expect that, in the study of various disciplines of Physics, good physical intuition leads to physically meaningful axioms which can then be formulated in suitable mathematical models. And needless to say, a close connection is supposed to be exhibited between the physically meaningful axioms and the respective discipline of Physics, close in the sense that the axioms are not supposed to model only a part of the discipline under study, as much as they are not supposed to contain redundancy by overlapping with one another. Therefore, in a certain sense -and as with every better axiomatic system -the axioms should satisfy two rather conflicting criteria, namely, to be sufficiently inclusive, and at the same time, to be minimal.

Here however, one should realize that the possible failure of a certain system of axioms in Physics to satisfy these two conflicting demands shows up more clearly in the resulting mathematical model, and less so in other ways. Therefore, this failure, although one between a certain discipline of Physics as such, and on the other hand, a given system of physically meaningful axioms which is supposed to describe it, ends up manifested as a disconnect between Physics and one or another of its mathematical models.

As seen above, and in the references cited, the two usual axioms of Special Relativity happen not to satisfy such a requirement of being at the same time inclusive and minimal. Thus in the sense just mentioned, we witness here a disconnect between Special Relativity and its mathematical models. And this situation is of interest due to the following :

• In order to obtain the Lorentz Transformations, which are considered to contain the essence of Special Relativity, one needs less than both usual axioms of Special Relativity, namely, the Galilean Relativity and the Constancy of the Speed of Light in inertial reference frames. Indeed, only the axiom of Reciprocity, plus condition (1.16), or alternatively, (PLTIRL) are needed.

• The second above axiom is thus nearly a consequence of the axiom of Reciprocity.

Thus the questions arise :

• Are the mentioned two usual axioms of Special Relativity too much for that theory of Physics ?

• And if not, then what are those parts of Special Relativity which

have not yet been found, since the Lorentz Transformations do not need the full use of both usual axiom ?

In short :

• Which is a system of axioms for Special Relativity which is both sufficient and minimal ? Also as seen above, the crux of the issue is the following. Property (1.14), which is the homogeneity property of the coordinate transformations (1.2) -(1.5) with respect to rational scalars, can be obtained from considerably less than the two usual axioms of Special Relativity, namely, Galilean Relativity and the Constancy of the Speed of Light. And then, in order to obtain property (1.15), which is the homogeneity property of the coordinate transformations (1.2) -(1.5) with respect to real scalars, one needs certain additional mathematical assumptions.

Now the obvious such assumption is that, for each velocity v ∈ R, the coordinate transformations (1.2) -(1.5) are continuous with respect to the space-time events (x, y, z, t) ∈ R 4 .

However, on the way of obtaining (1.14), one also obtained (1.11) which is the additivity of the coordinate transformations (1.2) -(1.5).

And then, we are already in a significantly particular situation regarding the coordinate transformations (1.2) -(1.5). Indeed, in the case of additive mappings there is a close connection between continuity and boundedness. This is precisely why in [START_REF] Gannet | Nothing but Relativity[END_REF] it was possible to ask for the boundedness condition (1.16), in order to obtain (1.15) from (1.14).

It could therefore at first sight appear that, given the additivity of the coordinate transformations (1.2) -(1.5), there is not much interest in distinguishing between continuity and boundedness conditions on such transformations.

Nevertheless, at a more careful consideration, it appears that there may indeed be such an interest. Namely, and as seen above, by choosing various conditions, say (C), which may have not only a mathematical, but also a physical meaning, and choosing them such that one can open up the possibility for a better insight into Special Relativity, and insight which may help in dealing with the mentioned disconnect.
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