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For many years, the M2P2 laboratory develops highly accurate numerical tools devoted to the study of 
three-dimensional rapidly rotating flows. These enclosed or opened rotating flows simulate conditions 
found in a large variety of rotating machinery, including centrifugal pumps, air cycle machines, axial 
thrust bearings or gas turbines. The present work proposes a benchmark of two Large Eddy Simulation 
(LES) approaches developed recently in the lab: a fourth order compact finite difference code 
associated with the dynamic subgrid model and a pseudo-spectral one using a spectral vanishing 
viscosity technique. We focus on the rotor-stator problem, which is a simplified model of the flow inside 
rocket engines. The two LES codes have been favourably compared to velocity measurements 
performed at IRPHE using a two-component LDA system in the case of turbulent rotor-stator flows at 
Reynolds number equal to 0.4 million. A detailed and accurate picture of the flow for understanding the 
physics as well as for the assessment of turbulence models for rotating disk systems is provided.  
 
 

I- INTRODUCTION 
 

The flows associated with disks have been the subject of a constant interest because of their 
relevance for many applications ranging from disk drives used for digital disk storage in computers to 
automotive disk brakes, and disks to support turbomachinery blades. Besides its primary concern to 
industrial applications (Owen & Rogers 1989), the rotor-stator problem has also proved a fruitful means 
of studying turbulence in confined rotating flows.  

According to the combination of the rotation speed Ω and the interdisk spacing h, the present study 
concerns a flow with two boundary layers separated by a central inviscid rotating core, known as a 
Batchelor-like flow. Experiments of Itoh et al. (1992) have revealed that transition to turbulence first 
appears within the Bödewadt layer on the stator, even though the flow remains laminar in the Ekman 

layer along the rotor. They reported a turbulent regime occurring along the stator side at Rer= Ωr2 / ν 
=8×103 (r the local radius and ν the fluid kinematic viscosity), while along the rotor side, turbulent flow 
develops later for 3.6×105<Rer< 6.4×105. Figure 1 shows some flow visualizations performed at IRPHE 
from above the stator for two Reynolds numbers. A transition to a kind of wave turbulence (Cros et al. 
2005) is observed for Re=41000 and the stator boundary layer becomes fully turbulent for Re=105. 

Differences in turbulence characteristics between the rotor and stator sides have also been 
observed and attributed to the effects of the radial convective transport of turbulence. As a consequence 
of confinement, flow curvature and rotation effects, the turbulence is strongly inhomogeneous and 
anisotropic. Moreover, though the geometry is strictly axisymmetric in cylindrical rotor-stator cavities, the 
experiments of Czarny et al. (2002) revealed the presence of precessing large scale vortical structures 
even in the turbulent regime, which has been recently confirmed by the URANS computations of Craft et 
al. (2008). These structures may explain the difficulties of bidimensional steady calculations in predicting 
the flow in disk arrangements (Owen 2000). 

The structure of these flows is then highly complex involving laminar, transitional and turbulent flow 
regions and so these flows are very challenging for turbulence modelling which is today the only 
numerical approach able to investigate turbulent flows under industrial conditions. The turbulence model 
must be able to solve the region of low Reynolds number not only near the disks but also in the core of 
the flow. Moreover, the model has to predict precisely the location of the transition from the laminar to 



the turbulent regime, even though the transition process is bounded by instabilities, and so cannot be 
completely represented by a steady flow model. One of the most important failures of eddy viscosity 
models in predicting this type of flow is an overestimate of the extent of the relaminarized zone on the 
inner part of the rotating disk (Iacovides & Theofanoupolos, 1991) leading to erroneous Ekman layer 
predictions and the rotation rates in the central core. Second moment closures provide a more 
appropriate level of modelling to predict such complex flows (Launder & Tselepidakis, 1994; Poncet et 
al., 2005b), but even if they provide a correct distribution of laminar and turbulent regions, the Reynolds 
stress behaviour is not fully satisfactory, particularly near the rotating disk. 

 

  

Figure 1: Flow visualizations from above the stator for (a) Re=4.1×104 and (b) Re=105. 

 

Consequently, the LES seems the appropriate level of modelling. Wu & Squires (2000) performed 
the first LES of the three-dimensional turbulent boundary-layer over a free rotating disk at Re = 6.5×105 
and in an otherwise quiescent incompressible fluid using periodic boundary conditions both in the radial 
and tangential directions. They compared three subgrid-scale (SGS) models: the dynamic eddy 
viscosity model of Germano et al. (1991), the dynamic mixed model of Zang et al. (1993), and the 
dynamic mixed model of Vreman et al. (1994). Predictions from six cases were presented to study the 
effects of grid resolution and SGS model. When the resolution is in a range in which large-scale motions 
are accurately and well-resolved, Wu & Squires (2000) found no significant effect of both the SGS 
model and further grid refinement on LES predictions. Compared with previous measurements, the 
maximum errors in the predicted mean tangential and radial velocities using dynamic models are 4% 
and 2% of the disk speed, respectively. Good agreement was also obtained between the predicted and 
measured turbulence intensities. Andersson & Lygren (2006) performed LES of the axisymmetric and 
statistically steady turbulent flow in an angular section of a rotor-stator cavity for Reynolds numbers 
ranging from Re = 4×105 to Re = 1.6×106. They considered five aspect ratios including wide- and 
narrow-gap disk clearances. They used the mixed dynamic subgrid scale model of Vreman et al. (1994). 
They showed in a previous work (Lygren & Andersson 2004) that this model provided better overall 
results compared to the dynamic subgrid scale model of Lilly (1992). Finally, Séverac & Serre (2007) 
proposed a LES approach based on a spectral vanishing viscosity (SVV) technique, which has been 
applied and validated by Séverac et al. (2007) in an enclosed rotor-stator cavity including confinement 
effects and for Reynolds numbers up to one million. 

The turbulent regime is investigated here in a closed annular rotor-stator cavity, using two Large 
Eddy Simulations. First geometrical and numerical modellings are described in Sections II and III 
respectively. Comparisons between the LES calculations and previous velocity measurements are 

performed for a given Reynolds number Re=4×105 in Section IV for the mean and turbulent fields. 
Finally some conclusions and closing remarks are provided in Section V. 
 
 

II- GEOMETRICAL MODELLING 
 

The cavity shown in Figure 2 is composed by two parallel disks of radius b=140mm, one rotating at 

a uniform angular velocity Ω (rotor), one being at rest (stator). The disks are delimited by an inner 
cylinder (the hub) of radius a=40 mm attached to the rotor and by an outer stationary casing (the 
shroud) attached to the stator. The interdisk spacing, denoted h, is fixed here to 20 mm.  



 

 
 

Figure 2: Rotor-stator cavity with relevant notations. 
 

The mean flow is governed by three main control parameters: the aspect ratio of the cavity G, the 
curvature parameter Rm and the rotational Reynolds number Re based on the outer radius b of the 
rotating disk defined as follows: 
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where ν is the fluid kinematic viscosity. The values of the geometrical parameters were chosen in order 
to be relevant with industrial devices such as real stage of turbopump, and to satisfy technical 
constraints of the IRPHE’s device as well as computational effort to reach statistically converged stages. 
In the experimental setup, a small clearance j=0.85 mm exists between the rotor and the shroud 
because of mechanical constraints. In the following, the stator is located at z*=z/h=1 and the rotor at 
z*=0. We define also the dimensionless radial location as r*=(r-a)/(b-a). 

 
 

III- NUMERICAL APPROACHES 
 

The incompressible fluid motion is governed by the three-dimensional Navier-Stokes equations 

written in primitive variables for cylindrical coordinates (r,θ,z). They are solved using two different Large 
Eddy Simulation (LES) codes: a fourth order compact finite difference code associated with the dynamic 
subgrid model, denoted LES-FD in the following and a pseudo-spectral one using a spectral vanishing 
viscosity approach, and denoted LES-SVV. 

 

LES-FD 
 

In the LES-FD code, each variable of the flow is split into a computed large anisotropic scale 
component and a small scale component called subgrid-scale, which is more isotropic and universal 
and has to be modeled. This separation is obtained by applying a spatial filter to the Navier–Stokes and 
continuity equations in order to reduce the amount of spatial scales to be solved. The subgrid scale 
stress τij is expressed using the Leonard decomposition. The complex interactions between the resolved 
and unresolved scales are modelled using a turbulent eddy viscosity hypothesis. The anisotropic part of 

the subgrid scale stress τij is linked to the eddy viscosity ντ by the following expression: 
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where C is the dimensionless model coefficient, 3/1
zθr )∆∆∆(=∆ the grid filter width and Sij the strain 

rate tensor. This classical Smagorinsky model was tested as a first approach but it appears too 
dissipative. Furthermore, it does not allow possible subgrid scale energy backscatter to the resolved 
scales. The dynamic Smagorinsky model which overcomes some of the drawbacks of the Smagorinsky 
model is a suitable alternative. Initially developed by Germano et al. (1991) to correct the excessive 



dissipation of the Smagorinsky model and modified by Lilly (1992), this model exhibits the correct 
asymptotic behavior near the walls and in laminar regions, and does not normally prohibit possible 
energy backscatter. The square of the constant Cs² is replaced by a coefficient Cd which is dynamically 
computed and depends on the local structure of the flow. In order to compute Cd, a test filter denoted by 
a hat with a width larger than the grid filter is introduced. The dynamic constant is calculated with a 
least-squares approach according to: 
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The model coefficient Cd which is dynamically computed is a local and instantaneous quantity and thus 
can vary widely in time and space. However, this desirable property may lead to numerical instabilities 
caused by negative values of Cd. Accordingly, the numerator and denominator of Equation (2) are 

averaged in the homogeneous tangential direction. Furthermore, negative values of νT are clipped to 

zero if the turbulent viscosity νT is negative. The test filter used in the dynamic Smagorinsky model is a 
symmetric discrete filter based on the trapezoidal rule: 
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This filter is applied sequentially in each non homogeneous direction. The cutoff filter is applied in the 

azimuthal direction. The value of the ratio ∆/∆̂ is fixed to 2.  
Schiestel and Viazzo (1995) have previously found that non-staggered grids cannot prevent 

oscillatory numerical wiggles in the pressure field. In order to circumvent the pressure checkerboarding, 
a staggered MAC mesh is used. The convective terms are considered in the skew-symmetric form since 
their discrete analogues preserve the global conservation of momentum and kinetic energy on 
staggered mesh (in the inviscid limit). The spatial discretization is based on fourth order compact 
schemes in the inhomogeneous radial and axial directions whereas Fourier pseudospectral methods are 
appropriate in the homogeneous tangential direction. The time advancement is second order accurate 
and is based on the explicit Adams–Bashforth scheme for the convective terms and the implicit Crank–
Nicolson scheme for the viscous terms. The system of equations is solved using a two-step fractional 
scheme (predictor– corrector). At each time step, the problem reduces to a set of three Helmholtz 
equations (for the velocity components) and two Poisson equations (for the preliminary pressure and the 
pressure correction). The eddy viscosity depends both on time and space, so internal iterations are 
necessary for the resolution of the predictor step. Practically, five iterations are required to obtain a 
convergence criterion of 10-6. In the radial and axial directions, the grid is non uniform using hyperbolic 
tangent transformations, whereas in the azimuthal periodic direction the distribution is uniform. The 
number of grid points is 120x65x192 respectively in the radial, axial and azimuthal directions. The time 
step is 5.10-6 s. 
 
 

LES-SVV 
 

The pseudospectral numerical method is based on a collocation-Chebyshev method in the r and z 

inhomogeneous directions and a Galerkin-Fourier method in the azimuthal periodic directionθ. Thus, 
each dependent variable f =(Vr,Vθ,Vz, p) is expanded into a truncated trigonometric series: 
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where Tn and Tm are Chebyshev polynomials of degrees n and m, respectively. N and M define the 
number of collocation points in the radial and axial directions, respectively, and K is the cutoff in the 
tangential direction. To ensure high accuracy of the solution within the very thin wall layers, this 
approximation is applied at the Gauss-Lobatto collocation points, where the differential equations are 

assumed to be satisfied exactly, defined as ri =cos(iπ / N) for i∈[0,N] and zj = cos(jπ / M) for j∈[0,M] in 

the radial and axial directions. In the azimuthal direction, an uniform distribution is considered: θk = 2k/K 

for k∈[0,K]. 
The temporal discretization is a projection scheme, based on backwards differencing in time (see all 

the details in Raspo et al. 2002). The specificity of the algorithm is to allow a temporal evolution of the 
normal pressure gradient at the boundaries. The temporal scheme is second-order semi-implicit 
combining an implicit second order backward Euler scheme for the diffusive terms and an explicit 
Adams-Bashforth extrapolation for the non-linear convective terms. For each Fourier mode, a full 
diagonalization technique is used for solving a set of 2D uncoupled Helmholtz and Poisson problems 
obtained after splitting the Euler scheme to group the implicit part in the left hand side of the equations. 

The LES is performed through a Spectral Vanishing Viscosity technique (SVV) (Karamanos & 
Karniadakis 2000, Pasquetti & Xu 2002, Séverac & Serre 2007). In the frame of collocation method, an 
appropriate viscosity kernel operator is incorporated in the Helmholtz equations of velocity prediction, 
only active for high wave numbers of the numerical approximation. This operator does not affect the 
large scales of the flow and stabilise the solution by increasing the dissipation, particularly near the cut 
off frequency. According to Karamanos & Karniadakis (2000), we choose to define our SVV operator, 
written in 1D as follows: 

                                                      )
x∂

v∂
Q(∂ε+v∆ν=v∆ν

N
NxNNNSVV                                                     (7) 

 

where vN is the velocity vector approximation and QN is the 1D kernel operator defined in spectral space 

as a ∞C  smooth function: 
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The 3D SVV operator QN is composed of three 1D SVV operators i
N i

Q ; i=1, 2, 3 corresponding to the (r, 

θ, z) directions respectively; the operator is parameterized by i
N i
ε  the maximum of viscosity and i

Tω  the 

threshold after which, the viscosity is applied. i
Nω  is the highest frequency calculated in the direction i. 

Because our SVV operator is fully linear, it is gathered with the implicit standard diffusion term. 
Consequently, no additional computational cost is needed. Another advantage is that the SVV operator 
affects at most two-thirds of the spectrum on the highest frequencies (ωT=0) and so, DNS results are 
easily recovered for laminar flows. The reader is referred to the previous paper of Séverac & Serre 
(2007) for more details about the LES-SVV numerical modelling. The computational parameters used in 
the present LES-SVV are summed up in table 1, where δt is the time step.  
 

direction Tω  Nε  Grid δt (s) 

r 

θ 
z 

0.8 N1/2  
N1/2 

N1/2 

1/(2N) 
1/(2N) 
1/(2N) 

N=121 
K=181 
M=65 

 

2π 10-4 

 

Table 1: Computational parameters for the LES-SVV code 



For both LES approaches, no-slip boundary conditions are applied at all walls. The tangential 

velocity is fixed to 0 on the stator and on the shroud and to the local disk velocity on the rotor and the 

hub. The singularities present in the experiments at the junctions between rotating and stationary walls 

are regularized in the two LES codes by using an exponential function to provide a smooth switchover. 

The calculated quantities have been averaged both in time and in the tangential direction. 
 

 
IV- COMPARISONS BETWEEN THE LES APPROACHES 

 

The two LES approaches are compared to velocity measurements performed at IRPHE using a two 
component laser Doppler anemometer (LDA) from above the stator. About 5000 validated data are 
necessary to obtain the statistical convergence of the measurements. The mean and turbulent 
quantities are given with an accuracy of 2 and 5% respectively. Comparisons with the Reynolds Stress 
Modelling (RSM) of Elena & Schiestel (1995) are also provided. This model has been sensitized to the 
implicit effects of rotation on turbulence and applied to a wide range of flow conditions in enclosed or 
opened rotor-stator cavities (Poncet et al. 2005b). 
 

STATOR 

      
ROTOR 

Figure 3: Instantaneous velocity vector field in a (r,z) plane obtained by the LES-FD code. 

 

On average, the base flow in a rotor-stator cavity is axisymmetric and three-dimensional due to the 
circulation in the meridional plane created by the centrifugal force associated with a tangential main flow 
due to the rotation of the disk. The secondary flow in a (r,z) plane is shown in Figure 3 from the 
instantaneous velocity vector field. In this plane, the flow is broadly a Batchelor flow with two boundary 
layers developed on each disk separated by a central rotating core. There is no axial gradient in the 
core as a consequence of the Taylor-Proudman theorem. Its secondary flow is essential radial within the 
boundary layers: the fluid is pumped centrifugally outwards along the rotor and is deflected in the axial 
direction after impingement on the external cylinder. After a second impingement on the stator, it flows 
radially inwards along the stator, by conservation of mass, before turning along the hub and being 
centrifuged again by the rotating disk. The main effect of finite-radius disks and most of all of the inner 
and outer cylinders is that the boundary conditions are not compatible with self-similarity solutions 
though there may be qualitative resemblance far from the end walls. Thus, the thicknesses of the 
Ekman layer on the rotor and of the Bödewadt layer on the stator are not constant along the radius 
within the cavity. Note that the Bödewadt layer is almost twice thicker than the Ekman layer. 

Figure 4 presents the axial profiles of the mean radial Vr*=Vr/(Ωr) and tangential Vθ*=Vθ / (Ωr) 
velocity components at mid-radius r*=0.5. The axial profile of the mean axial velocity component is not 
shown here because we recall that it is quasi equal to zero far from the inner and outer cylinders. The 
LES-FD and LES-SVV are compared to both LDA measurements and the predictions of the RSM 

model. From the Vθ*-profile, we can clearly see that the mean flow exhibits a Batchelor-like flow 
structure, with two boundary layers separated by a core in solid body rotation. The crucial quantity for 
engineering applications is the entrainment coefficient of the fluid or the core swirl ratio because it is 
directly linked to the radial pressure gradient in the cavity and as a consequence to the axial thrusts 
applied on the rotor (Poncet et al. 2005a). This coefficient is usually denoted K and defined as the ratio 

z 

r 

SHROUD HUB 



between the tangential velocity of the fluid in the core and the local disk velocity at the same radius. The 
LES-SVV and LES-FD computations predict K equal to 0.36 and 0.32 respectively for Re=4×105 at 
r*=0.5, which is to be compared to the measured value K=0.36 and to the value K=0.315 predicted by 
the RSM. All these values fall between the laminar similarity solution K=0.313 obtained numerically by 
Pearson (1965) for infinite-disk cavities, and the asymptotic value K=0.43 of Poncet et al. (2005a) 
deduced from their analytical model for highly turbulent flows. The low value of K found in the four 

approaches together with the local extrema of Vθ* at the edge of the boundary layers are typical of the 
transitional regime with a relatively low level of turbulence. 
 

 

 
 

Figure 4: Axial profiles of the mean tangential and radial velocity components and of the two main 

Reynolds stress tensor components at r*=0.5. Comparisons between the LES-SVV (-⋅-), the LES-FD 
(─), the LDA measurements (o) and the RSM model (- -). 

 
The LES-SVV and LES-FD predict quite well the thickness of the Ekman layer on the rotor, which 

scales like δ=(ν / Ω)1/2, which is the thickness of the boundary layer over a single rotating disk. The 
LES-SVV slightly underestimates the thickness of the Bödewadt layer but provides better overall results 
than the LES-FD and the RSM. The Vr*-profile deduced from the RSM model exhibits a local extremum 
around z*=0.8. This local extremum together with the underestimation of the coefficient K are typical of 
an underestimation of the turbulence intensities. The agreement between the LES-FD and LES-SVV 
results and the measurements is quite satisfactory for the mean field. Both LES catch relatively well the 
main features of turbulent rotor-stator flows such as the entrainment coefficient K and the thicknesses of 
the boundary layers.  



The axial profiles of the two main normal Reynolds stress tensor components )²rΩ/(v=R 2'
rrr  and 

)²rΩ/(v=R 2'
θθθ

are shown at mid-radius in Figure 4. It corresponds to a local Reynolds number 

Rer=1.65×105, for which the stator boundary layer is turbulent, whereas the rotor one is still laminar 
according to the experiments of Itoh et al. (1992). These authors found indeed that the rotating layer 
becomes turbulent for Rer = 3.6×105. From the two LES and the LDA data, both boundary layers are 
turbulent at this radius, whereas the core remains laminar. The turbulence intensities are larger on the 
rotor than on the stator in the LES-SVV results, which is not the case for the LES-FD. The numerical 
profiles from the two LES codes fit quite well the experimental measurements both in the boundary 
layers and in the core. Let's notice however, that the agreement between the maxima in stator layer is 
less satisfying, with LES values smaller (respectively larger) in the radial direction (respectively in the 
tangential direction) than the experimental data. As a consequence, the anisotropy of the normal 
stresses is stronger in LES than in experiment. The location of the normal stresses maxima is relatively 
well predicted within the stator layer for both radial and tangential directions; at a distance from the 
stator equal to 0.05h for the radial component and two times closer 0.025h for the tangential 
component. Note that the experimental values of the Rrθ

* component are very close to zero (not 
represented here), whereas the LES codes predict a strong shear stress in both boundary layers. The 
tendency of the RSM is a too high relaminarization of the flow in the Bödewadt layer and in the core. It 
predicts also a laminar Ekman layer, which is in agreement with the results of Itoh et al. (1992). 

 

(a)  (b)  

(c)  (d)  

Figure 5: Iso-surfaces of the Q-criterium along the rotor (a,c) and along the stator (b,d) obtained by the 
LES-SVV code (a,b) and by the LES-FD code (c,d). The rotating disk rotates counterclockwise. 

 

Figure 5 presents the iso-values of the Q-criterium along both disks obtained by the two LES 
approaches. At this Reynolds number Re=4×105, the rotating disk layer is transitional with positive spiral 
arms (as they roll up in the rotation sense of the disk) at intermediate radii and more thin turbulent 
structures along the hub where the flow coming from the Bödewadt layer impinges the rotor (Fig.3). 



From the LES-SVV, 19 spiral arms (Fig.5a) forming a positive angle ε =16° with the tangential direction 

appear in the Ekman layer for 0.14 ≤ r* ≤ 0.61, where the flow is laminar unstable 89 ≤ Rer
1/2 ≤ 386. 

These structures are characteristic of the Type I instability (cross-flow instability), which plays an 
important role in the transition process to turbulence. The same large spiral arms are obtained by the 
LES-FD (Fig.5c) characterized by the same azimuthal wave number and the same angle. A small 
difference is observed along the external cylinder, where the spirals are still visible in the LES-FD, 
whereas the LES-SVV predicts more thin axisymmetric structures typical of highest turbulence levels. 
Along the stationary disk, both LES exhibit very thin coherent vortical structures aligned with the 
tangential direction (Fig.5b,d). 
 
 

V- CONCLUSION 
 

A numerical investigation of the turbulent flow in a shrouded rotor-stator cavity has been performed 
by two LES codes for a Reynolds number equal to Re=4×105. The highly accurate computation of 
turbulent rotating flows within cavity is of interest for both engineering applications with 
turbomachinaries, and also fundamental research. The first LES approach, denoted LES-SVV, is a 3D 
spectral code stabilized with a Spectral Vanishing Viscosity model, whereas the second one, denoted 
LES-FD, is a fourth order compact finite difference code associated with the dynamic subgrid model. 
The LES-SVV and LES-FD computations compared quite favourably with previous LDA measurements, 
which is very encouraging for these numerical approaches to deal with complex flows. In the same time, 
the second order RSM model tends to relaminarize the flow. 

The LES-SVV provides better overall results compared to the LES-FD but no definitive conclusion 
can be drawn from these preliminary results. More computations are now required and especially at 
higher Reynolds numbers to study the influence of the SGS model on the turbulence structure in a 
highly turbulent flow. Improvements in the future for the LES-SVV should come from a coupling of the 
SVV procedure to the flow dynamics in order to optimize the dissipation of the model. Computations 
performed using a third LES code based on a pseudo-spectral method associated with the dynamic 
subgrid model are also in progress to complete this benchmark.  
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