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Abstract

Non-Newtonian boundary layer flow and heat transfer over an exponentially stretch-
ing sheet with partial slip boundary condition has been studied in this paper. The
flow is subject to a uniform transverse magnetic field. The heat transfer analysis
has been carried out for two heating processes, namely (i) with prescribed sur-
face temperature (PST), and (ii) prescribed heat flux (PHF). Suitable similarity
transformations are used to reduce the resulting highly nonlinear partial differential
equation into ordinary differential equation. An effective second order numerical
scheme has been adopted to solve the obtained differential equations. The impor-
tant finding in this communication is the combined effects of the partial slip and the
third grade fluid parameters on the velocity, skin-friction coefficient and the tem-
perature boundary layer. It is found that the third grade fluid parameter β increases
the momentum boundary layer thickness and decreases the thermal boundary layer
thickness.

Key words: Third grade fluid, Partial slip, Magnetic field, Heat transfer, Finite
difference method.
PACS: 47.11.Bc, 47.15.Cb, 47.50.Cd, 47.65.Cb

Email addresses: bikashsahoo@nitrkl.ac.in (Bikash Sahoo),
poncet@l3m.univ-mrs.fr (Sébastien Poncet).
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1 Introduction

The study of laminar boundary layer flow over a stretching sheet has received
considerable attention in the past due to its applications in the industries, for
example, materials manufactured by extrusion process, the boundary layer
along a liquid film in condensation process and the heat treated materials
traveling between a feed roll and the wind-up roll or on conveyor belt poses
the features of a moving continuous surface. The flow and heat transfer phe-
nomena over stretching surface have promising applications in a number of
technological processes including production of polymer films or thin sheets.
The no-slip boundary condition (the assumption that a liquid adheres to a
solid boundary) is one of the central tenets of the Navier-Stokes theory. How-
ever, there are situations wherein this condition does not hold. Partial velocity
slip may occur on the stretching boundary when the fluid is particulate such
as emulsions, suspensions, foams and polymer solutions. Navier [1] proposed a
slip boundary condition wherein the slip depends linearly on the shear stress.
The inadequacy of the no-slip condition is evident for most non-Newtonian
fluids. One can refer the works of Andersson [2], Sahoo [3,4], Sahoo and Do [5],
Ariel [6], Sajid etal [7] and all the references therein regarding the flow and
heat transfer of Newtonian and different non-Newtonian fluids past stretching
sheets with slip and no-slip boundary conditions. Further the effects of slip
and non-Newtonian flow parameters on the boundary layer flows can be seen
in [8–10].

Elbashbeshy [11] has added a new dimension in his investigation by consid-
ering the flow and heat transfer of a Newtonian fluid over an exponentially
stretching continuous surface. He considered an exponential similarity variable
and exponential stretching velocity distribution on the coordinate considered
in the direction of stretching. Partha et al [12] have discussed the effects of
viscous dissipation on the mixed convection heat transfer from an exponen-
tially stretching surface in a quiescent viscous fluid. Sajid and Hayat [13] have
investigated the influence of thermal radiation on the boundary layer flow
and heat transfer of an incompressible viscous fluid due to an exponentially
stretching sheet. Recently, Pal [14] has carried out an analysis to describe
mixed convection heat transfer in the boundary layers on an exponentially
stretching continuous surface with an exponential temperature distribution in
the presence of magnetic field, viscous dissipation and internal heat genera-
tion/absorption. Further one can refer the works of Al-Odat et. al. [15] and
Bidin and Nazar [16] regarding the flow and heat transfer of viscous fluid past
an exponential stretching sheet. Khan and Sanjayanand [17], and Khan [18]
have extended the work of Elbashbeshy [11] to the flow and heat transfer of a
thermodynamically compatible second grade fluid. In a subsequent study (see
Ref. [19]), they have added the mass transfer aspect.
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In this work, the steady laminar flow and heat transfer of an electrically con-
ducting third grade fluid over an exponentially stretching sheet with partial
slip is considered. To the best of our knowledge, no attention has been given
to the combined effects of partial slip and the magnetic field on the bound-
ary layer flow and heat transfer of a third grade fluid past an exponentially
stretching sheet.

2 Formulation of the problem

Fig. 1. Sketch of the flow past an exponentially stretching sheet.

We consider the two-dimensional steady-state boundary layer flow and heat
transfer of an incompressible, electrically conducting fluid of third grade over
a stretching sheet. The constitutive equation of the thermodynamically com-
patible third grade fluid is given by [20]

T = −pI+ µA1 + α1A2 + α2A
2
1 + β3(trA

2
1)A1 (1)

where −p is the pressure, α1 and α2 are the normal stresses and β3 is the
material constant. A1 and A2 are the first two Rivlin-Ericksen tensors.

The sheet is coinciding with the plane y = 0 (see Fig. 1). The flow is assumed
to be generated by stretching of the elastic boundary sheet from a slit with
a large force such that the velocity of the boundary sheet is an exponential
order of the flow directional coordinate x. The flow takes place in the upper
half plane y > 0. A uniform magnetic field B = (0, B0, 0) is imposed along the
y-axis.
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3 Flow Analysis

For the physical problem, where the stretching of the boundary surface is
assumed to be such that the flow directional velocity is of exponential order of
the flow directional coordinate, the conventional no-slip boundary conditions
are (see Ref. [11,17,21]):

u = Uw(x) = U0exp(
x

l
), v = 0 at y = 0,

u = 0, as y → ∞. (2)

Here U0 is the reference velocity and l is the reference length. The above
exponential boundary condition is valid only when x ≪ l, which occurs very
near to the slit.

Making the usual boundary layer approximations for the non-Newtonian third
grade fluid (see Ref. [22]), the equations of continuity and motion can be
written as

∂u

∂x
+
∂v

∂y
= 0, (3)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+
α1

ρ

[
u
∂3u

∂x∂y2
+
∂u

∂x

∂2u

∂y2
+ 3

∂u

∂y

∂2v

∂y2
+ v

∂3u

∂y3

]
+

2α2

ρ

∂u

∂y

∂2v

∂y2
+

6β3
ρ

(
∂u

∂y

)2∂2u

∂y2
− σB2

0

ρ
u.

(4)

The appropriate Navier’s slip boundary conditions [1] of the velocity field are

u− U0exp
(
x

l

)
= λ1ν

[
∂u

∂y
+
α1

µ

(
2
∂u

∂x

∂u

∂y
+ v

∂2u

∂y2
+ u

∂2u

∂x∂y

)
+ 2

β3
µ

(
∂u

∂y

)3]
, at y = 0,

v(0) = 0, u→ 0 as y → ∞. (5)

Eqn. (4) can be rewritten in terms of a stream function ψ(x, y) such that the
continuity equation (3) is automatically satisfied. Hence

u =
∂ψ

∂y
v = −∂ψ

∂x
. (6)

We choose the stream function to be

ψ(x, y) =
√
2νlU0φ(ζ)exp(

x

2l
), (7)

where

ζ = y

√
U0

2νl
exp(

x

2l
). (8)
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With the help of Eqns. (6)-(8), Eqn. (4) gets reduced to,

φ′′′−2φ′2+φφ′′+K
[
3φ′φ′′′− 1

2
φφiv

]
−

(
9

2
K+3L

)
φ′′2+3βφ′′′φ′′2−2Mnφ

′ = 0,

(9)

where K = α1U0

ρνl
, L = α2U0

ρνl
, β =

β3U3
0

ρν2l
, Mn =

σB2
0 l

ρU0
are the non-dimensional vis-

coelastic parameter, cross-viscous parameter, the third grade fluid parameter
and the magnetic interaction parameter respectively.

The corresponding partial slip boundary conditions (5) on φ become

φ(0) = 0, φ′(0)− 1 = λφ′′(0)
[
1 +

7

2
Kφ′(0) + βφ′′2(0)

]
,

φ′(ζ) → 0 as ζ → ∞, (10)

where the slip factor, λ = λ1
√

U0

2νl
represents the relative importance of the

slip to viscous effects.

3.1 Heat transfer analysis

The thermal boundary layer equation for the thermodynamically compatible
third grade fluid with viscous dissipation, work done due to deformation and
Joule heating is

ρcp

(
u
∂T

∂x
+v

∂T

∂y

)
= κ

∂2T

∂y2
+µ

(
∂u

∂y

)2

+α1
∂u

∂y

∂

∂y

(
u
∂u

∂x
+v

∂v

∂y

)
+2β3

(
∂u

∂y

)4

+σB2
0u

2,

(11)
where cp is the specific heat at constant pressure, κ is the thermal conductivity,
T is the temperature, and T∞ is the temperature of the ambient fluid. In order
to solve the above energy equation, we consider the following two general cases
of non-isothermal temperature boundary conditions:

3.1.1 Prescribed exponential order surface temperature (PST case)

The thermal boundary conditions for the energy equation in PST case are,

T = Tw = T∞ + T0exp
(
ν0x

2l

)
at y = 0,

T = T∞ as y → ∞, (12)

where ν0, T0 are the parameters of temperature distribution on the stretching
surface, and T∞ is the temperature far away from the stretching sheet.

In order to obtain the similarity solution for the temperature, we define the
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dimensionless temperature variable θ as,

θ(ζ) =
T − T∞
Tw − T∞

. (13)

With this, the energy equation (11) takes the following non-dimensional form:

θ′′+Prφθ
′−Prν0φ

′θ = −PrEc

[
φ′′2+

K

2
φ′′(φ′φ′′−φφ′′′)+2βφ′′4+Mnφ

′2
]
, (14)

where Pr = µcp
κ

is the Prandtl number and Ec =
U2
0

cpT0
(Uw

U0
)
4−ν0

2 is the Eckert

number. The corresponding thermal boundary conditions are

θ = 1 at ζ = 0,

θ → 0 as ζ → ∞. (15)

3.1.2 Prescribed exponential order power law heat flux (PHF case)

For this case, we employ the following prescribed exponential law heat flux
boundary conditions:

−κ
(
∂T

∂y

)
= T1exp

(
ν1 + 1

2l

)
x at y = 0,

T → T∞ as y → ∞, (16)

where ν1 and T1 are the parameters of temperature distribution on the stretch-
ing surface. We define the dimensionless temperature g(ζ) in the PHF case
as,

g(ζ) =
T − T∞

T1

κ

√
2νl
U0
exp(ν1x

2l
)
. (17)

With this dimensionless variable, and Eqns. (6)-(8), the energy boundary layer
equation (11) takes the form

g′′+Prφg
′−Prν1φ′g = −PrEc

[
φ′′2+

K

2
φ′′(φ′φ′′−φφ′′′)+2βφ′′4+Mnφ

′2
]
, (18)

where

Ec =
U2
0κ

cpT1
√

2νl
U0

(
Uw

U0

) 4−ν1
2

,

which is different from the Eckert number in the PST case, and all other
parameters are the same as before. The corresponding thermal boundary con-
ditions are

g′ = −1 at ζ = 0,

g → 0 at ζ → ∞. (19)
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4 Numerical solution of the problem

The system of non-linear Eqns. (9), (14) and (9), (18) are solved under the
boundary conditions (10), (15) and (10), (19) respectively. It is evident that
the order of each system of equations exceeds the number of available adher-
ence boundary conditions. Hence, the solution of the differential equations can
not proceed numerically using any standard integration routine. Based on the
governing equation, φ′′′(0) is related to φ′(0) and φ′′(0) as

φ′′′(0) =
2φ′2(0) +

(
9
2
K + 3L

)
φ′′2(0) + 2Mnφ

′(0)

1 + 3Kφ′(0) + 3βφ′′2(0)
(20)

It is clear that if φ′(0), φ′′(0) and θ′(0) (g(0) for PHF case) are known, then
all the successive derivatives of φ and θ at ζ = 0 can be determined. Hence
a Taylor series expansion can be developed for φ(ζ) and θ(ζ) in terms of
φ′(0), φ′′(0) and θ′(0) and consequently we do not require any extra boundary
conditions. However, it is possible to use Taylor series expansion to obtain the
solution of the above systems of equations up to some small value of ζ, say ζc,
and then the solution can be further carried out by using a suitable integration
routine such as the Runge-Kutta method. But in practice, if one employs
the Taylor series expansion to obtain the solution in 0 ≤ ζ ≤ ζc, a large
number of terms will be needed to match the accuracy demanded by Runge-
Kutta method. This can become quite unwieldy for the present complicated
problem with partial slip boundary conditions. It appears that the attempts of
integrating the above system of nonlinear Eqns. (9) and (14) (or (9) and (18))
subject to the relevant slip boundary conditions by forward integration relying
solely on the initial conditions on φ, φ′, φ′′ and θ′ (or g) are unable to produce
the solution of the system. Ultimately, in view of these drawbacks in the
aforementioned routine algorithms, and our experimentations of integrating
such systems of equations with inadequate boundary conditions, we deemed
it prudent to try a similar second order numerical scheme as described in the
previous investigation [3–5].

The semi-infinite domain of integration ζ ∈ [0,∞) is replaced by a finite
domain ζ ∈ [0, ζ∞), where ζ∞ is sufficiently large. To explain the solution
scheme developed in this study, we start first by introducing the following
variables:

y1 = φ, y2 = φ′, y3 = φ′′, y4 = θ (= g for PHF case). (21)
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Now the system of equations (9), (14) [or (9), (18)] can be written as 1

y′3 − 2y22 + y1y3 +K
[
3y2y

′
3 −

1

2
y1y

′′
3

]
−

(
9

2
K + 3L

)
y23 + 3βy′3y

2
3 − 2Mny2 = 0,

(22)

y′′4 + Pry1y
′
4 − Prν0y2y4 + PrEc

[
y23 +

K

2
y3(y2y3 − y1y

′
3) + 2βy43 +Mny

2
2

]
= 0,

(23)

y′2 = y3, (24)

y′1 = y2. (25)

The boundary conditions in terms of the new variables are,

y1(0) = 0, y2(0)− 1 = λy3(0)
[
1 +

7

2
Ky2(0) + βy23(0)

]
, y2(ζ∞) → 0, (26)

y4(0) = 1, y4(ζ∞) → 0, PST case

y′4(0) = −1, y4(ζ∞) → 0. PHF case (27)

Eqns.(22)-(25) are discretized using finite difference approximations. Setting
up the mesh

ζi = ih (i = 0, 1, 2, . . . , n), (28)

where h is the mesh-size and n is a suitably large integer, so that ζ∞, the
numerical infinity can be reasonably approximated by nh; and replacing the
derivatives in Eqns. (22) and (23) by the usual central difference formulae, we
obtain

yj+1
3 − yj−1

3

2h
− 2(yj2)

2 + yj1y
j
3 +K

[
3yj2

(
yj+1
3 − yj−1

3

2h

)
− 1

2
yj1

(
yj+1
3 − 2yj3 + yj−1

3

h2

)]
− (

9

2
K + 3L)(yj3)

2 + 3β
(
yj+1
3 − yj−1

3

2h

)
(yj3)

2 − 2Mny
j
2 = 0,

(29)

yj+1
4 − 2yj4 + yj−1

4

h2
+ Pry

j
1

(
yj+1
4 − yj−1

4

2h

)
− Prν0y

j
2y

j
4 + PrEc

[
(yj3)

2

+
K

2
yj3

{
yj2y

j
3 − yj1

(
yj+1
3 − yj−1

3

2h

)}
+ 2β(yj3)

4 +Mn(y
j
2)

2
]
= 0.

(30)

In Eqns. (24) and (25) the derivatives are replaced by the central difference
quotients centered at the point i+ 1

2
, and the right hand side is replaced by the

average of the values of y at the mesh points i and i+1. Thus, the Eqns. (24)

1 Read ν1 for PHF case.
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and (25) are discretized as

yj+1
2 − yj2
h

=
1

2
(yj3 + yj+1

3 ), (31)

yj+1
1 − yj1
h

=
1

2
(yj2 + yj+1

2 ). (32)

It is clear that the approximations introduced in discretization have an order
O(h2). Eqns. (29) to (32) can be solved for yj+1

3 , yj+1
4 , yj+1

2 and yj+1
1 respec-

tively.

Eqns. (31) and (32) are two-term recurrence relations, whereas Eqns. (29)
and (30) are three-term recurrence relations at mesh points i−1, i, i+1. Thus,
in order to start the recursion in Eqns. (29) and (30) two starting values are
required, in contrast to one for each of the Eqns. (31) and (32). However, as
pointed out earlier, if φ′(0), φ′′(0) and θ′(0) (g(0) for PHF case) are known,
then the Taylor series expansion can be utilized to calculate the values of
φ′′(h) and θ(h), i.e. y13 and y14 respectively. The integration now proceeds as
described in our previous works. The only remaining problem is to find the
appropriate values of φ′(0), φ′′(0) and θ′(0) (g(0) for PHF case), such that the
terminal boundary conditions in (26) and (27) are satisfied. Thus, we have at
our hand a three parameter zero-finding problem for which we have used the
effective Broyden’s method [23,24]. This method is quite efficient in the sense
that it avoids the calculation of the Jacobian matrix (contrary to Newtons
method) by obtaining approximations to them involving only function values.
The use of Broydens method has helped us in achieving the greatest accuracy
with the least computational cost.

The Richardson’s extrapolation is used to hike the accuracy of the algorithm
to O(h4). In fact, this scheme is used to obtain highly accurate results by com-
bining the computed values obtained by using a certain method with different
step sizes. In general the value of ζ∞ should be varied depending on the values
of K, L and β. The iterations for locating the missing initial conditions were
continued till an accuracy of O(10−6) was attained. With a reasonably proper
choice of the initial guesses, it required 9 − 11 iterations to attain the above
accuracy.

5 Results and discussions

The method described above was translated into a FORTRAN 90 program and
was run on a pentium IV personal computer. The value of ζ∞, the numerical
infinity has been taken large enough and kept invariant through out the run
of the program. The value of ζ∞ = 10.0 is found to be adequate for all the
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cases shown in Figs. 2-25, however, for higher values of the non-Newtonian
flow parameters, the numerical integrations are performed over substantially
larger domain to ensure that the outer boundary conditions at ζ = ∞ are
satisfied. To see if the program runs correctly, the value of the missing initial
condition −φ′′(0) for Newtonian (K → 0, L → 0, β → 0) and non-magnetic
flow (Mn → 0) is compared with the values reported by Elbashbeshy [11] and
Magyari and Keller [21] in their pioneer works. We found −φ′′(0) = 1.281811
correct to six decimal places after the seventh iteration, which is in good
agreement with −f ′′(0) = 1.28181 and −f ′′(0) = 1.28180 reported in [11]
and [21] respectively.

Figs. 2-6 elucidate the effects of the different flow parameters on φ(ζ), which
represents the normalized downward vertical velocity. It is interesting to find
from Fig. 2 that even the presence of small amount of slip (λ = 0.1) dominates
the conventional effects of the viscoelasticity (K) on φ(ζ), i.e. in presence of
slip, φ(ζ) decreases with an increase in K. This finding can be regarded as
a step forward towards answering the still unresolved issue of what would be
the effects of a fluid’s elasticity on the characteristics of its boundary layer
in presence of slip. The vertical component of velocity also decreases with an
increase in the cross-viscous parameter L, as is clear from Fig. 3. The effects
of the shear thickening parameter β and the magnetic parameter Mn on φ(ζ)
have been shown in Figs. 4 and 5 respectively. Fig. 6 shows that for a given
position ζ, as the slip increases, φ(ζ) decreases.

Figs. 7-11 indicate the variations of the horizontal velocity similarity profile
φ′(ζ) with different flow parameters. The dominating nature of slip on the
viscoelasticity is again clear from Fig. 7. One can see that in presence of slip,
asK increases, φ′(ζ) decreases near the surface of the sheet, and then increases
away from it resulting a ‘cross over’ in the velocity profile. We found that with
an increase in the slip factor λ, the position of the cross over shifts towards the
ζ-axis, and eventually coincides with it, resulting a decrease of φ′(ζ) with an
increase in K, throughout the domain of integration. Fig. 8 depicts that φ′(ζ)
decreases with L. Thus, the cross-viscous parameter decreases the momentum
boundary layer thickness. The third grade fluid parameter β, on the other
hand has an opposite effect on φ′(ζ), as is clear from Fig. 9. Fig. 10 shows the
pronounced effect of the magnetic field on φ′(ζ). The velocity decreases with
an increase in the magnetic parameter Mn. That is the Lorentz force which
opposes the flow leads to enhanced deceleration of the flow. In Fig. 11 the main
stream velocity φ′(ζ) has been plotted against ζ for different values of the slip
parameter λ. It can be readily observed that as the slip parameter increases in
magnitude, permitting more fluid to slip past the sheet, the flow slows down
for distances close to the sheet. The effect of slip, away from the sheet is less
pronounced. Due to slip, the velocity on the boundary φ′(0) remains less than
the normalized stretching surface velocity of unity.
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The effects of various flow parameters on the non-dimensional temperature
profiles θ(ζ) for the PST case have been delineated in Figs. 12-16 for Pr = 5.0
and Ec = 0.5. It is clear that the effect of β is to reduce the thermal boundary
layer thickness. On the other hand, an increase in slip increases the thermal
boundary layer thickness. The variations of the non-dimensional temperature
profiles g(ζ) for the PHF case with different flow parameters are shown in
Figs. 17-21 for Pr = 5.0 and Ec = 0.5. It is found that the respective flow
parameters have similar effects on θ(ζ) and g(ζ).

The local skin-friction coefficient or frictional drag coefficient is given by

Cf (x) =
Txy |y=0
1
2
ρU2

w

, (33)

which in terms of the dimensionless quantities is

Cf (x) =
√
2R

− 1
2

l

[
φ′′ +K

(
7

2
φ′φ′′ − 1

2
φφ′′′

)
+ βφ′′3

]
ζ=0

. (34)

Here, Rl =
Uwl
ν

represents the local Reynolds number. Figs. 22-25 elucidate
the variations of the skin-friction coefficient Cf (x) with different flow param-
eters in presence of slip with Rl = 1.0. Fig. 22 shows that the skin-friction
coefficient is increased in magnitude with an increase in the viscoelasticity of
the fluid. This is in agreement with our previous study [5] on the flow and
heat transfer of a third grade fluid past a planar stretching sheet subject to
partial slip boundary conditions. This prediction is of course undesirable from
an industrial standpoint, because it translates into a larger driving force (or
torque). In a subsequent figure (see Fig. 23), we have shown the variation of
Cf (x) with the cross-viscous parameter L. It is interesting to find a turning
point in the Cf (x) profile. In fact, Cf (x) increases in magnitude till certain
value of L (critical value not precisely determined), and then starts falling
rapidly with an increase in L. The shear thickening parameter β decreases the
magnitude of Cf (x), as is clear from Fig. 24. Finally, we plot the effects of slip
on Cf (x) in Fig. 25. It is apparent that the skin-friction coefficient decreases
rapidly, and approaches zero as the slip starts increasing. A precise idea re-
garding the variations of the dimensionless surface temperature gradient θ′(0)
in the PST case and the dimensionless surface temperature g(0) in the PHF
case with emerging flow parameters can be obtained from Table 1.
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K = 2.0, L = 1.0, β = 1.0, λ = 0.5.
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Table 1
Variations of θ′(0) and g(0) with different flow parameters at Pr = 3.0 and Ec = 0.5.

K L β Mn λ θ′(0) g(0)

1.0 -0.747032 1.273850

2.0 -0.711061 1.345089

3.0 1.0 1.0 0.5 0.5 -0.681810 1.406196

4.0 -0.658186 1.458946

5.0 -0.638669 1.505268

0.0 -0.788927 1.229248

0.2 -0.773089 1.251066

2.0 0.4 1.0 0.5 0.5 -0.757358 1.273569

0.6 -0.741759 1.296748

0.8 -0.726325 1.320594

0.0 -0.586272 1.653708

1.0 -0.589379 1.643798

3.0 1.0 2.0 0.5 1.0 -0.592324 1.634605

3.0 -0.595122 1.626037

4.0 -0.597797 1.617996

0.0 -0.906856 1.099114

0.5 -0.592325 1.634580

3.0 1.0 2.0 1.0 -0.453723 2.076024

1.5 -0.373926 2.458242

2.0 -0.322100 2.792813

1.0 -0.453723 2.076025

1.5 -0.403438 2.365504

3.0 1.0 2.0 1.0 2.0 -0.368396 2.610888

2.5 -0.342262 2.825475

3.0 -0.321806 3.017214

6 Conclusions

The present work deals with the numerical investigation of the effects of par-
tial slip on the steady flow and heat transfer of an electrically conducting third
grade fluid due an exponentially stretching sheet. The heat transfer analysis
has been carried out for two heating processes, namely (i) with prescribed
surface temperature (PST), and (ii) prescribed heat flux (PHF). It is found

18



that the third grade fluid parameter β increases the momentum boundary
layer thickness and decreases the thermal boundary layer thickness. The non-
dimensional slip factor λ has substantial effect on the momentum as well as
on the thermal boundary layers. The amount of slip 1−φ′(0) increases mono-
tonically with λ from the no-slip solution λ = 0 to the full-slip as λ tends
to infinity. It is interesting to find a turning point in the curve (Cf (x), L).
Moreover, it is found that the skin-friction coefficient Cf (x) decreases expo-
nentially as the slip starts increasing from zero. It is also found that the shear
thickening parameter β increases the magnitude of the rate of heat transfer
θ′(0) at the surface of the sheet, whereas, the slip factor has an opposite effect
on it. The obtained solutions have promising applications in engineering and
can be regarded as a step forward towards answering the still unresolved issue
pertaining to the boundary layer flows of third grade fluid subject to partial
slip boundary conditions.
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